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This article presents an overview of the derivation of effective shell-model Hamiltonian and

decay operators within the framework of many-body perturbation theory, and discusses

the results of selected shell-model studies based on these operators. More precisely,

we give technical details that non-experts will need in order to derive shell-model

Hamiltonians and operators starting from realistic nuclear potentials, and provide some

guidance for shell-model calculations where the single-particle energies, two-bodymatrix

elements of the residual interaction, effective charges, and decay matrix elements are

all obtained without resorting to empirical adjustments. We report results of studies of

double-β decay of heavy-mass nuclei where the shell-model ingredients are derived from

theory, so as to assess the reliability of such an approach to shell-model investigations.

Attention will be also focused on aspects relating to the behavior of the perturbative

expansion, knowledge of which is needed for establishing limits and applying this

approach to nuclear structure calculations.

Keywords: nuclear shell model, effective interactions, many-body perturbation theory, nuclear forces, double-

beta decay

1. INTRODUCTION

This article presents formal details of the derivation of effective shell-model Hamiltonians (Heff)
and decay operators by a perturbative approach, and reviews a large sample of recent applications
to the study of spectroscopic properties of atomic nuclei. The goal of this work is to provide a useful
tool for practitioners who are interested in using shell-model single-particle energies, two-body
matrix elements, effective charges, and magnetic-dipole and β-decay operators, which are derived
from many-body theory, to reproduce a selection of observables without resorting to parameters
that are empirically adjusted.

The well-known nuclear shell model (SM) is widely considered a basic theoretical tool for the
microscopic description of nuclear structure properties. The nuclear SM is based on the ansatz
that each nucleon inside the nucleus moves independently of other nucleons, in a spherically
symmetric mean field plus a strong spin-orbit term. This first-approximation depiction of a nucleus
is supported by the observation of “magic numbers” of protons and/or neutrons, corresponding to
nuclei which are more tightly bound than their neighbors.

These considerations have led to depictions of nucleons arranging themselves into groups of
energy levels, called “shells,” that are well-separated from each other. The main result of the SM
scheme is the reduction of the complex nuclear many-body problem to a very simplified setting
where only a few valence nucleons interact in a reduced model space spanned by a single major
shell situated above an inert core.
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The cost of such a simplification is that shell-model wave
functions, which describe the independent motions of individual
nucleons, do not include the correlations induced by the
strong short-range bare interaction, and therefore could be very
different from the real wave functions of the nuclei. The SM
Hamiltonian, which will be introduced in the next section,
contains one- and two-body components whose characterizing
parameters, namely the single-particle (SP) energies and two-
body matrix elements (TBMEs) of the residual interaction,
account for the degrees of freedom that are not explicitly included
in the truncated Hilbert space of the configurations. As a matter
of fact, SP energies and TBMEs should be determined to include,
in an effective way, the excitations of both the core nucleons and
the valence nucleons in the shells above the model space.

Derivation of the effective SM Hamiltonian may follow two
distinct paths. One approach is phenomenological: that is,
the one- and two-body components of the Hamiltonian are
adjusted to reproduce a selected set of experimental data. This
can be done either by using an analytical expression for the
residual interaction with adjustable parameters, or by treating
the Hamiltonian matrix elements directly as free parameters
(see [1, 2]).

Over more than 70 years of SM calculations, this approach
has been very successful at reproducing a huge amount of
data and describing some of the most fundamental physical
properties of the structure of atomic nuclei. In this regard, it
is worth mentioning the review by Caurier et al. [3], which
contains an interesting discussion about the properties of the
effective SM Hamiltonian; additional references will be given in
the following section.

Another way of constructing Heff is to start from realistic
nuclear forces—two- and three-body potentials if possible—and
derive the effective Hamiltonian in the framework of many-body
theory, i.e., obtain an Heff whose eigenvalues belong to the set of
eigenvalues of the full nuclear Hamiltonian defined in the whole
Hilbert space.

To do this, one needs a similarity transformation which,
within the full Hilbert space of the configurations, leads to a
decoupling of the model space P, where the valence nucleons are
constrained, from its complement Q = 1−P. Nowadays this can
be achieved within the framework of ab initio methods, which
aim to solve the full Hamiltonian of A nucleons by employing
controlled truncations of the accessible degrees of freedom.
However, this approach is strictly limited by the computational
power available and, even if successful, is currently confined
to just a few nuclear mass regions. A comprehensive survey of
possible ways to tackle the problem of derivingHeff starting from
ab initio methods can be found in reference [4], where some SM
applications and results are also reviewed.

The present work focuses on perturbative expansion of
the effective SM Hamiltonian, grounded in the energy-
independent linked-diagram perturbation theory [5], which has
been extensively used in SM calculations over the past 50 years
(see also the review papers [6, 7]).

An earlier attempt along this line was made by Bertsch [8],
who employed as interaction vertices the matrix elements of
the reaction matrix G derived from the Kallio-Kolltveit potential

[9] to study the role played by the core-polarization diagram
at second order in perturbation theory, accounting for one-
particle-one-hole (1p-1h) excitations above the Fermi level of
the core nucleons. The results of this work showed that the
contribution of such a diagram to Heff was about 30% of the
first-order two-bodymatrix element, when considering the open-
shell nuclei 18O and 42Sc outside doubly closed cores 16O and
40Ca, respectively.

Then came the seminal paper by Tom Kuo and Gerry Brown
[10], which represents a true turning point in nuclear structure
theory. It includes the first successful attempt at performing a
shell-model calculation starting from the free nucleon-nucleon
(NN) Hamada-Johnston (HJ) potential [11], and resulted in a
quantitative description of the spectroscopic properties of sd-
shell nuclei.

The TBMEs of the sd-shell effective interaction in reference
[10] were derived starting from the HJ potential, with the hard-
core component renormalized via calculation of the reaction
matrix G. The matrix elements of Gwere then used as interaction
vertices in the perturbative expansion ofHeff, including terms up
to second order in G.

The TBMEs obtained by this approach were used to calculate
the energy spectra of 18O and 18F and yielded results in good
agreement with experiments. Moreover, these matrix elements,
as well as those derived 2 years later for SM calculations in the
fp-shell [12], have become the backbone of the fine-tuning of
successful empirical SM Hamiltonians, such as the USD [13] and
the KB3G potentials [3, 14].

Between the late 1960s and early 1970s the theoretical
framework evolved thanks to the introduction of the folded-
diagrams expansion, which formally defined the correct
procedure for the perturbative expansion of effective SM
Hamiltonians [15, 16].

In the forthcoming sections we will present in detail the
derivation of Heff and consistent effective SM decay operators,
within the theoretical framework of many-body perturbation
theory. At the core of our approach is the perturbative expansion
of two vertex functions, the so-called Q̂-box and 2̂-box, in terms
of irreducible valence-linked Goldstone diagrams. The Q̂-box is
then employed to solve non-linear matrix equations in order to
obtain Heff by way of iterative techniques [17], and the latter
together with the 2̂-box are the main ingredients for deriving the
effective decay operators [18].

This paper is organized as follows. In the next section we
present a general overview of the SM eigenvalue problem and
the derivation of the effective SM Hamiltonian. In section
3 we tackle the problem on the basis of the Lee-Suzuki
similarity transformation [17, 19] and introduce the iterative
procedures for solving the decoupling equation that provides
this similarity transformation into Heff, for both degenerate and
non-degenerate model spaces. Two subsections are devoted to
the perturbative expansion of the Q̂-box vertex function and
the derivation of effective SM decay operators. In section 4
we summarize results of investigations into the double-β decay
of 130Te and 136Xe, and discuss the perturbative properties of
Heff and effective SM decay operators. The final section gives a
summary of the present work.
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2. GENERAL OVERVIEW

As mentioned in the Introduction, the SM, introduced 70
years ago [20, 21], is based on the assumption that, as a
first approximation, each nucleon (proton or neutron) inside
the nucleus moves independently in a spherically symmetric
potential representing the average interaction with the other
nucleons. This potential is usually described by a Woods-Saxon
or harmonic oscillator potential plus a strong spin-orbit term.
Inclusion of the latter term is crucial to producing single-particle
states clustered in groups of orbits that are close in energy
(shells). Each shell is well-separated in energy from the other
shells, and this enables the nucleus to be schematized as an inert
core, made up of shells filled with neutrons and protons paired
to give a total angular momentum of J = 0+, plus a certain
number of external nucleons, the so-called “valence” nucleons.
This extreme single-particle SM is able to successfully describe
various nuclear properties [22], such as the angular momentum
and parity of the ground states in odd-mass nuclei. However, it is
clear that in order to describe the low-energy structure of nuclei
with two or more valence nucleons, the “residual” interaction
between the valence nucleons has to be considered explicitly,
where the term “residual” refers to that part of the interaction
which is not taken into account by the central potential. The
inclusion of the residual interaction removes the degeneracy of
states belonging to the same configuration and produces amixing
of different configurations.

Let us now use the simple nucleus 18O to introduce some
common terminology used in effective interaction theories.

Suppose we want to calculate the properties of the low-lying
states in 18O. Then we must solve the Schrödinger equation

H|9ν〉 = Eν |9ν〉, (1)

where

H = H0 +H1 (2)

with

H0 =

A
∑

i=1

(

p2i
2m

+ Ui

)

(3)

and

H1 =

A
∑

i<j=1

VNN
ij −

A
∑

i=1

Ui. (4)

An auxiliary one-body potential Ui has been introduced to
decompose the nuclear Hamiltonian as the sum of a one-
body term H0, which describes the independent motion of the
nucleons, and the residual interaction H1. It is worth pointing
out that in the following, for the sake of simplicity and without
any loss of generality, we will assume that the interaction between
the nucleons is described by a two-body force only, neglecting

FIGURE 1 | Energy shells that characterize the core, valence space, and

empty orbitals for 18O.

three-body contributions. The generalization of the formalism to
include three-nucleon forces may be found in references [23, 24].

It is customary to choose an auxiliary one-body potential
U of convenient mathematical form, such as the harmonic
oscillator potential

U =

A
∑

i=1

1

2
mωr2i . (5)

In Figure 1 we show the relevant portion of the H0 spectrum
for 18O.

We expect the wave functions of the low-lying states in 18O to
be dominated by components with a closed 16O core (i.e., the 0s
and 0p orbits are filled) and two neutrons in the valence orbits 1s
and 0d. Hence, we choose a model space spanned by the vectors

|8i〉 =
∑

α,β∈valence space

Ci
αβ [a

†
αa

†

β ]i|c〉, i = 1, . . . , d, (6)

where |c〉 represents the unperturbed 16O core obtained by
completely filling the 0s and 0p orbits,

|c〉 =
∏

α∈filled shells

a†
α|0〉, (7)

and the index i stands for all the other quantum numbers needed
to specify the state (e.g., the total angular momentum).

To illustrate the situation, we show in Figure 2 some SM
configurations labeled in terms of particles and holes with respect
to the 16O core.

Solving Equation (1) using basis vectors like those shown
in Figure 2 amounts to diagonalizing the infinite matrix H in
Figure 3. This is infeasible, so we seek to reduce this huge matrix
to a smaller one, Heff, with the requirement that the eigenvalues
of the latter should belong to the set of eigenvalues of the former.
The notation |2p′ 0h〉 represents a configuration with a closed
16O core plus two particles constrained to interact in the sd-shell.
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FIGURE 2 | Some 18O shell-model configurations.

FIGURE 3 | Representation of the matrices H and Heff for
18O.

More formally, it is convenient to define the projection
operators P and Q = 1 − P, which project from the complete
Hilbert space onto the model space and its complementary space
(excluded space), respectively. The operator P can be expressed
in terms of the vectors in Equation (6) as

P =

d
∑

i=1

|8i〉〈8i|. (8)

The projection operators P and Q satisfy the properties

P2 = P, Q2 = Q, PQ = QP = 0. (9)

The key idea of the effective SM interaction theory is to transform
the eigenvalue problem of Equation (1) into a reduced model-
space eigenvalue problem

PHeffP|9α〉 = (Eα − EC)P|9α〉, (10)

where EC is the true energy of the core, i.e., the true ground-state
energy of 16O in the present case.

As mentioned in the Introduction, there are two main
approaches to deriving Heff:

• a phenomenological approach;
• an approach that starts from the bare nuclear interactions and

makes use of an appropriate many-body theory.

In the phenomenological approach, empirical effective
interactions containing adjustable parameters are introduced

and modified to fit a certain set of experimental data, or the two-
body matrix elements themselves are treated as free parameters.
This approach has been very successful, and we refer to several
excellent reviews [2, 3, 25–27] for a comprehensive discussion of
the topic.

Currently there are several ways to derive an effective
SM Hamiltonian starting from the bare interactions between
nucleons. In fact, besides the well-established approaches based
on many-body perturbation theory [5] or the Lee-Suzuki
transformation [17, 19], novel non-perturbative methods, such
as valence-space in-medium similarity renormalization group
(VS-IMSRG) [28], shell-model coupled cluster (SMCC) [29],
or the no-core shell model (NCSM) with a core based on the
Lee-Suzuki similarity transformation [30–33], are now available.
These non-perturbative approaches are firmly rooted in many-
body theory and provide somewhat different paths to Heff. They
can be derived in the same general theoretical framework by
expressing Heff as the result of a similarity transformation acting
on the original Hamiltonian,

Heff = eGHe−G , (11)

where the transformation is parameterized as the exponential of
a generator G, such that the decoupling condition

QHeffP = 0 (12)

is satisfied. Reference [4] contains a very detailed discussion of
how the different methods (perturbative and non-perturbative)
can be derived within such a general framework, as well
as descriptions of the corresponding approximation schemes
employed in each approach.

As stated in the Introduction, the present review aims to
describe in detail the perturbative approach to the derivation
of Heff; this is the focus of the next section. We refer to the
already cited review paper by Stroberg et al. [4] for an exhaustive
description of alternative methods.

3. PERTURBATIVE EXPANSION OF
EFFECTIVE SHELL-MODEL OPERATORS

3.1. The Lee-Suzuki Similarity
Transformation
In this subsection we present the formalism of the derivation
of the effective SM Hamiltonian based on the similarity
transformation introduced by Lee and Suzuki [19]. It is worth
noting that this approach has been very successful since it makes a
straightforward perturbative expansion ofHeff possible for open-
shell systems outside a closed core, whereas in other approaches,
such as the oscillator-based effective theory (HOBET) proposed
by Haxton and Song [34] or the coupled-cluster similarity
transformation [35], factorization of the core configurations
with respect to the valence nucleons is far more complicated
to perform.

We start from the Schrödinger equation for the A-nucleon
system, defined in the whole Hilbert space:

H|9ν〉 = Eν |9ν〉. (13)
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As already mentioned, within the SM framework an auxiliary
one-body potential U is introduced to express the nuclear
Hamiltonian as the sum of an unperturbed one-body mean-field
term H0 and the residual interaction Hamiltonian H1. The full
Hamiltonian H is then rewritten in terms of H0 and H1, as in
Equations (2)–(4).

According to the nuclear SM described in the previous section,
the nucleus may be thought of as a frozen core, composed of a
number of nucleons which fill a certain number of energy shells
generated by the spectrum of the one-body HamiltonianH0, plus
a remainder of n interacting valence nucleons moving in the
mean field H0.

The large energy gap between the shells allows us to regard
the A − n core nucleons, which completely fill the shells that
are lowest in energy, as inert. The SP states accessible to the
valence nucleons are those belonging to the major shell situated
(in energy) just above the closed core. The configurations allowed
by the valence nucleons within this major shell define a reduced
Hilbert space, the model space, in terms of a finite subset of d
eigenvectors of H0, as expressed in Equation (6).

We then consider the projection operators P (see Equation 8)
and Q = 1 − P, which project from the complete Hilbert space
onto the model space and its complementary space, respectively,
and satisfy the properties in Equation (9).

The goal of an SM calculation is to reduce the eigenvalue
problem of Equation (13) to the model-space eigenvalue problem

HeffP|9α〉 = EαP|9α〉, α = 1, . . . , d, (14)

where Heff is defined only in the model space.
This means that we are looking for a new Hamiltonian H

whose eigenvalues are the same as those of the HamiltonianH for
theA-nucleon system but which satisfies the decoupling equation
between the model space P and its complement Q:

QHP = 0, (15)

which guarantees that the desired effective Hamiltonian is
Heff = PHP.

The HamiltonianH should be obtained by way of a similarity
transformation defined in the whole Hilbert space:

H = X−1HX. (16)

Of course, the class of transformation operators X that satisfy the
decoupling Equation (15) is infinite, and Lee and Suzuki [17, 19]
proposed an operator X defined as X = eω. Without loss of
generality, ω can be chosen to satisfy the following properties:

ω = QωP, (17)

PωP = QωQ = PωQ = 0. (18)

Equation (17) implies that

ω2 = ω3 = · · · = 0. (19)

According to the above equation, Xmay be written as X = 1+ω,
and consequently we have the following expression for Heff:

Heff = PHP = PHP + PHQω. (20)

The operator ω may be calculated by solving the decoupling
Equation (15), and the latter can be rewritten as

QHP + QHQω − ωPHP − ωPHQω = 0. (21)

This matrix equation is non-linear, and once the Hamiltonian
H is expressed explicitly in the whole Hilbert space, it can be
easily solved. Actually, this is not an easy task for nuclei with
mass A > 2, and, as mentioned in the previous section, this
approach has been employed only for light nuclei within the ab
initio framework.

A successful way to solve Equation (21) for SM calculations
is to use a vertex function, the Q̂-box, which is suitable for a
perturbative expansion. We now explain the Q̂-box approach to
deriving Heff. It is important to note that in the following we
assume our model space to be degenerate:

PH0P = ǫ0P. (22)

Then, thanks to the decoupling Equation (15), the effective
Hamiltonian Heff

1 = Heff − PH0P can be expressed as a function
of ω:

Heff
1 = PHP − PH0P = PH1P + PH1Qω. (23)

The above identity, the decoupling Equation (21), and the
properties ofH0 andH1 allow us to define recursively the effective
Hamiltonian Heff

1 . First, since H0 is diagonal, we can write the
following identity:

QHP = QH1P + QH0P = QH1P. (24)

Then, the decoupling Equation (21) can be rewritten in the form

QH1P + QHQω − ω(PH0P + PH1P + PH1Qω)

= QH1P + QHQω − ω(ǫ0P +Heff
1 ) = 0. (25)

Using this expression for the decoupling equation, we can write a
new identity for the operator ω:

ω = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ωHeff

1 . (26)

Finally, we obtain a recursive equation by substituting
Equation (26) into the identity (23):

Heff
1 (ω) = PH1P + PH1Q

1

ǫ0 − QHQ
QH1P

−PH1Q
1

ǫ0 − QHQ
ωHeff

1 (ω). (27)

We now define the Q̂-box vertex function as

Q̂(ǫ) = PH1P + PH1Q
1

ǫ − QHQ
QH1P, (28)
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and this allows us to express the recursive Equation (27) as

Heff
1 (ω) = Q̂(ǫ0)− PH1Q

1

ǫ0 − QHQ
ωHeff

1 (ω). (29)

As can be seen from both of the Equations (28) and (29),
configurations belonging to the Q space that have energy
close to the unperturbed energy of model-space configurations
(intruder states) may give unstable solutions of Equation (29).
This is the so-called “intruder-state problem” as pointed out
in references [36, 37] by Schucan and Weidenmüller. In the
following we first present two possible iterative techniques for
solving Equation (29), as suggested by Lee and Suzuki [17]. These
methods, which are based on calculation of the Q̂-box and its
derivatives, are known as the Krenciglowa-Kuo and Lee-Suzuki
techniques. In particular, we point out that in reference [17] it is
shown that the Lee-Suzuki iterative procedure is convergent even
when there are some intruder states. We will then present some
other approaches that generalize the derivation of Heff, based on
calculation of the Q̂-box, to unperturbed HamiltoniansH0 which
provide non-degenerate model spaces.

3.1.1. The Krenciglowa-Kuo Iterative Technique
The Krenciglowa-Kuo (KK) iterative technique for solving the
recursive Equation (29) is based on the coupling of Equations
(29) and (26), which gives the iterative equation

Heff
1 (ωn) =

∞
∑

m=0

[

−PH1Q

(

−1

ǫ0 − QHQ

)m+1

QH1P

]

[

Heff
1 (ωn−1)

]m
. (30)

The quantity inside the first set of square brackets in
Equation (30), which will be denoted by Q̂m(ǫ0) from now on,
is proportional to the mth derivative of the Q̂-box calculated at
ǫ = ǫ0:

Q̂m(ǫ0) = −PH1Q

(

−1

ǫ0 − QHQ

)m+1

QH1P =
1

m!

[

dmQ̂(ǫ)

dǫm

]

ǫ=ǫ0

. (31)

We may then rewrite Equation (30) according to the above
identity as

Heff
1 (ωn) =

∞
∑

m=0

1

m!

[

dmQ̂(ǫ)

dǫm

]

ǫ=ǫ0

[

Heff
1 (ωn−1)

]m
=

∞
∑

m=0

Q̂m(ǫ0)
[

Heff
1 (ωn−1)

]m
. (32)

The starting point of the KK iterative method is the assumption
that Heff

1 (ω0) = Q̂(ǫ0), which enables us to rewrite Equation (32)
in the form

Heff =

∞
∑

i=0

Fi, (33)

where

F0 = Q̂(ǫ0),

F1 = Q̂1(ǫ0)Q̂(ǫ0),

F2 = Q̂2(ǫ0)Q̂(ǫ0)Q̂(ǫ0)+ Q̂1(ǫ0)Q̂1(ǫ0)Q̂(ǫ0),

...

(34)

Expression (33) is the well-known folded-diagram expansion
of the effective Hamiltonian introduced by Kuo and
Krenciglowa. In reference [38] they demonstrated the following
operatorial identity:

Q̂1Q̂ = −Q̂

∫

Q̂, (35)

where the integral sign corresponds to the so-called folding
operation introduced by Brandow in reference [15].

3.1.2. The Lee-Suzuki Iterative Technique
The Lee-Suzuki (LS) technique is another iterative procedure,
which is carried out by rearranging Equation (29) to obtain an
explicit expression for the effective Hamiltonian Heff

1 in terms of
the operators ω and Q̂ [17]:

Heff
1 (ω) =

(

1+ PH1Q
1

ǫ0 − QHQ
ω

)−1

Q̂(ǫ0). (36)

The iterative form of the above equation is

Heff
1 (ωn) =

(

1+ PH1Q
1

ǫ0 − QHQ
ωn−1

)−1

Q̂(ǫ0), (37)

and we may also write an iterative expression for Equation (26):

ωn = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ωn−1H

eff
1 (ωn). (38)

The standard procedure is to start the iteration by choosing ω0 =
0, so that we may write

Heff
1 (ω1) = Q̂(ǫ0),

ω1 = Q
1

ǫ0 − QHQ
QH1P.

After some algebra, the following identity can be established:

Q̂1(ǫ0) = −PH1Q
1

ǫ0 − QHQ
Q

1

ǫ0 − QHQ

QH1P = −PH1Q
1

ǫ0 − QHQ
ω1. (39)

Then for the n = 2 iteration we have

Heff
1 (ω2) =

(

1+ PH1
1

ǫ0 − QHQ
ω1

)−1

Q̂(ǫ0)

=
1

1− Q̂1(ǫ0)
Q̂(ǫ0),
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ω2 = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ω1H

eff
1 (ω2).

(40)

Finally, the LS iterative expression for Heff is

Heff
1 (ωn) =



1− Q̂1(ǫ0)
n−1
∑

m=2

Q̂m(ǫ0)
n−1
∏

k=n−m+1

Heff
1 (ωk)





−1

Q̂(ǫ0).

(41)
It is important to realize that the KK and LS iterative techniques,
which allow the solution of the decoupling Equation (25), do not
in principle provide the same Heff. Suzuki and Lee have shown
that the KK iterative approach provides an effective Hamiltonian
whose eigenstates have the largest overlap with the eigenstates of
the model space, and that Heff obtained from the LS technique
has eigenvalues that are lowest in energy among those belonging
to the set of the full Hamiltonian H [17].

Both the KK and the LS procedures are limited to employing
an unperturbed Hamiltonian H0 whose model-space eigenstates
are degenerate in energy. However, reference [39] introduced
an alternative approach to the KK and LS techniques, which
extends these methods to the case of non-degenerate H0 by
using multi-energy Q̂-boxes. This approach is quite involved in
practice, and the only existing application in the literature is that
in reference [40].

We next outline two methods [41, 42] for deriving effective
SM Hamiltonians which may be implemented straightforwardly
with H0’s that are non-degenerate in the model space.

3.1.3. The Kuo-Krenciglowa Technique Extended to

Non-degenerate Model Spaces
The extended Kuo-Krenciglowa (EKK) method is an extension
of the KK iterative technique that can be used to derive an Heff
within non-degenerate model spaces [41, 43]. We summarize the
EKK method as follows.

First, a shifted Hamiltonian H̃ is defined in terms of an energy
parameter E:

H̃ = H − E. (42)

Then we rewrite Equation (25) in terms of H̃:

(E− QHQ)ω = QH1P − ωPH̃P − ωPH1Qω = QH1P − ωH̃eff.
(43)

Equation (43) may be solved by an iterative procedure analogous
to the KK technique, in terms of the Q̂-box and its derivatives as
defined in Equations (28) and (31), respectively.

The effective Hamiltonian H̃eff at the nth step of the iterative
procedure may then be expressed as [41]

H̃
(n)
eff = H̃BH(0)+

∞
∑

k=1

Q̂k(0)
[

H̃
(n−1)
eff

]k
, (44)

where H̃BH is the solution of the Bloch-Horowitz equation [44]:

H̃BH(E) = PH̃P + PH1Q
1

E− QHQ
QH1P. (45)

We note that the EKK method does not require H0 to be
degenerate within the model space; it has therefore been applied
to derive Heff in a multi-shell valence space [45, 46] and in
Gamow SM calculations with realistic NN potentials [47, 48].

It is worth pointing out that, since H̃eff = lim
n→∞

H̃
(n)
eff , we

can write

H̃eff = H̃BH(0)+
∞
∑

k=1

Q̂k(0)
[

H̃eff
]k
. (46)

Equation (46) may be interpreted as a Taylor series expansion of
H̃eff about H̃BH, and the parameter E corresponds to a shift of the
origin of the expansion and a resummation of the series [45]. In
fact, by virtue of Equation (42) we may express Heff as

Heff = H̃eff + E = HBH(0)+
∞
∑

k=1

Q̂k(0)
[

H̃eff
]k
. (47)

Now, both sides of the above equation are independent of E
provided that the summation is carried out at infinity, and
the parameter E may be tuned to accelerate the convergence
of the series when in practical applications a numerical partial
summation needs to be employed and a perturbative expansion
of the Q̂-box is carried out [45].

3.1.4. The Ẑ(ǫ) Vertex Function
Suzuki and coworkers proposed in reference [42] an approach
to the derivation of Heff that aims to avoid the divergences of
the Q̂-box vertex function when a non-degenerate model space is
considered. In fact, the definition of the Q̂-box in Equation (28)
shows that if ǫ approaches one of the eigenvalues of QHQ, then
instabilities may arise if one employs a numerical derivation,
since these eigenvalues are poles of Q̂(ǫ).

We now sketch the procedure described in reference [42]
and, for the sake of simplicity, consider the case of a degenerate
unperturbed model space (i.e., PH0P = ǫ0P).

A new vertex function Ẑ(ǫ) is introduced and defined in terms
of Q̂(ǫ) and its first derivative as

Ẑ(ǫ) ≡
1

1− Q̂1(ǫ)

[

Q̂(ǫ)− Q̂1(ǫ)(ǫ − ǫ0)P
]

. (48)

It can be demonstrated that Ẑ(ǫ) satisfies the equation [42]

[

ǫ0 + Ẑ(Eα)
]

P|9α〉 = EαP|9α〉, α = 1, . . . , d. (49)

Consequently, Heff
1 may be obtained by calculating the Ẑ-box

for those values of the energy, determined self-consistently, that
correspond to the “true” eigenvalues Eα .

To calculate Eα , we solve the eigenvalue problem

[

ǫ0 + Ẑ(ǫ)
]

|φk〉 = Fk(ǫ)|φk〉, k = 1, 2, . . . , d, (50)

where Fk(ǫ) are d eigenvalues that depend on ǫ. Then, the true
eigenvalues Eα can be obtained by solving the d equations

ǫ = Fk(ǫ), k = 1, 2, . . . , d. (51)
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First, it is worth pointing out some fundamental properties of
Ẑ(ǫ) and the associated functions Fk(ǫ). We then proceed to
discuss the solution of the Equations (50) and (51).

The behavior of Ẑ(ǫ) near the poles of Q̂(ǫ) is dominated by
Q̂1(ǫ), and we may write Ẑ(ǫ) ≈ (ǫ − ǫ0)P. This means that Ẑ(ǫ)
has no poles and so the Fk(ǫ)’s are continuous and differentiable
functions for any value of ǫ.

The Equations (51) may have solutions that do not correspond
to the true eigenvalues Eα , i.e., spurious solutions. In reference
[42] it is shown that since the energy derivative of Fk(ǫ)
approaches zero at ǫ = Eα , study of this derivative provides
a criterion for locating and rejecting spurious solutions. The
solution of Equations (50) and (51), which is necessary for
deriving the effective interaction, may be achieved through both
iterative and non-iterative methods.

We describe here a graphical non-iterative method for solving
Equation (51). As mentioned before, the Fk(ǫ)’s are continuous
functions of the energy, and hence the solutions of Equation (51)
may be determined as intersections of the graphs y = ǫ and
y = Fk(ǫ), using one of the well-known algorithms for solving
non-linear equations.

More precisely, if we define the functions fk(ǫ) as fk(ǫ) =
Fk(ǫ)− ǫ, the solutions of Equation (51) can obtained by finding
the roots of the equations fk(ǫ) = 0. From inspection of the
graphs y = ǫ and y = Fk(ǫ), we can locate for each intersection
a small surrounding interval [ǫa, ǫb] where fk(ǫa)fk(ǫb) < 0.
The assumption that fk(ǫ) is a monotone function within this
interval implies the existence of a unique root, which can be
accurately determined by means of the secant algorithm (see e.g.,
reference [49]).

After we have determined the true eigenvalues Eα , the effective
Hamiltonian Heff

1 is constructed as

Heff
1 =

d
∑

α=1

Ẑ(Eα)|φα〉〈φ̃α|, (52)

where |φα〉 is the eigenvector obtained from Equation (50)
and 〈φ̃α| is the corresponding biorthogonal state (such that
〈φ̃α|φα′〉 = δαα′ ).

As mentioned at the beginning of this subsection, we focus on
the case of a degenerate unperturbed model space (i.e., PH0P =
ǫ0P), but the above formalism can easily be generalized to the
non-degenerate case by replacing ǫ0P with PH0P in Equations
(48)–(50).

3.2. Diagrammatic Expansion of the Q̂-box
Vertex Function
The methods of derivingHeff presented in the preceding sections
require the calculation of the Q̂-box vertex function

Q̂(ǫ) = PH1P + PH1Q
1

ǫ − QHQ
QH1P.

For our purposes, the term 1/(ǫ − QHQ) is expanded as a
power series

1

ǫ − QHQ
=

∞
∑

n=0

1

ǫ − QH0Q

(

QH1Q

ǫ − QH0Q

)n

, (53)

leading to a perturbative expansion of the Q̂-box. It is useful
to employ a diagrammatic representation of this perturbative
expansion, which is a collection of Goldstone diagrams that
have at least one H1-vertex, are irreducible (i.e., at least one
line between two successive vertices does not belong to the
model space), and are linked to at least one external valence line
(valence-linked) [16].

The standard procedure for most perturbative derivations
of Heff is to deal with systems that have one and two valence
nucleons, but later we will show how include contributions from
three-body diagrams, which come into play when more than
two valence nucleons are considered. The H1b

eff of single-valence-
nucleon nuclei provides the theoretical effective SP energies,
while TBMEs of the residual interaction Veff are obtained from
the H2b

eff for systems with two valence nucleons. This can be
achieved by a subtraction procedure [50], namely removing from
H2b
eff the diagonal component of the effective SP energies derived

from the H1b
eff of the one-valence-nucleon systems.

A useful resource for practitioners who want to acquire
sufficient knowledge about the calculation of Q̂-box diagrams in
an angular-momentum coupled representation is the paper by
Kuo and coworkers [51].

It is worth pointing out that in the current literature effective
SM Hamiltonians are derived accounting for Q̂-box diagrams
up to at most third order in perturbation theory, as it is
computationally highly demanding to perform calculations
including higher-order sets of diagrams. A complete list of
diagrams can be found in reference [52], Appendix B, and
consists of 43 one-body and 135 two-body diagrams. We
remark that lists of diagrams can easily be obtained using
algorithms which generate order-by-order Hugenholtz diagrams
for perturbation theory applications (see e.g., reference [53]).

Because the aim of this article is to provide practitioners
with useful tips for deriving effective SM Hamiltonians within
the perturbative approach, we give some examples of Q̂-box
diagrams and their analytical expressions. Our first example is the
third-order ladder diagram Vladder shown in Figure 4. To obtain
an explicit expression for it, we will use the proton-neutron
angular-momentum coupled representation for the TBMEs of
the input potential VNN :

〈1, 2; J|VNN |3, 4; J〉 ≡ 〈n1l1j1tz1 , n2l2j2tz2 ; J|VNN |n3l3j3tz3 , n4l4j4tz4 ; J〉.
(54)

The TBMEs of VNN are antisymmetrized but not normalized
to ease the calculation of the Q̂-box diagrams; nm, lm, jm, and
tzm indicate the orbital and isospin quantum numbers of the SP
statem.

The analytical expression for Vladder is

〈a, b; J|Vladder|c, d; J〉

= +
1

4

∑

p1 ,p2 ,p3 ,p4

〈a, b; J|VNN |p1, p2; J〉〈p1, p2; J|VNN |p3, p4; J〉〈p3, p4; J|VNN |c, d; J〉

[ǫ0 − (ǫp1 + ǫp2 )][ǫ0 − (ǫp3 + ǫp4 )]
,

(55)

where ǫm denotes the unperturbed SP energy of the orbital jm and
ǫ0 is the so-called starting energy, i.e., the unperturbed energy of
the incoming particles, ǫ0 = ǫc + ǫd.
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We point out that the factor +1/4 is related to rules that
characterize the calculation of overall factors in Q̂-box Goldstone
diagrams; for any diagram we have a phase factor

(−1)(nh+nl+nc+nexh)

whose value is determined by the total number of hole lines
(nh), the total number of closed loops (nl), the total number
of crossings of different external lines as they trace through the
diagrams (nc), and the total number of external hole lines that
continuously trace through the diagrams (nexh) [51]. There is also
a factor of (1/2)nep , which accounts for the pairs of lines that start
together from one interaction vertex and end together at another
one (nep).

The diagram in Figure 4 has nh = nl = nc = nexh = 0,
and consequently the phase is positive. The number of pairs
of particles starting and ending together at the same vertices is
nep = 2, and so the overall factor is+1/4.

The factorization of Goldstone diagrams, such as the
ladder diagram in Figure 4 in terms of their interaction
vertices is quite simple. There is a large class of diagrams,
like the three-particle-one-hole diagram (3p-1h) in Figure 5,
which require some additional considerations to obtain a
straightforward factorization.

FIGURE 4 | Two-body ladder diagram at third order in perturbation theory:

lines with arrows represent incoming/outgoing and intermediate particle

states; wavy lines represent interaction vertices.

The factorization can easily be performed by taking into
account the fact that the interaction operator VNN transforms
as a scalar under rotation, and so we introduce the following
cross-coupling transformation of the TBMEs:

〈a, b; J|VNN |c, d; J〉CC =
1

Ĵ

∑

J′

Ĵ′X





jc ja J
jd jb J
J′ J′ 0





〈a, b; J′|VNN |c, d; J
′〉, (56)

where x̂ = (2x+1)1/2 and X is the so-called standard normalized
9-j symbol, expressed in terms of the Wigner 9-j symbol [54] as

X





r s t
u v w
x y z



 = t̂ ŵ x̂ ŷ







r s t
u v w
x y z







.

The orthonormalization properties ofX allow us to then write the
direct-coupled TBMEs in terms of the cross-coupled TBMEs:

〈a, b; J|VNN |c, d; J〉 =
1

Ĵ

∑

J′

Ĵ′X





jc jd J
ja jb J
J′ J′ 0





〈a, b; J′|VNN |c, d; J
′〉CC. (57)

Equations (56) and (57) help us to perform the factorization
of the diagram in Figure 5. First, a rotation according to
Equation (57) transforms the direct coupling to the total angular
momentum J into the cross-coupled one J′ (diagram A going to
diagram A1 in Figure 5). This allows us to cut the inner loop and
factorize the diagram into two terms, a ladder component (α) and
a cross-coupled matrix element (β) (diagram A2 in Figure 5):

(α) = 〈a, p3; J
′|A|c, h; J′〉CC,

(β) = 〈h, b; J′|VNN |p3, d; J
′〉CC.

Next, we transform the ladder diagram (A) back to a direct
coupling to J′′ by way of Equation (56), and factorize it into the
TBMEs (I) and (II) (diagram A3 in Figure 5):

(I) = 〈a, p3; J
′′|VNN |p1, p2; J

′′〉,

FIGURE 5 | Two-body 3p-1h diagram at third order in perturbation theory: lines with arrows represent incoming/outgoing and intermediate particle/hole states; wavy

lines indicate interaction vertices.
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FIGURE 6 | (V-U)-insertion diagram: graph A is the self-energy diagram, and

graph B represents the matrix element of the harmonic oscillator potential

U = 1
2mω

2r2.

(II) = 〈p1, p2; J
′′|VNN |c, h; J

′′〉.

The analytical expression for the diagram in Figure 5 is then

〈a, b; J|V3p1h|c, d; J〉 = −
1

2

1

Ĵ

∑

h,p1 ,p2 ,p3

∑

J′ ,J′′

Ĵ′′X





jc jd J

ja jb J

J′ J′ 0



X





jc ja J′

jh jp J′

J′′ J′′ 0





×
〈h, b; J′|VNN |p3 , d; J′〉CC〈a, p3; J′′|VNN |p1, p2; J′′〉〈p1, p2; J′′|VNN |c, h; J′′〉

[ǫ0 − (ǫp1 + ǫp2 )][ǫ0 − (ǫp3 + ǫp4 )]
,

(58)

The factor of −1/2 accounts for the facts that nep = 1, nh =
nl = 1, and an extra phase factor (−1)nph is needed for the total
number of cuts of particle-hole pairs (nph) [51], since in order to
factorize the diagram we have to cut the inner loop.

We remark that there are another three diagrams with the
same topology as the one in Figure 5, which corresponds to the
exchange of external incoming and outgoing particles.

Let us now turn our attention to one-body diagrams. First,
we consider the contribution of diagrams, such as the one in
Figure 6.

The diagram in Figure 6 is the so-called (V-U)-insertion
diagram and is composed of the self-energy diagram (V-insertion
diagram) minus the auxiliary potential U-insertion. The U-
insertion diagrams are due to the presence of the U term in H1.
The analytical expression for this diagram is

〈a||(V-U)||b〉 =
δja jb

2ja + 1

∑

J,h

(2J + 1)〈ja, h; J|V|jb , h; J〉 − 〈a||U||b〉

=
δja jb

2ja + 1

∑

J,h

(2J + 1)〈ja, h; J|V|jb , h; J〉 − 〈a||
1

2
mω2r2||b〉.

(59)

The calculation of the self-energy diagram A is performed by
coupling the external lines to a scalar, which leads to the SP total
angular momentum and the parity of ja, jb being identical. Then
we cut the inner hole line and, since the SP states a and b are
coupled to J = 0+, apply the transformation in Equation (56)
with J = 0+.

Since the standard choice for the auxiliary potential is the
harmonic oscillator potential, we also have the reduced matrix
element of U = 1

2mω
2r2 between the SP states a and b (graph B

in Figure 6).

It is worth pointing out that the diagonal contributions of
(V-U)-insertion diagrams, for SP states belonging to the model
space, correspond to first-order contributions of the perturbative
expansion of the effective SMHamiltonianH1b

eff of single-valence-
nucleon systems.

Moreover, (V-U)-insertion diagrams turn out to be identically
zero if a self-consistent Hartree-Fock (HF) auxiliary potential is
used [40], and reference [52] discusses the important role played
by these terms, comparing different effective Hamiltonians
derived by starting from Q̂-boxes with and without contributions
from (V-U)-insertion diagrams.

Now we will give an example of a one-body diagram and
comment briefly on its analytical calculation. We consider the
diagram in Figure 7; the complete list of third-order one-body
diagrams can be found in reference [52], Figure B.19.

We call this diagram V2p1h, since between the upper
interaction vertices two particles and one hole appear as
intermediate states. This diagram belongs to the group of non-
symmetric diagrams, which always occur in pairs that give equal
contributions. Its analytical expression is

〈j||V2p1h||j〉 = −
1

2

1

2j+ 1
(60)

∑

J,p1 ,p2 ,
h1 ,h2

(2J + 1)
〈j, h2; J|VNN |p1 , p2; J〉〈p1 , p2; J|VNN |h1 , h2; J〉〈h1||V-U||j〉

[ǫ0 − (ǫp1 + ǫp2 − ǫh2 )][ǫ0 − (ǫj + ǫp1 + ǫp2 − ǫh1 − ǫh2 )]

where ǫ0 = ǫj is the unperturbed SP energy of the incoming
particle j.

To factorize the diagram, we first cross-couple the incoming
and outgoing model-space states j to J′ = 0+ (diagram A1

in Figure 7). Then we cut the hole line h2 and, by way of
Equation (56), obtain a sum of two-body diagrams which are
direct-coupled to the total angular momentum J [51] (diagram
A2 in Figure 7). These operations are responsible for the factors
1/(2j + 1) and (2J + 1); the overall factor 1/2 is due to the pair
of particle lines (p1, p2) starting and ending at the same vertices,
while the minus sign comes from the two hole lines and one
loop appearing in the diagram. The factorization also takes into
account the (V-U)-insertion 〈h1||V-U|j〉.

As mentioned before, this diagrammatic approach is valid
for deriving Heff for one- and two-valence-nucleon systems; the
situation is different andmore complicated if one wishes to derive
Heff for systems with three or more valence nucleons.

Actually, none of the available SM codes can perform
diagonalization of SM Hamiltonians with three-body
components; the exception is the BIGSTICK SM code [55],
but it works only for light nuclei.

In order to incorporate the contribution to Heff of Q̂-
box diagrams with at least three incoming and outgoing
valence particles, we resort to the so-called normal-ordering
decomposition of the three-body component of a many-body
Hamiltonian [56]. To this end, we also include in the calculation
of the Q̂-box second-order three-body diagrams, which, for those
nuclei with more than two valence nucleons, account for the
interaction via the two-body force of the valence nucleons with
core excitations as well as virtual intermediate nucleons scattered
above the model space (see Figure 8).
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FIGURE 7 | An example of a one-body diagram (see text for details).

FIGURE 8 | Second-order three-body diagrams. The sum over the

intermediate lines runs over particle and hole states outside the model space,

shown in A and B, respectively. For the sake of simplicity, for each topology we

show only one of the diagrams which correspond to permutations of the

external lines.

For each topology shown in Figure 8 there are nine
diagrams, corresponding to the possible permutations of the
external lines. The analytical expressions for the second-
order three-body contributions are reported in reference [57],
and we derive from those expressions a density-dependent
two-body term.

To this end, for each (A,B) topology we calculate nine one-
loop diagrams, i.e., graphs of the form α in Figure 9. Their
explicit form, in terms of the three-body graphs (A,B), is

〈(jajb)J |V
α |(jcjd)J〉 =

∑

m,J′

ρm
Ĵ′
2

Ĵ2
〈
[

(jajb)J , jm
]

J′
|VA,B|

[

(jcjd)J , jm
]

J′
〉, (61)

where the summation over the index m runs over the model
space and ρm is the unperturbed occupation density of the orbital
m according to the number of valence nucleons.

Finally, the perturbative expansion of the Q̂-box contains
one- and two-body diagrams up to third order in VNN , along
with a density-dependent two-body contribution that accounts
for three-body second-order diagrams [57, 58]. We point
out that the latter term depends on the number of valence
protons and neutrons, thus leading to the derivation of specific

FIGURE 9 | Density-dependent two-body contribution obtained from a

three-body one; α is obtained by summing over one incoming and one

outgoing particle of the three-body graphs A in Figure 8.

effective SM Hamiltonians that differ only in the two-body
matrix elements.

3.3. Effective Shell-Model Decay Operators
In the SM approach, we are interested not only in calculating
energies but also in finding the matrix elements of operators
2 that represent physical observables (such as electromagnetic
transition rates, multipole moments, etc.).

Since the wave functions |ψα〉 obtained from diagonalizing
Heff are not the true ones |9α〉 but their projections onto the
chosen model space (|ψα〉 = P|9α〉), it is obvious that one has
to renormalize 2 to take into account the neglected degrees of
freedom corresponding to theQ-space. In other words, one needs
to consider the short-range correlation “wounds” inflicted by the
bare interaction on the SM wave functions. Formally, one seeks
to derive an effective operator2eff such that

〈9̃α|2|9β〉 = 〈ψ̃α|2eff|ψβ〉. (62)

The perturbative expansion of effective operators has been
studied since the earliest attempts to employ realistic potentials
for SM calculations; among the many studies we mention the
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fundamental and pioneering work carried out by L. Zamick on
the problem of electromagnetic transitions [59–61] and by I.
S. Towner on the quenching of spin-operator matrix elements
[62, 63].

In this subsection we discuss the formal structure of non-
Hermitian effective operators, as introduced by Suzuki and
Okamoto in reference [18]. More precisely, we give an expansion
formula for the effective operators in terms of the 2̂-box,
which, analogous to the Q̂-box in the effective interaction
theory (see section 3), is the building block for constructing
effective operators.

According to Equation (20) (and keeping in mind that ω ≡
QωP), we may write Heff as

Heff = PH(P + ω), (63)

so that we can express the true eigenstates |9α〉 and their
orthonormal counterparts 〈9̃α| as

|9α〉 = (P + ω)|ψα〉, 〈9̃α| = 〈ψ̃α|(P + ω†ω)(P + ω†). (64)

On the other hand, a general effective operator expression in the
bra-ket representation is

2eff =
∑

α,β

|ψα〉〈9̃α|2|9β〉〈ψ̃β |, (65)

where 2 is a general time-independent Hermitian operator.
Therefore, we can write2eff in operator form as

2eff = (P + ω†ω)−1(P + ω†)2(P + ω). (66)

It is worth noting that Equation (62) holds independently of
the normalization of |9α〉 and |ψα〉, but if the true eigenvectors
are normalized, then 〈9̃α| = 〈9α| and the |ψα〉 should be
normalized in the following way:

〈ψ̃α|(P + ω†ω)|ψα〉 = 1. (67)

To explicitly calculate2eff, we introduce the 2̂-box, defined as

2̂ = (P + ω†)2(P + ω), (68)

so that2eff can be factorized as

2eff = (P + ω†ω)−12̂. (69)

The derivation of2eff is divided into two steps: the calculation of
2̂ and the calculation of ω†ω.

According to Equation (68) and taking into account the
expression for ω in terms of Heff, i.e.,

ω =

∞
∑

n=0

(−1)n
(

1

ǫ0 − QHQ

)n+1

QH1P(H
eff
1 )n, (70)

we can write

2̂ = 2̂PP + (2̂PQ + h.c.)+ 2̂QQ, (71)

where

2̂PP = P2P, (72)

2̂PQ = P2ωP =

∞
∑

n=0

2̂n(H
eff
1 )n, (73)

2̂QQ = Pω†2ωP =

∞
∑

n,m=0

(Heff
1 )n2̂nm(H

eff
1 )m, (74)

and 2̂m and 2̂mn are given by

2̂m =
1

m!

dm2̂(ǫ)

dǫm

∣

∣

∣

∣

ǫ=ǫ0

, (75)

2̂mn =
1

m!n!

dm

dǫm1

dn

dǫn2
2̂(ǫ1; ǫ2)

∣

∣

∣

∣

ǫ1=ǫ0 ,ǫ2=ǫ0

(76)

with

2̂(ǫ) = P2P + P2Q
1

ǫ − QHQ
QH1P, (77)

2̂(ǫ1; ǫ2) = PH1Q
1

ǫ1 − QHQ
Q2Q

1

ǫ2 − QHQ
QH1P. (78)

As regards the product ω†ω, using the definition (31) we
can write

ω†ω = −

∞
∑

n=1

∞
∑

m=1

((Heff
1 )†)n−1Q̂(ǫ0)n+m−1(H

eff
1 )m−1. (79)

Upon expressing Heff
1 in terms of the Q̂-box and its derivatives

(see Equations 33 and 34), the above quantity may be rewritten as

ω†ω = −Q̂1 + (Q̂2Q̂+ h.c.)+ (Q̂3Q̂Q̂+ h.c.)

+(Q̂2Q̂1Q̂+ h.c.)+ · · · . (80)

Putting together Equations (77) and (80), we can write the final
perturbative expansion of the effective operator2eff:

2eff = (P+Q̂1+Q̂1Q̂1+Q̂2Q̂+Q̂Q̂2+· · · )×(χ0+χ1+χ2+· · · ),
(81)

where

χ0 = (2̂0 + h.c.)+ 2̂00 , (82)

χ1 = (2̂1Q̂+ h.c.)+ (2̂01Q̂+ h.c.), (83)

χ2 = (2̂1Q̂1Q̂+ h.c.)+ (2̂2Q̂Q̂+ h.c.)

+ (2̂02Q̂Q̂+ h.c.)+ Q̂2̂11Q̂ . (84)

...

It is worth elucidating the strong link that exists betweenHeff and
any effective operator. This is achieved by inserting the identity
Q̂Q̂−1 = 1 into Equation (81) to obtain the following expression:

2eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂+ Q̂Q̂2 + · · · )Q̂Q̂−1
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FIGURE 10 | One-body second-order diagrams included in the perturbative

expansion of 2̂0; an asterisk indicates the bare operator 2.

× (χ0 + χ1 + χ2 + · · · )

= HeffQ̂
−1(χ0 + χ1 + χ2 + · · · ). (85)

In actual calculations the χn series is truncated to a finite order
and the starting point is the derivation of perturbative expansions
for 2̂0 ≡ 2̂(ǫ0) and 2̂00 ≡ 2̂(ǫ0; ǫ0), including diagrams up
to a finite order in the perturbation theory, consistently with the
expansion of the Q̂-box. The issue of convergence of the χn series
and of the perturbative expansions of 2̂0 and 2̂00 will be treated
extensively in section 4.1.

In Figure 10 we display all the diagrams up to second order
appearing in the 2̂0 expansion for a one-body operator2.

The evaluation of the diagrams involved in the derivation of
2eff follows the same procedure as described in the previous
section. Therefore, in the following we will just outline the
procedure for calculating such diagrams with one2 vertex.

Let us suppose that the operator2 transforms like a spherical
tensor of rank λ and with component µ:

2 ≡ Tλµ, (86)

with

(Tλµ)
† = (−1)λ−µTλ−µ. (87)

By using the Wigner-Eckart theorem, it is possible to
express any transition matrix element in terms of a reduced
transition element:

〈ja||T
λ||jb〉 = (−1)λ−µ〈ja|T

λ
µ|jb〉, (88)

where in the right-hand side jb and ja are coupled to a
total angular momentum and projection equal to λ and −µ,
respectively, and we have assumed without lack of generality that
we are dealing with single-particle states.

Therefore, we evaluate each diagram as a contribution to
the reduced matrix element of the effective operator. To be
more explicit, we consider as an example the calculation of
the following second-order diagram that takes into account the
renormalization of the operator due to 1p-1h core excitations.

The first step is to couple jb and ja to a total angular
momentum equal to λ. This enables us to factorize the diagram as
the product of a cross-coupled matrix element of the interaction
and the reduced matrix element of the operator (see the right-
hand part of Figure 11).

FIGURE 11 | One-body second-order 2p-1h diagram included in the

perturbative expansion of 2̂0; an asterisk indicates the bare operator 2.

Explicitly, we can evaluate the diagram as

〈ja||22p1h||jb〉

= −
∑

p,h

(−1)jp+jh−λ
〈ja, p; λ|VNN |jb, h; λ〉CC〈h||T

λ||p〉

ǫ0 − (ǫa + ǫb − ǫh)
. (89)

The minus sign in front is due to the fact that nh = nl = 1 and
that an extra phase factor (−1)nph is needed for the total number
of cuts of particle-hole pairs (nph) [51], since we have to cut the
inner loop to factorize the diagram.

4. APPLICATIONS

In this section we present a specific example of SM calculations
performed by employing effective SM Hamiltonian and decay
operators derived from realistic nuclear potentials within the
many-body perturbation theory.

These kinds of calculations have actually been carried out
since the mid-1960s, but they mostly involved retaining only
the TBMEs, since the single-body components of Heff were not
considered accurate enough to provide SM results that would
agree well with experiments. A large sample of calculations
performed in that successful framework can be found in previous
reviews of the topic [6, 7].

Here we present results of a calculation where both the SP
energies and the TBMEs that are needed to diagonalize the SM
Hamiltonian have been obtained by deriving Heff according to
the procedures described in the previous section. Besides Heff,
the many-body perturbation theory has been used to derive
consistently effective operators to calculate electromagnetic
transition rates and Gamow-Teller (GT) strengths without
resorting to the use of empirical effective charges or quenching
factors for the axial coupling constant gA.

The following are some motivations for performing SM
calculations by deriving and employing all SM parameters—SP
energies, TBMEs, and effective transition and decay operators—
starting from realistic nuclear forces:

• the need to study the soundness of many-body perturbation
theory so as to provide reliable SM parameters;

• the need to determine the ability of classes of nuclear potentials
to describe nuclear structure observables;
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• the opportunity to compare and benchmark SM calculations
against other nuclear structure methods that employ
realistic potentials.

The goal of these studies is to assess the reliability of
such an approach to investigating the nuclear SM, especially
its predictiveness, which is crucial for describing physical
phenomena that are not yet accessible experimentally.

4.1. The Double-β Decay Around Doubly
Closed 132Sn
Neutrinoless double-β (0νββ) decay is an exotic second-order
electroweak process predicted by extensions of the Standard
Model of particle physics. Observation of such a process
would demonstrate the non-conservation of the lepton number
and provide evidence that neutrinos have a Majorana mass
component (see references [64, 65] and references therein).

In the framework of light-neutrino exchange, the half-life of
the 0νββ decay is inversely proportional to the square of the
effective Majorana neutrino mass 〈mν〉:

[

T0ν
1/2

]−1
= G0ν

∣

∣M0ν
∣

∣

2
g4A

∣

∣

∣

∣

〈mν〉

me

∣

∣

∣

∣

2

, (90)

where gA is the axial coupling constant, me is the electron mass,
G0ν is the so-called phase-space factor (or kinematic factor), and
M0ν is the nuclear matrix element (NME), which is related to the
wave functions of the nuclei involved in the decay.

At present, the phase-space factors for nuclei that are possible
candidates for 0νββ decay can be calculated with great accuracy
[66, 67]. It is therefore crucial to have precise values for the NME,
both to improve the reliability of the 0νββ lifetime predictions—
a fundamental ingredient in the design of new experiments—
and to extract neutrino properties from the experimental results,
when they become available.

Several nuclear structure models have been exploited to
provide NME values that are as precise as possible, the most
commonly used being the interacting boson model [68–70],
the quasiparticle random-phase approximation [71–74], energy
density functional methods [75], the covariant density functional
theory [76–78], the generator-coordinate method [79–82], and
the shell model [83–87].

All of the above models use a truncated Hilbert space to
reduce the computational complexity, and each can be more
efficient than the others for a specific class of nuclei. However,
when comparing the calculated NMEs obtained via different
approaches, it is seen that, at present, the results can differ by a
factor of two or three (see for instance the review in reference
[88]).

Reference [89] reports on the calculation of the 0νββ-decay
NME for 48Ca, 76Ge, 82Se, 130Te, and 136Xe in the framework
of the realistic SM, where the Heff’s and 0νββ-decay effective
operators are consistently derived starting from a realistic NN
potential, the high-precision CD-Bonn potential [90].

We remark that the above work is not the first example of such
an approach, which was pioneered by Kuo and coworkers [91, 92]
and more recently pursued by Holt and Engel [93].

Here we restrict ourselves to the results obtained in reference
[89] for the heavy-mass nuclei around 132Sn, 130Te, and 136Xe.
At present, these nuclei are under investigation as 0νββ-decay
candidates by some large experimental collaborations. The
possible 0νββ decay of 130Te is being studied by the CUORE
collaboration at the INFN Laboratori Nazionali del Gran Sasso
in Italy [94], while 136Xe is being investigated by both the EXO-
200 collaboration at the Waste Isolation Pilot Plant in Carlsbad,
New Mexico [95], and the KamLAND-Zen collaboration at the
Kamioka mine in Japan [96].

The starting point of the SM calculation is the high-precision
CD-Bonn NN potential [90], whose non-perturbative behavior
induced by its repulsive high-momentum components is treated
with the so-called Vlow-k approach [97]. This yields a smooth
potential which exactly preserves the onshell properties of the
original NN potential up to a chosen cutoff momentum 3. As
in other SM studies [98–101], the value of the cutoff has been
chosen as 3 = 2.6 fm−1, since the role of the missing three-
nucleon force (3NF) decreases as the Vlow-k cutoff is increased
[99]. In fact, in reference [99] it is shown that Heff’s derived from
Vlow-k’s with small cutoffs (3 = 2.1 fm−1) have SP energies that
are in worse agreement with experiments, as well as unrealistic
shell-evolution behavior. This may be attributed to a greater
impact of the induced 3NF, which becomes less important with
a larger cutoff.

In our experience, 3 = 2.6 fm−1, within a perturbative
expansion of the Q̂-box, is an upper limit, since a larger
cutoff worsens the order-by-order behavior of the perturbative
expansion; at the end of this section we report a study of the
perturbative properties ofHeff and of the effective decay operators
derived using this Vlow-k potential.

The Coulomb potential is explicitly taken into account in the
proton-proton channel.

The SM effective Hamiltonian Heff is derived within the
framework of the many-body perturbation theory as described
in section 3, including diagrams up to third order in H1 in the
Q̂-box-expansion, while all the effective operators, both one-
and two-body, are obtained consistently using the approach
described in section 3.3, including diagrams up to third order
in perturbation theory in the evaluation of the 2̂-box and
truncating the χn series in Equation (81) to χ2.

The effective Hamiltonian and operators are defined in a
model space spanned by the five proton and neutron orbitals,
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2, outside the doubly closed
100Sn core. The SP energies and TBMEs of Heff can be found in
reference [101].

Before showing the results for the 0νββ NME obtained
in reference [89], it is worth checking the reliability of
the approach we have adopted. To this end, we present
some results obtained from the calculation of quantities for
which there exist experimental counterparts to compare
with. In particular, we show selected results for the
electromagnetic properties, GT strength distributions, and
2νββ decays in 130Te and 136Xe, which have been reported in
references [101, 102].

Figures 12, 13 show experimental [103, 104] and calculated
low-energy spectra and B(E2) strengths of parent and
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FIGURE 12 | Experimental and calculated spectra of 130Te and 130Xe; the arrows are proportional to the B(E2) strengths, whose values are reported in e2fm4.

Reproduced from reference [102].

FIGURE 13 | Same as Figure 12 but for 136Xe and 136Ba. Reproduced from reference [102].

granddaughter nuclei involved in double-β decay of 130Te
and 136Xe, respectively.

By inspection of Figures 12, 13 it can be seen that, as regards
the low-lying excited states and the B(E2) transition rates, theory
and experiment agree quite well for 130Te, 136Xe, and 136Ba,
but less so for 130Xe, whose theoretical spectrum is expanded
compared with the observed one. As regards the electromagnetic
properties, in reference [102] they are calculated along with
some B(M1) strengths and magnetic dipole moments using an
effective spin-dependent M1 operator, and comparison with the
available data (see Tables VII and IX in reference [102]) shows
good agreement.

Two kinds of experimental data related to GT decay are
available for 130Te and 136Xe: GT strength distributions and the
NMEs involved in 2νββ decays. The GT strength B(GT) can
be extracted from the GT component of the cross-section at
zero degrees of intermediate energy charge-exchange reactions,
following the standard approach in the distorted-wave Born
approximation [105, 106]:

dσGT(0◦)

d�
=

(

µ

π h̄2

)2 kf

ki
NστD |Jστ |

2B(GT), (91)

where NστD is the distortion factor, |Jστ | is the volume integral
of the effective NN interaction, ki and kf are the initial and final
momenta, respectively, and µ is the reduced mass.

On the other hand, the experimental 2νββ NME M2ν
GT can be

extracted from the observed half-life T2ν
1/2 of the parent nucleus

as follows:
[

T2ν
1/2

]−1
= G2ν

∣

∣M2ν
GT

∣

∣

2
. (92)

Both of the above quantities can be calculated in terms of the
matrix elements of the GT− operator Eστ−:

B(GT) =

∣

∣〈8f ||
∑

j Eσjτ
−
j ||8i〉

∣

∣

2

2Ji + 1
, (93)

M2ν
GT =

∑

n

〈0+
f
||Eστ−||1+n 〉〈1

+
n ||Eστ

−||0+i 〉

En + E0
, (94)

where En is the excitation energy of the Jπ = 1+n intermediate
state and E0 = 1

2Qββ (0
+) + 1M, with Qββ (0+) and 1M

being the Q-value of the ββ decay and the mass difference
between the daughter and parent nuclei, respectively. The nuclear

Frontiers in Physics | www.frontiersin.org 15 October 2020 | Volume 8 | Article 345

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Coraggio and Itaco Perturbative Approach to Effective Shell-Model Hamiltonians

FIGURE 14 | Running sums of the B(GT) strengths as a function of the excitation energy Ex up to 3 and 4.5 MeV, respectively, for 130Te and 136Xe. Reproduced from

reference [102].

TABLE 1 | Experimental [109] and calculated NMEs (in MeV−1 ) of the 2νββ decay

for 130Te and 136Xe.

Decay NMEExpt Bare Effective

130Te → 130Xe 0.031± 0.004 0.131 0.061

136Xe → 136Ba 0.0181± 0.0007 0.0910 0.0341

matrix elements in Equations (93) and (94) are calculated within
the long-wavelength approximation, including only the leading
order of the GT operator in a non-relativistic reduction of the
hadronic current.

In reference [102] the GT strength distributions and 2νββ
NMEswere calculated for 130Te and 136Xe using an effective spin-
isospin-dependent GT operator, derived in a manner consistent
with Heff by following the procedure described in section 3.3.

Figure 14 shows the theoretical running sums of the GT
strengths 6B(GT), calculated with both bare and effective GT
operators, plotted against the excitation energy and compared
with the available data extracted from (3He, t) charge-exchange
experiments [107, 108] for 130Te and 136Xe. It can be seen
that in both nuclei, the GT strength distributions calculated
using the bare GT operator overestimate the experimental
ones by more than a factor of two. Including the many-body
renormalization of the GT operator brings the predicted GT
strength distribution into much better agreement with that
extracted from experimental data.

In reference [102] the NMEs M2ν
GT involved in the decay

of 130Te and 136Xe are calculated using the definition in
Equation (94), bymeans of the Lanczos strength functionmethod
as in reference [3]. The results obtained with the bare GT
operator and with the effective one are reported in Table 1 and
compared with experimental values [109].

The effective operator induces a relevant quenching of the
calculated NME, 47% for 130Te and 37% for 136Xe decay, leading
to fairly good agreement with the experimental value for both
nuclei, of the same quality as for other SM calculations where all
parameters (SP energies and TBMEs) were fitted to experimental
values and a quenching factor q was introduced to reproduce GT

data (see, for example, reference [110]). The overall agreement
between theory and experiment shows that the many-body
perturbation theory can be used to derive consistently effective
Hamiltonians and transition operators that are able to reproduce
quantitatively the observed spectroscopic and decay properties,
without having to resort to any empirical adjustments, such as
quenching of the axial coupling constant gA. This supports the
reliability of this approach to calculating the NMEs involved in
0νββ , the results of which were reported in reference [89] and
are briefly summarized in the following.

The 0νββ two-body operator for the light-neutrino scenario
can be expressed in the closure approximation (see e.g.,
references [111, 112]) in terms of the neutrino potentials Hα and
form functions hα(q) (α = F, GT, or T) as

2GT = Eσ1 · Eσ2HGT(r)τ
−
1 τ

−
2 , (95)

2F = HF(r)τ
−
1 τ

−
2 , (96)

2T =
[

3
(

Eσ1 · r̂
) (

Eσ1 · r̂
)

− Eσ1 · Eσ2
]

HT(r)τ
−
1 τ

−
2 , (97)

where

Hα(r) =
2R

π

∫ ∞

0

jnα (qr)hα(q
2)q dq

q+ 〈E〉
. (98)

The value of the parameter R is 1.2A1/3 fm, and the jnα (qr) are
the spherical Bessel functions, with nα = 0 for the Fermi and
GT components and nα = 2 for the tensor one. The explicit
expressions for the neutrino form functions hα(q) can be found
in reference [89], and the average energies 〈E〉 are evaluated as in
references [111, 112].

Apart from effects related to sub-nucleonic degrees of
freedom, which were not accounted for in reference [89], the
0νββ-decay operator has to be renormalized to take into account
both the degrees of freedom that are neglected in the adopted
model space and the contribution of short-range correlations
(SRCs). The latter arise because the action of a two-body decay
operator on an unperturbed (uncorrelated) wave function, such
as the one used in the perturbative expansion of2eff, differs from
the action of the same operator on the real (correlated) nuclear
wave function.
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TABLE 2 | Calculated values of M0ν for 130Te and 136Xe decay.

Decay Bare operator 2eff

130Te → 130Xe 3.27 3.16

136Xe → 136Ba 2.47 2.39

The first column of values correspond to results obtained using the bare 0νββ-decay

operator, and the second column to results calculated with 2eff .

It is worth pointing out that the calculations for 2νββ decay
are not affected by this renormalization, since, as mentioned
before, we retain only the leading order of the long-wavelength
approximation, which corresponds to a zero-momentum-
exchange (q = 0) process. On the other hand, the
inclusion of higher-order contributions or corrections due to
the sub-nucleonic structure of the nucleons [113–116] would
connect high- and low-momentum configurations, and this
renormalization should be carried out for the two-neutrino
emission decay too.

In reference [117] the inclusion of SRCs was realized bymeans
of an original approach [117] that is consistent with the Vlow-k
procedure. The 0νββ operator 2, expressed in the momentum
space, is renormalized by the same similarity transformation
operator �low-k that defines the Vlow-k potential. This enables
us to effectively take into account the high-momentum (short-
range) components of the NN potential, in a framework where
their direct contribution is not explicitly considered above a
cutoff 3. The resulting 2low-k vertices are then employed
in the perturbative expansion of the 2̂-box to calculate 2eff
using Equation (85). More precisely, the perturbative expansion
considers diagrams up to third order in perturbation theory,
including those related to the so-called Pauli blocking effect (see
Figure 2 in reference [89]), and the χn series is truncated to χ2.

In reference [89] the contribution of the tensor component of
the neutrino potential (Equation 97) is neglected, and therefore
the total NMEM0ν is expressed as

M0ν = M0ν
GT −

(

gV

gA

)2

M0ν
F , (99)

where gA = 1.2723, gV = 1 [118], and the matrix elements
between the initial and final states M0ν

α are calculated within the
closure approximation

M0ν
α =

∑

jn ,jn′ ,jp ,jp′

〈f |a†
pana

†

p′an′ |i〉 × 〈jpjp′ | 2α | jnjn′〉. (100)

The NMEs calculated using the 0νββ-decay effective operator are
reported in Table 2 and compared with the values obtained using
the bare operator without any renormalization.

The most striking feature that can be inferred from inspection
of Table 2 is that the effects of the renormalization of the 0νββ-
decay operator are far less relevant than those observed in the
2νββ-decay case.

A long-standing issue related to the calculation of M0ν

is possible interplay between the derivation of the effective

one-body GT operator and the renormalization of the two-
body GT component of the 0νββ operator, with some authors
assuming that the same empirical quenching used to reproduce
the observed GT-decay properties (single-β decay strengths,
M2ν

GT’s, etc.) should also be employed to calculate M0ν (see
for instance references [119, 120]). In fact, comparison of the
results in Tables 1, 2 shows that the mechanisms underlying
the microscopic derivation of the one-body single-β and the
two-body 0νββ-decay effective operators lead to a considerably
different renormalization, at variance with the above hypothesis.

The SM calculations of this section have been performed by
employing, as interaction vertices of the perturbative expansion
of the Q̂-box, a realistic potential derived from the high-precision
CD-Bonn NN potential [90]. This potential is characterized
by strong repulsive behavior in the high-momentum regime,
so, as mentioned before, it is renormalized by deriving a low-
momentum NN potential using the Vlow-k approach [97].

As in other SM studies [98–101], the value of the cutoff
is chosen as 3 = 2.6 fm−1, since the role of the missing
3NF decreases as the Vlow-k cutoff is increased [99]. This value,
within a perturbative expansion of the Q̂-box, is an upper limit,
since a larger cutoff worsens the order-by-order behavior of the
perturbative expansion. Here, we discuss some implications for
the properties of the perturbative expansion of Heff and the SM
effective transition operator when this “hard” Vlow-k is employed
to derive the SM Hamiltonian and operators.

Studies of the perturbative properties of the SP energy
spacings and TBMEs are reported in references [99, 121], where
Heff is derived within the model space outside 132Sn starting
from the “hard” Vlow-k. reference [122] contains a systematic
investigation of the convergence properties of theoretical SP
energy spectra, TBMEs, and 2νββ NMEs as functions of both
the dimension of the intermediate state space and the order of
the perturbative expansion. Moreover, reference [89] discusses
convergence properties of the perturbative expansion of the
effective 0νββ-decay operator with respect to the number of
intermediate states and the truncation of both the order of the
χn operators and the perturbative order of the diagrams. Here,
we briefly sketch these results in order to assess the reliability of
realistic SM calculations performed starting from a “hard”Vlow-k.

The model space employed for the SM calculations
in reference [122] is spanned by the five proton and
neutron orbitals outside the doubly closed 100Sn, namely
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2, to study the 2νββ decay of
130Te and 136Xe.

The left panel of Figure 15 shows the behavior of the
calculated SP spectrum of 101Sn with respect to the 0g7/2 SP
energy as a function of the maximum allowed excitation energy
of the intermediate states expressed in terms of the oscillator
quanta Nmax. It is clear that convergence is achieved at Nmax =
14, which, for the perturbative expansion of the effective SM
Hamiltonian and decay operators, justifies the decision to include
intermediate states with an unperturbed excitation energy of up
to Emax = Nmaxh̄ω where Nmax = 16 [89, 101, 102, 122].

As regards the order-by-order convergence of the SP energies,
the right panel of Figure 15 plots the calculated neutron SP
energies, using a number of intermediate states corresponding
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FIGURE 15 | Neutron SP energies as a function of Nmax (left) and of the perturbative order (right). Reproduced from reference [122] under the Creative Commons CC

BY license.

FIGURE 16 | Neutron-neutron diagonal Jπ = 0+ TBMEs as a function of Nmax (left) and of the perturbative order (right). Reproduced from reference [122] under the

Creative Commons CC BY license.

to Nmax = 16, against the order of the perturbative expansion
up to third order. The calculated neutron SP energies are also
compared with the Padé approximant [2|1] of the Q̂-box, which
estimates the value to which the perturbative seriesmay converge.
The results at third order are very close to those obtained with the
Padé approximant, indicating that the truncation to third order
should provide a reasonable estimate for the sum of the series.

As regards the TBMEs, we plot in Figure 16 the neutron-
neutron diagonal Jπ = 0+ TBMEs as a function both of Nmax

and of the perturbative order. These TBMEs, which contain the
pairing properties of the effective Hamiltonian, are the largest in
size of the calculated matrix elements and the most sensitive to
the behavior of the perturbative expansion.

From Figure 16, the convergence with respect to Nmax seems
to be very fast for the diagonal matrix elements (1d5/2)2,
(1d3/2)2, and (2s1/2)2, whereas elements corresponding to
orbitals that lack their own spin-orbit partner, i.e., (0g7/2)2

and (0h11/2)2, show slower convergence. The order-by-order
convergence seen in Figure 16 is quite satisfactory, and again
the results at third order are very close to those obtained
with the Padé approximant. Therefore, we can conclude
that Heff calculated from a Vlow-k with cutoff equal to
2.6 fm−1 by way of a perturbative expansion truncated
at third order is a good estimate of the sum of its
perturbative expansion, for both the one-body and the two-
body components.
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We now turn our attention to the perturbative expansion
of the GT effective operator GTeff. The selection rules of the
GT operator that characterize a spin-isospin-dependent decay
drive fast convergence of the matrix elements of its SM effective
operator with respect to Nmax. In fact, if the perturbative
expansion is truncated at second order, their values do not change
from Nmax = 2 onward [62]; and at third order in perturbation
theory, their third decimal digit values do not change from
Nmax = 12 onward.

TABLE 3 | Order-by-order M2ν
GT’s (in MeV−1 ) for 130Te and 136Xe [122].

Decay 1st

order

M2ν
GT

2nd

order

M2ν
GT

3rd

order

M2ν
GT

Experiment

130Te → 130Xe 0.142 0.040 0.044 0.031± 0.004

136Xe → 136Ba 0.0975 0.0272 0.0285 0.0181± 0.0007

FIGURE 17 | Calculated M0ν values for the 76Ge →76Se decay as a function

of Nmax: shown are truncations of the χn expansion up to χ0 (red diamonds),

up to χ1 (blue squares), and up to χ2 (black dots). Reproduced from

reference [89].

Table 3 reports the calculated NMEs of the 2νββ decays
130Teg.s. →130Xeg.s. and 136Xeg.s. →136Bag.s. obtained with
effective operators at first, second, and third order in perturbation
theory [with the χn series in Equation (85) truncated to χ0] and
compares them with experimental results [109].

As can be seen, the order-by-order convergence of theM2ν
GT’s is

also very satisfactory; for both transitions the results change by
about 260% from the first- to the second-order calculations, while
the changes are 9 and 5% from the second- to third-order results
for the 130Te and 136Xe decays, respectively. This suppression of
the third-order contributions relative to the second-order ones is
favored by the mutual cancelation of third-order diagrams.

In reference [89] a study was also conducted on the
convergence properties of the effective decay operator2eff for the
0νββ decay with respect to the truncation of the χn operators, the
number of intermediate states accounted for in the perturbative
expansion, and the order-by-order behavior up to third order in
perturbation theory.

Figure 17 displays the calculated values of M0ν for the
76Ge → 76Se decay as a function of the maximum allowed
excitation energy of the intermediate states expressed in terms
of the oscillator quanta Nmax, including χn contributions up to
n = 2. We can see that the M0ν values are convergent from
Nmax = 12 onward and that contributions from χ1 are quite
relevant, whereas those from χ2 can be considered negligible.

We point out that, according to expression (84), χ3 is defined
in terms of the first, second, and third derivatives of 2̂0 and 2̂00,
as well as the first and second derivatives of the Q̂-box. This
means that one could estimate χ3 as being about one order of
magnitude smaller than the χ2 contribution.

On the above grounds, in reference [89] the effective
SM 0νββ-decay operator was obtained by including in the
perturbative expansion diagrams of up to third order, with the
number of intermediate states corresponding to oscillator quanta
of up to Nmax = 14, and up to χ2 contributions.

Now, to examine the order-by-order convergence behavior, in
Figure 18 we plot the calculated values of M0ν , M0ν

GT, and M0ν
F

for 130Te and 136Xe0νββ decay at first, second, and third order in
perturbation theory. We also compare the order-by-order results

FIGURE 18 | Calculated M0ν values for the 136Xe →136Ba decay (left) and the 130Te →130Xe decay (right) as a function of the perturbative order. The green triangles

correspond to M0ν
F , the blue squares to M0ν

GT, and the black dots to the full M0ν . Reproduced from reference [89].
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with their Padé approximant [2|1], to get an idea of the quality of
the perturbative behavior [123].

It is worth noting that the perturbative behavior is dominated
by the GT component, with the Fermi matrix element M0ν

F
being only slightly affected by the renormalization procedure.
Moreover, if the order-by-order perturbative behavior of the
effective SM 0νββ-decay operator is compared with that of the
single β-decay operator, we observe less satisfactory perturbative
behavior for the calculation of M0ν , the difference between the
second- and third-order results being about 30% for the 130Te
and 136Xe 0νββ decays.

5. SUMMARY

This paper has presented a general overview of the perturbative
approach to deriving effective SM operators, in particular the SM
Hamiltonian and decay operators.

First, we described the theoretical framework, which is
essentially based on the perturbative expansion of a vertex
function—the Q̂-box for the effective Hamiltonian and the 2̂-box
for effective decay operators—whose calculation is pivotal in the
Lee-Suzuki similarity transformation. The iterative procedures
used to solve the recursive equations that yield effective SM
Hamiltonians have been presented in detail, along with tips

that could be helpful for calculating the Goldstone diagrams
that arise in the perturbative expansion of the above-mentioned
vertex functions.

We then reported results from an SM study carried out using
only single-particle energies, two-body matrix elements of the
residual interaction, and effective decay operators derived from
a realistic nuclear potential, without any empirical adjustments.
This forms part of a large body of investigations that aim to
assess the relevance of such an approach to the study of nuclear
structure. The versatility of SM calculations comes from their
ability to reproduce experimental results formass regions ranging
from light nuclei (4He core [23, 52]) to heavy mass systems
(nuclei around 132Sn [121]), as well as to describe exotic and rare
phenomena, such as the Borromean structure [124], quadrupole
collectivity [98, 100], and the double-β decay process [89, 101,
102] without resorting to empirical adjustments of data.

The results presented in this article testify to the flexibility and
usefulness of this theoretical tool, and could provide inspiration
for further investigations in the future.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

REFERENCES

1. Elliott JP. Nuclear forces and the structure of nuclei. In: Jean M, editor.
Cargése Lectures in Physics, Vol. 3. New York, NY: Gordon and Breach
(1969). p. 337.

2. Talmi I. Fifty years of the shell model–the quest for the effective interaction.
Adv Nucl Phys. (2003) 27:1. doi: 10.1007/0-306-47916-8_1

3. Caurier E, Martínez-Pinedo G, Nowacki F, Poves A, Zuker AP. The shell
model as a unified view of nuclear structure. Rev Mod Phys. (2005) 77:427–
88. doi: 10.1103/RevModPhys.77.427

4. Stroberg SR, Hergert H, Bogner SK, Holt JD. Nonempirical interactions
for the nuclear shell model: an update. Annu Rev Nucl Part Sci. (2019)
69:307–62. doi: 10.1146/annurev-nucl-101917-021120

5. Kuo TTS, Osnes E. Lecture Notes in Physics. Vol. 364. Berlin: Springer-Verlag
(1990).

6. Hjorth-Jensen M, Kuo TTS, Osnes E. Realistic effective
interactions for nuclear systems. Phys Rep. (1995) 261:125.
doi: 10.1016/0370-1573(95)00012-6

7. Coraggio L, Covello A, Gargano A, Itaco N, Kuo TTS. Shell-model
calculations and realistic effective interactions. Prog Part Nucl Phys. (2009)
62:135. doi: 10.1016/j.ppnp.2008.06.001

8. Bertsch GF. Role of core polarization in two-body interaction. Nucl Phys.
(1965) 74:234. doi: 10.1016/0029-5582(65)90262-2

9. Kallio A, Kolltveit K. An application of the separation method in shell-
model calculation. Nucl Phys. (1964) 53:87. doi: 10.1016/0029-5582(64)
90588-7

10. Kuo TTS, Brown GE. Structure of finite nuclei and the free nucleon-
nucleon interaction: an application to 18O and 18F. Nucl Phys. (1966) 85:40.
doi: 10.1016/0029-5582(66)90131-3

11. Hamada T, Johnston ID. A potential model representation of
two-nucleon data below 315 MeV. Nucl Phys. (1962) 34:382.
doi: 10.1016/0029-5582(62)90228-6

12. Kuo TTS, Brown GE. Reaction matrix elements for the 0f -1p shell nuclei.
Nucl Phys A. (1968) 114:241. doi: 10.1016/0375-9474(68)90353-9

13. Brown BA, Wildenthal BH. Status of the nuclear shell model. Annu Rev Nucl
Part Sci. (1988) 38:29. doi: 10.1146/annurev.ns.38.120188.000333

14. Poves A, Sánchez-Solano J, Caurier E, Nowacki F. Shell model study of the
isobaric chains A = 50, A = 51 and A = 52. Nucl Phys A. (2001) 694:157.
doi: 10.1016/S0375-9474(01)00967-8

15. Brandow BH. Linked-cluster expansions for the nuclear many-body
problem. Rev Mod Phys. (1967) 39:771. doi: 10.1103/RevModPhys.39.771

16. Kuo TTS, Lee SY, Ratcliff KF. A folded-diagram expansion of the
model-space effective Hamiltonian. Nucl Phys A. (1971) 176:65.
doi: 10.1016/0375-9474(71)90731-7

17. Suzuki K, Lee SY. Convergent theory for effective interaction in nuclei. Prog
Theor Phys. (1980) 64:2091. doi: 10.1143/PTP.64.2091

18. Suzuki K, Okamoto R. Effective operators in time-independent approach.
Prog Theor Phys. (1995) 93:905. doi: 10.1143/ptp/93.5.905

19. Lee SY, Suzuki K. The effective interaction of two nucleons in the sd shell.
Phys Lett B. (1980) 91:173. doi: 10.1016/0370-2693(80)90423-2

20. Mayer MG. On closed shells in nuclei. II. Phys Rev. (1949) 75:1969–70.
doi: 10.1103/PhysRev.75.1969

21. Haxel O, Jensen JHD, Suess HE. On the “magic numbers” in nuclear
structure. Phys Rev. (1949) 75:1766. doi: 10.1103/PhysRev.75.1766.2

22. Mayer MG, Jensen JHD. Elementary Theory of Nuclear Shell Structure. New
York, NY: John Wiley (1955).

23. Fukui T, De Angelis L, Ma YZ, Coraggio L, Gargano A, Itaco N,
et al. Realistic shell-model calculations for p-shell nuclei including
contributions of a chiral three-body force. Phys Rev C. (2018) 98:044305.
doi: 10.1103/PhysRevC.98.044305

24. Ma YZ, Coraggio L, De Angelis L, Fukui T, Gargano A, Itaco N, et al.
Contribution of chiral three-body forces to the monopole component of
the effective shell-model Hamiltonian. Phys Rev C. (2019) 100:034324.
doi: 10.1103/PhysRevC.100.034324

25. Brown BA. The nuclear shell model towards the drip lines. Prog Part Nucl
Phys. (2001) 47:517. doi: 10.1016/S0146-6410(01)00159-4

26. Alex Brown B. The nuclear configuration interations method.
In: García-Ramos JE, Andrés MV, Valera JAL, Moro AM, Pérez-
Bernal F, editors. Basic Concepts in Nuclear Physics: Theory,

Experiments and Applications. RABIDA 2018. Cham: Springer
International Publishing (2019). p. 3–31. doi: 10.1007/978-3-030-22
204-8_1

Frontiers in Physics | www.frontiersin.org 20 October 2020 | Volume 8 | Article 345

https://doi.org/10.1007/0-306-47916-8_1
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1146/annurev-nucl-101917-021120
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1016/j.ppnp.2008.06.001
https://doi.org/10.1016/0029-5582(65)90262-2
https://doi.org/10.1016/0029-5582(64)90588-7
https://doi.org/10.1016/0029-5582(66)90131-3
https://doi.org/10.1016/0029-5582(62)90228-6
https://doi.org/10.1016/0375-9474(68)90353-9
https://doi.org/10.1146/annurev.ns.38.120188.000333
https://doi.org/10.1016/S0375-9474(01)00967-8
https://doi.org/10.1103/RevModPhys.39.771
https://doi.org/10.1016/0375-9474(71)90731-7
https://doi.org/10.1143/PTP.64.2091
https://doi.org/10.1143/ptp/93.5.905
https://doi.org/10.1016/0370-2693(80)90423-2
https://doi.org/10.1103/PhysRev.75.1969
https://doi.org/10.1103/PhysRev.75.1766.2
https://doi.org/10.1103/PhysRevC.98.044305
https://doi.org/10.1103/PhysRevC.100.034324
https://doi.org/10.1016/S0146-6410(01)00159-4
https://doi.org/10.1007/978-3-030-22204-8_1
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Coraggio and Itaco Perturbative Approach to Effective Shell-Model Hamiltonians

27. Otsuka T, Gade A, Sorlin O, Suzuki T, Utsuno Y. Evolution of
shell structure in exotic nuclei. Rev Mod Phys. (2020) 92:015002.
doi: 10.1103/RevModPhys.92.015002

28. Morris TD, Parzuchowski NM, Bogner SK. Magnus expansion and in-
medium similarity renormalization group. Phys Rev C. (2015) 92:034331.
doi: 10.1103/PhysRevC.92.034331

29. Sun ZH, Morris TD, Hagen G, Jansen GR, Papenbrock T. Shell-model
coupled-cluster method for open-shell nuclei. Phys Rev C. (2018) 98:054320.
doi: 10.1103/PhysRevC.98.054320

30. Lisetskiy AF, Barrett BR, Kruse MKG, Navratil P, Stetcu I, Vary JP.
Ab-initio shell model with a core. Phys Rev C. (2008) 78:044302.
doi: 10.1103/PhysRevC.78.044302

31. Lisetskiy AF, Kruse MKG, Barrett BR, Navratil P, Stetcu I, Vary JP. Effective
operators from exact many-body renormalization. Phys Rev C. (2009)
80:024315. doi: 10.1103/PhysRevC.80.024315

32. Dikmen E, Lisetskiy AF, Barrett BR, Maris P, Shirokov AM, Vary JP. Ab
initio effective interactions for sd-shell valence nucleons. Phys Rev C. (2015)
91:064301. doi: 10.1103/PhysRevC.91.064301

33. Smirnova NA, Barrett BR, Kim Y, Shin IJ, Shirokov AM, Dikmen E,
et al. Effective interactions in the sd shell. Phys Rev C. (2019) 100:054329.
doi: 10.1103/PhysRevC.100.054329

34. Haxton WC, Song CL. Morphing the ShellModel into an effective theory.
Phys Rev Lett. (2000) 84:5484–7. doi: 10.1103/PhysRevLett.84.5484

35. Kümmel H, Lührmann KH, Zabolitzky JG. Many-fermion theory
in expS- (or coupled cluster) form. Phys Rep. (1978) 36:1.
doi: 10.1016/0370-1573(78)90081-9

36. Schucan TH, Weidenmüller HA. The effective interaction in nuclei and its
perturbation expansion: an algebraic approach. Ann Phys. (1972) 73:108.
doi: 10.1016/0003-4916(72)90315-6

37. Schucan TH, Weidenmüller HA. Perturbation theory for
the effective interaction in nuclei. Ann Phys. (1973) 76:483.
doi: 10.1016/0003-4916(73)90044-4

38. Krenciglowa EM, Kuo TTS. Convergence of effective Hamiltonian expansion
and partial summations of folded diagrams. Nucl Phys A. (1974) 235:171.
doi: 10.1016/0375-9474(74)90184-5
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