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In this paper we present an analogous result of the famous Kalman controllability criterion

for first order linear ordinary differential equations with constant coefficients that applies

to the case of linear differential equations of fractional order with constant coefficients. We

use the fractional Gramianmatrix, the range space and the Kalmanmatrix asmain tools to

derive a sufficient and necessary condition for the controllability of the fractional system.

Moreover, we provide some simple examples, including a linear fractional harmonic

oscillator, to illustrate our results. Finally, several open problems arising from this topic are

suggested, including another simple linear system of incommensurate fractional orders.

Keywords: linear differential equations, controllability, fractional Gramian, fractional differential equations, Kalman

matrix

1. INTRODUCTION

Controllability is a mathematical problem consisting in determining the targets to which one can
drive the state of a dynamical system by means of a control input appearing in the equation. We
have a dynamical system on which we can exert a certain influence. Is it possible to use this to make
the system reach a desirable state? In other words, given a future time, an initial state and a target
state, is it possible to find a control function such that the solution of the system starting from the
initial state reaches the desirable state at the prescribed future time? For some classical and modern
references on control theory we refer to references [1–3].

On the other hand, fractional calculus and fractional differential equations have recently been
applied in various areas of engineering, mathematics, physics and bio-engineering, and other
applied sciences. We refer the reader to the monographs [4–7] and the articles [8, 9]. In particular,
there are a growing number of research areas in physics which employ fractional calculus [10]
and it has many applications among its different branches, ranging from imaging processing to
fractional quantum harmonic oscillator [11]. Recently, in Yıldız [12] the dynamics of a waterborne
pathogen fractional model under the influence of environmental pollution has been studied and
the solutions of a generalized fractional kinetic equations are obtained [13] using the generalized
fractional integrations of the generalized Mittag-Leffler type function. Finally, we highlight that
different fractional systems have also been considered in the framework of control theory [14–18].

In the context of the latter application of fractional calculus, we present the current work, which
deals with the controllability of a linear fractional differential equation with constant coefficients.
The paper is organized as follows: In section 2, we recall the Kalman criterion for controllability
of a linear system of first order. In section 3 we consider a linear system of fractional order, whose
general solution is presented in terms of the Mittag-Leffler function. By using that representation
we finally give in section 4 a new criterion for controllability.
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Although this criterion is known since 1996 [19] we give
another approach and use some elements of fractional calculus
and a different proof to obtain the results. Also we reveal some
interesting connections between linear differential equations of
fractional order, control problems, linear algebra, Mittag-Leffler
functions, geometry and physics.

For the relation between controllability of standard and
fractional systems, see Klamka [20]. The calculation of the
Gramian is useful to find a control to steer a given initial state
to another prescribed final state.

2. CLASSICAL LINEAR CONTROL

Let A ∈ Mn×n(R) and f :[0,∞) → R be continuous. Consider
the linear system

x′(t) = Ax(t)+ f (t), (1)

with the initial condition

x(0) = x0 ∈ R
n. (2)

The solution of problem (1) and (2) is given by

x(t) = eAtx0 +

∫ t

0
eA(t−s)f (s)ds.

Now consider the same system with a control function, so (1) is
written like

x′(t) = Ax(t)+ Bu(t), (3)

where B ∈ Mn×m(R) and u :[0,∞) → R
m is a possible control.

For a given continuous control input u, the solution of (3) with
initial condition x(0) = x0 is

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds.

For a given time t > 0 and an initial state x(0) = x0, the reachable
set of (1) at time t > 0 related to x0 is the set Rt(x0) of all states
x(t) that can be reached from x0 by any control input. The linear
system (3) is controllable if for any x0, x1 ∈ R

n, there exists a
control u such that the corresponding solution satisfies x(0) = x0
and x(t) = x1.

There is a simple criterion, the celebrated Kalman criterion
for controllability.

Theorem 1. The linear system (3) is controllable if and only if the
Kalman matrix

K = (B|AB|A2B| . . . |An−1B)

has full rank.

To prove this (see [21]), one of the main ingredients is the
controllability Gramian of matrices A and B:

W(t) :=

∫ t

0
eAsBB∗eA

∗sds ∈ Mn×n(R), (4)

whereA∗ and B∗ are, respectively, the adjointmatrices ofA and B.
The matrixW(t) is positive semi-definite and its range coincides
with the range of the Kalman matrix.

Also a relevant ingredient is the following property for a
matrix A. Let ϕ(z) =

∑∞
k=0 akz

k be an analytic complex
function. An application of the Cayley-Hamilton Theorem
implies that there exists a polynomial p of degree less than n such
that ϕ(A) = p(A), i.e.,

ϕ(A) = p(A) =

n−1
∑

k=0

ckA
k,

for certain c0, . . . , cn−1 ∈ C.
We recall a relevant geometric interpretation. The subspace

R := R(B|AB| . . . |An−1B)

is the smallest A-invariant subspace containing R(B). The linear
system (3) is controllable if and only if W(t) is non-singular for
t > 0. A physical interpretation of the controllability Gramian is
that the input of the system is white Gaussian noise. Then, W(t)
is the covariance of the state (see p. 854 in [22]).

3. LINEAR CONTROL OF FRACTIONAL

ORDER

Consider now the linear differential equation of fractional
order α ∈ (0, 1]

Dαx(t) = Ax(t)+ f (t), (5)

with initial condition

x(0) = x0 ∈ R
n, (6)

where, as before, A ∈ Mn×n(R), f ∈ C([0,∞),Rn) and
Dαx is the fractional derivative of x. We use here the Caputo
fractional derivative, which can be defined for any x :[0,∞) →

R
n absolutely continuous and has the following form:

Dαx(t) =
1

Ŵ(1− α)

∫ t

0
(t − s)−αx′(s)ds,

where Ŵ is the classical gamma function. For some applications
of fractional differential equations we refer, for example, to
references [5, 23, 24].

Note that Dαx(t) = I1−αx′(t), where I1−α is the
fractional integral of Riemann-Liouville. In fact, for β > 0
and x ∈ L1

loc
(0,∞),

Iβx(t) =
1

Ŵ(β)

∫ t

0
(t − s)β−1x(s)ds.

Now, let B ∈ Mn×m(R) and u ∈ C([0,∞),Rm). Letting f (t) =
Bu(t), we rewrite the Equation (5) as

Dαx(t) = Ax(t)+ Bu(t). (7)
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Analogously to the ordinary case, for any t > 0, Rα
t will be

defined as the reachable set of (7) related to the origin, which is
the set of all states x(t) that can be reached from the initial state
zero for some continuous control input. We say that the system
(7) is controllable if for any x0, x1 ∈ R

n there exists a control u
such that the solution of (7) with x(0) = x0 satisfies x(t) = x1.

The solution of the first order equation (1) is given in terms of
f and the exponential of A:

eAt =

∞
∑

k=0

Aktk

k!
.

For the fractional order equation (5) the role of this exponential
is played by theMittag-Leffler functions: for α > 0 and for z ∈ C,

Eα(z) =

∞
∑

k=0

zk

Ŵ(αk+ 1)
.

Note that for α = 1, Eα(z) = ez .
In general, for α,β > 0, the function

Eα,β (z) =

∞
∑

k=0

zk

Ŵ(αk+ β)
. (8)

is well-defined in C, since the series in (8) is convergent for every
z ∈ C [25]. For instance, if β = 1, we recover the previous
case: Eα,1(z) = Eα(z).

We can substitute z by amatrixA in (8) and the corresponding
series converges. Hence, we can define theMittag-Leffler function
of a matrix A as

Eα,β (A) =

∞
∑

k=0

Ak

Ŵ(αk+ β)
.

The solution of (5) is given by the variation of constants formula
for fractional differential equations (see Theorem 5.15, p. 323 in
[5] or Theorem 7.2, p. 135 in [23]):

x(t) = Eα(t
αA)c+

∫ t

0
(t − s)α−1Eα,α((t − s)αA)f (s)ds,

where c is any constant. Imposing the initial condition x(0) = x0,
then c = x0.

In the case of (7) with the initial condition (6), the solution is
[5, 17]

x(t) = Eα(t
αA)x0 +

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds.

At this point, we raise the following questions: In the fractional
case, is there an analogous rule to the Kalman criterion? What is
the Gramian matrix in such case?

4. PROOF OF THE FRACTIONAL CONTROL

We are ready to provide the reasoning that will lead us toward a
controllability criterion for system (5).

Let α ∈ (0, 1). By applying the definition of the Mittag-Leffler
function, the expression

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds

is equal to

∫ t

0
(t − s)α−1

∞
∑

k=0

[(t − s)αA]k

Ŵ(αk+ α)
Bu(s)ds.

Then, by using the uniform convergence, we arrive to the
following expression

∞
∑

k=0

∫ t

0
(t − s)α−1 (t − s)αkAk

Ŵ(αk+ α)
Bu(s)ds,

which is obviously equal to

lim
N→∞

N
∑

k=0

AkB

∫ t

0
(t − s)α−1 (t − s)αk

Ŵ(αk+ α)
u(s)ds.

In the previous series, each term is a linear combination of the
columns of B,AB,A2B, . . . ,ANB. Any of these matrices is a linear
combination of B,AB, A2B, . . . ,An−1B. Hence, the vector

N
∑

k=0

AkB

∫ t

0
(t − s)α−1 (t − s)αk

Ŵ(αk+ α)
u(s)ds (9)

is a linear combination of the columns of B,AB,A2B, . . . ,An−1B,
i.e., it belongs to the range space of the Kalman matrix K.
Therefore, as in the ordinary case, we get Rα

t ⊂ R(K). This is
a necessary condition for controllability of the linear fractional
system (7): The Kalman matrix has full rank. We cannot reach
any state outside the range of the Kalman matrix.

The question is how can we get a control u so that

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds = x1.

In order to do that, we define the α-Gramian as

Wα
t =

∫ t

0
(t − s)α−1Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)(t − s)α−1ds

=

∫ t

0
(t − s)2α−2Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)ds.

Note that for α = 1 we recover the Gramian in (4).
If we prove thatR(K) ⊂ R(Wα

t ), then, for x1 ∈ R(K), we get
x1 ∈ R(Wα

t ) and there exists y such that Wα
t y = x1. By taking

the control

u(s) = B∗Eα,α((t − s)αA∗)(t − s)α−1y,
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we see that

x1 = Wα
t y

=

∫ t

0
(t − s)2α−2Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)yds

=

∫ t

0
(t − s)α−1Eα,α((t − s)αA)Bu(s)ds.

Thus, we steers the initial condition 0 to the state x1 at time
t > 0. This proves that R(K) ⊂ Rα

t . It only remains proving
thatR(K) ⊂ R(Wα

t ).
Let z ∈ R

n and suppose that (Wα
t )

∗z ≡ z∗Wα
t = 0. For every

z ∈ R
n, this leads to

0 = z∗Wα
t z = 〈z,Wα

t z〉

=

∫ t

0
(t − s)2α−2z∗Eα,α((t − s)αA)BB∗Eα,α((t − s)αA∗)zds

=

∫ t

0
(t − s)2α−2||z∗Eα,α((t − s)αA)B||2ds ≥ 0.

For s ∈ [0, t], (t − s)α ∈ [0, tα]. Therefore,

z∗
∞
∑

k=0

xkAk

Ŵ(αk+ α)
B = 0, x ∈ [0, tα].

Differentiating k times (k = 0, 1, 2, . . . ) with respect to x and
taking the limit when x → 0+ implies that z∗AkB = 0, for
k = 0, . . . , n− 1; i.e.,

z∗B = 0, . . . , z∗An−1B = 0.

This gives us that

z∗ ∈ N (Wα
t ) = N ((Wα

t )
∗) ⇒ z∗ ∈ N (K∗).

We have that N ((Wα
t )

∗) ⊂ N (K∗) and we can write N (K∗)⊥ ⊂

N ((Wα
t )

∗)⊥. Therefore, we arrive toR(K) ⊂ R(Wα
t ).

By gathering all the previous reasonings, we can finally state
the following result.

Theorem 2. The fractional system (7) is controllable if and only if
the Kalman matrix K has full rank.

As a direct implication, given α′,α′′ ∈ (0, 1], there exists a link
between the controllability of the system (7) for order α’ and the
one for order α”:

Corollary 3. If the fractional system (7) is controllable for a
certain order α̂ ∈ (0, 1], then the system is controllable for every
order α ∈ (0, 1].

To conclude, we give several examples showing how Theorem
2 can be applied.

Example 1. Let α ∈ (0, 1). Consider the case n = 2,m = 1, with

x(t) =

(

x1(t)
x2(t)

)

, A =

(

1 0
0 1

)

, B =

(

1
0

)

.

The system can be written as

{

Dαx1(t) = x1(t)+ u(t),
Dαx2(t) = x2(t).

(10)

The system is not controllable since the second equation is
independent of the control as in the first order case (α = 1).
Nevertheless, it is possible to control x1 and in that sense onemay
say that (10) is partially controllable. In this example,

K =

(

1 1
0 0

)

and rank(K) = 1 < 2.

Example 2. Let n = 2,m = 1, α ∈ (0, 1] and consider the system

Dαx(t) = Ax(t)+ Bu(t),

where

A =

(

−2 2
2 1

)

, B =

(

B1
B2

)

∈ M2×1(R).

The Kalman matrix would be a 2× 2 real matrix, whose columns
are identified with B and AB. Moreover, if B is identified with
an eigenvector of A, the system will not be controllable. For
example, if

B =

(

1
2

)

,

the Kalman matrix takes the form of

K =

(

1 2
2 4

)

,

which has not full rank [rank(K) = 1 < 2]. The system would
not be therefore controllable.

Something similar happens with the choice

B =

(

−2
1

)

.

Nonetheless, any other choice of B which is not a multiple of one
of the previous cases, leads to a controllable system regardless the
value of α ∈ (0, 1].

Example 3. The classical linear harmonic oscillator ξ”+ξ = u is
equivalent to the system (3) taking the position x1 = ξ and the
velocity x2 = ξ ′ with

A =

(

0 1
−1 0

)

, B =

(

0
1

)

.

A fractional control harmonic oscillator would be (7), which
takes the form

{

Dαx1 = x2,
Dαx2 = u− x1.

(11)

Frontiers in Physics | www.frontiersin.org 4 September 2020 | Volume 8 | Article 377

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Buedo-Fernández and Nieto Controllability for Linear Fractional DEs

The first equation is independent of the control, but it appears
in the second equation, involving both components and the
fractional control system (11) is controllable. Indeed, the
Kalman matrix

K =

(

0 1
1 0

)

has full rank.

Example 4. Another possibility is to consider a coupled system
of linear incommesurate fractional differential control system
α1,α2 ∈ (0, 1):

{

Dα1x1 = a11x1 + a12x2 + u1,
Dα2x2 = a21x1 + a22x2 + u2,

(12)

but, to the best of our knowledge, no analytical solution is known.

5. CONCLUSIONS

In this work, we have studied the controllability of the linear
fractional differential equation

Dαx(t) = Ax(t)+ Bu(t),

where the Caputo fractional derivative is considered, A ∈

Mn×n(R), B ∈ Mn×m(R) and u is a m-dimensional
control function. In particular, we have shown that such
a system is controllable if and only if the Kalman matrix
has full rank, which constitutes the main result, namely
Theorem 2.

Although the criterion given in Theorem 2 does not
depend on α and thus it becomes an analogous result to
the classic one (ordinary case), the tools that we have used
actually involve some adaptated reasonings. There are still
several relations between the controllability of the system,
the corresponding Gramian matrix Wα

t , the kernel of the
associated operator, the range space Rα

t and the Kalman
matrix, but some arguments depend on the fractional order
α. For instance, we recall that the Gramian matrix Wα

t

has a singularity if α ∈ (0, 1) and the control steering
the initial data x0 to a final state x1 depends on α,
so as the coefficients of the linear combination of the
matrices B, . . . ,An−1B (which form the Kalman matrix) do in
Equation (9).

In the future, some research deserves to be done
with respect to further questions related to this work.
For example, a couple of crucial problems are the cases
where the matrices A and B are not constant, that is, the
control system

Dαx(t) = A(t)x(t)+ B(t)u(t),

and the non-linear case

Dαx(t) = f (x(t), u(t)),

which is also very relevant in applications and will be considered
in detail. In general, in many situations, delay may also appear
and functional fractional differential equations of the type

Dαx(t) = f (x(t), x(t − τ ), u(t))

have to be considered.
In addition to the former comments, systems with impulses

due to impacts are of interest too. Indeed, in Spong [26] andNieto
and Tisdell [27], the problem of controlling a physical object
through impacts, called impulsive manipulation, is studied and
it arises in a number of robotic applications [28, 29].

Another interesting line is to address the controllability
of fractional order systems in the light of other fractional
derivatives, such as Riemann-Liouville, Hadamard, Caputo-
Fabrizio, etc.

Furthermore, some physical models will be considered under
those fractional calculus approaches and the relations among
them will be scrutinized.

Moreover, the incommesurate fractional system of Example 4
will also be a relevant problem to consider.

Finally, partial differential equations of fractional
order could be treated both from the mathematical
point of view and from the physical point of
view too.
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