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The knife-edge method is an established technique for profiling of even tightly focused light
beams. However, the straightforward implementation of this method fails if the materials
and geometry of the knife-edges are not chosen carefully or, in particular, if knife-edges are
used that are made of pure materials. Artifacts are introduced in these cases in the shape
and position of the reconstructed beam profile due to the interaction of the light beam
under study with the knife. Hence, corrections to the standard knife-edge evaluation
method are required. Here we investigate the knife-edge method for highly focused radially
and azimuthally polarized beams and their linearly polarized constituents. We introduce
relative shifts for those constituents and report on the consistency with the case of a linearly
polarized fundamental Gaussian beam. An adapted knife-edge reconstruction technique is
presented and proof-of-concept tests are shown, demonstrating the reconstruction of
beam profiles.
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1 INTRODUCTION

A paraxially propagating linearly polarized fundamental Gaussian beam undergoes, upon high
numerical aperture focusing, an elongation of its focal spot along the polarization axis of the input
beam [1–3]. In contrast, radially and azimuthally polarized beams are still symmetric with respect to
their electric and magnetic field distributions when tightly focused. Nonetheless, both cases have in
common that for non-paraxial propagation, the field distributions exhibit significant contributions
of longitudinal field components, which, for the case of radial polarization, are peaking on the optical
axis [2, 4, 5]. A paraxial radially polarized mode can be decomposed into two orthogonally polarized
Hermite-Gaussian (HG) modes: an x-polarized HG10 and a y-polarized HG01 mode. In contrast, an
azimuthally polarized mode is a superposition of a y-polarized HG10 and an x-polarized HG01 mode.
Similar to linearly polarized Gaussian beams, tight focusing of these linearly polarized constituents
also results in a symmetry breaking of the focal spot. Due to the rich structure of the focal spot
achieved by various field engineering techniques, a precise measurement of such complicated
vectorial fields is rather challenging. Nevertheless it is crucial to experimentally analyze and profile
tightly focused vectorial beams in a real-world setup before utilizing them for experiments in nano-
optics or plasmonics (see, for instance, Refs. 6–10 and others).

In the literature, manymethods for beam characterization have been described, such as the so-called
knife-edge [11–14], point scan method [15], particle scan [16], or slit method [17], to just name a few.
In the knife-edge method, a beam-block realized by a sharp edge made from an opaque material (such
as a knife or razor-blade) is line-scanned through the beam perpendicular to its optical axis while the
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transmitted power ismonitored by a detector for multiple scanning
directions. From the resulting photocurrent curves (power vs.
position of the edge relative to the beam) the so-called beam-
projections onto the scanning-line and finally the beam shape can
be tomographically reconstructed [2, 5].

In a more recent study, knife-edges made from pure materials
(metals, semiconductors, etc.) were systematically studied and
polarization dependent effects in the knife-edge profiling method
were observed [18]. Those effects result in a shift and a deformation
of the measured projections and depend on the polarization and
wavelength of the input beam, and the materials of the knife-edge
samples. Caused by the aforementioned distortions introduced by
knife-edges made from pure materials, a proper reconstruction of
the beam under study seems to be impossible using a standard
evaluation method. But recently we have demonstrated that the
interaction between the knife-edge and a highly focused linearly
polarized fundamental Gaussian beam can be understood in terms
of the moments of the beam (beam profile times a polynomial) and,
therefore, an adapted beam reconstruction and fitting technique can
be successfully applied in this case [19].

The aim of the study presented in this article is an extension of
the previously discussed method by applying the knowledge
already obtained for linearly polarized fundamental Gaussian
beams [18, 19] and to develop an adapted knife-edge
reconstruction technique for highly focused linearly polarized
first order Hermite-Gaussian beams [20], which are the
constituents of radially and azimuthally polarized beams.

2 THEORETICAL CONSIDERATIONS

2.1 Basics of the Knife-Edge Method
The principle of the knife-edge method is depicted in Figure 1.
For experimental reasons we consider here beam profiling by two

adjacent edges of a single rectangularly shaped metallic knife-pad.
The photocurrent generated inside the photodiode is
proportional to the power P detected by the photodiode and is
recorded for each beam position x0 with respect to the knife-edge

P � P0 ∫∞

−∞
dy∫0

−∞
I(x + x0, y, z � 0)dx, (1)

where P0 is a proportionality coefficient and I is the electric field
intensity. In the conventional knife-edge method, the derivative
zP/zx0 of the photocurrent curve with respect to the beam
position x0 reconstructs a projection of the intensity onto the
xz-plane at z � 0 (projection onto the x-axis) [11]. In a next step,
the two-dimensional electric field intensity distribution can be
reconstructed from projections measured along different
directions using the Radon back-transform, if polarization-
dependent effects can be neglected [2, 5].

In this context it has to be mentioned that the term intensity
usually refers to the total electric energy density and at the same
time to the z-component of the Poynting-vector S, because they
are proportional to each other in the limit of paraxial light beams.
In the case of tightly focused light beams (non-paraxial
propagation), electric fields can exhibit strong longitudinal
electric field components, resulting in different distributions of∣∣∣∣E(x, y)∣∣∣∣2 and Sz(x, y). It was shown that the integral Eq. 1
adopted from the conventional knife-edge method allows for
the reconstruction of the beam profile in terms of its total electric
energy density distribution

∣∣∣∣E(x, y)∣∣∣∣2 also in case of tightly
focused vectorial beams if special edge-materials, thicknesses
and certain wavelengths are chosen [2]. Nevertheless, with
pure knife-edge materials of different thicknesses and for
different wavelengths of the input beam, the retrieved
projections do not correspond to the expected projections of
the electric energy density distributions as they appear strongly
distorted [18].

FIGURE 1 | Schematic depiction of the knife-edge method xz-plane (A) and xy-plane (B). The state of polarization always refers to the orientation of the electric field
of the incoming beam relative to the knife-edge in the xy-plane. Typical beam profiling data (photocurrent curves) (C) and their derivatives (beam-projections) (D) for a
linearly polarized Gaussian beam (oriented at 45° (total signal) - gray, s-polarization - red, p-polarization - blue).
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To better understand those shifts and distortions in the
measured projections, we start with a fundamental Gaussian
beam, which has its electric field oriented at 45° to the knife-
edge. With a polarizer in front of the focusing objective oriented
either perpendicular or parallel to the knife-edge, the incident
beam can be decomposed in its linearly polarized constituents
with the electric field of the incoming beam being either
perpendicular (s) or parallel (p) to the knife-edge, see Figures
1A,B. A photocurrent curve can be recorded for each orientation
of the polarizer. The sum of those two photocurrent curves
should result in the signal recorded without the polarizer
(total signal), see Figure 1C. Taking the derivative zP/zx0 of
the photocurrent curves with respect to the beam position x0
should reconstruct the expected Gaussian beam profile. However,
this is not the case as shown in Figure 1D. The projections of the
Gaussian beam with its electric field oriented at 45° to the knife-
edge is strongly distorted. In an exaggerated picture, they exhibit
two distinct lobes. However, when a polarizer is used the situation
looks different: each linear constituent preserves in principle its
Gaussian shape and only smaller distortions can be found.
Nonetheless, it becomes evident that s- and p-projections are
shifted (ds ≠ dp ≠ d0 with d0 the width of the metal pad (see
Figure 1A)) and asymmetrically deformed, causing also
deviations in the retrieved beam diameters ws and wp (see
Figure 1D). The above-mentioned effects are caused by the
fact that the knife-edge is not only blocking the beam while
line-scanning but it is also excited by the beam plasmonically (if
the pad is made from metal). Furthermore, the power flow
through the knife-edge is polarization-dependent and
proportional to the value of the projection of the electric
energy density onto the edge [18, 21]. Obviously, if one does
not account for these effects, the standard scheme is not valid
without corrections unless the knife-edge parameters are carefully
chosen [1]. It is worth noting here that during the reconstruction
of light beams with diameters larger than several wavelengths
such effects are negligible as the distortions are much smaller than
the projection of the beam.

Of particular interest for this article is now the question how
higher order (first order) beams behave in the context of the
previous discussion, see Figure 2. Similar to the rotated linearly

polarized Gaussian beam a radially polarized beam is a
superposition of two orthogonally polarized modes (x-pol.
HG10, y-pol. HG01). In an equivalent fashion, an azimuthally
polarized beam is a superposition of two linearly polarized
constituents (y-pol. HG10, x-pol. HG01). In the case of tightly
focused cylindrical vector beams, the retrieved total beam
projections will be strongly modified if their linearly polarized
constituents are shifted and distorted, see Figures 2A,B.
Therefore it is important to investigate whether the distortions
observed in these linearly polarized first order constituents can
also be described using analogical parameters ds and dp, as in the
case of a fundamental linearly polarized Gaussian beam [18].
Furthermore, it is crucial to study whether the apparent shifts ds,
dp of the projections correlate with the previously investigated
case. Additionally, we also discuss the applicability of an adapted
reconstruction method, discussed and introduced for tightly
focused fundamental Gaussian beams recently [19] for the
case of knife-edges made from pure materials, in contrast to
studies presented earlier [1], where very special parameters had to
be chosen for the knife-edges.

2.2 Approximation of Vector Beams via
Paraxial Modes
We start with a discussion of the basis functions that would be
most suitable for further development of an adapted knife-edge
technique. An accurate description of highly focused beams is
possible either by vectorial diffraction theory, leading to a
numerical calculation of diffraction integrals, see for instance
[3, 4], or by the so-called complex source approach, which enables
an analytical description of tightly focused fields [22, 23]. The
disadvantage of both approaches is their complexity, which
makes them unsuitable for the development of an adapted
knife-edge technique. Our aim here is to use an orthogonal set
of analytical functions, which would be sufficient for an
approximate description of highly focused fields. Electric (and
magnetic) field components that are solutions to Maxwell’s
equations can be expressed in terms of two independent
functions f1(r) (x-polarized) and f2(r) (y-polarized) of the
paraxial wave equation [24]:

FIGURE 2 | Typical derivatives of beam profiling data (photocurrent curves) for azimuthally (A) and radially (B) polarized beams (gray) and their linear constituents
(s-polarization - red, p-polarization - blue).

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5277343

Orlov et al. Towards a Corrected Knife-Edge-Based Reconstruction

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ex � f1(r) + 1
4k2

[z2f1(r)
zx2

+ z2f1(r)
zy2

] + 1
2k2

z2f2(r)
zxzy

,

Ey � f2(r) − 1
4k2

[z2f2(r)
zx2

+ z2f2(r)
zy2

] + 1
2k2

z2f1(r)
zxzy

,

Ez � i
k
[zf1(r)

zx
+ zf2(r)

zy
],

(2)

We can further simplify these expressions by keeping only the
leading terms in f1(r) and f2(r), i.e., we drop the second
derivatives from the expressions Eq. 2, in case a lower order
derivative appears. This can be done because the second
derivatives are of order 1/k2l20, where l0 is some characteristic
length. Next, we identify functions f1(r) and f2(r) as the x- and
y-polarized constituents of the incident beam. Furthermore we
introduce the so-called elegant HG modes [26] as follows,

f (m,n)
1,2 (r) � σ(m+n)/2+1Hm(xσ)Hn(yσ)exp[ikz − σ2(x2 + y2)

− i(1 +m + n
2

)arctanξ], (3)

with

σ � 1

ω0

�����
1 + iξ

√ , ξ � z/z0, z0 � kω2
0/2, (4)

and ω0 the beam width. We note here that although individual
Hermite-Gaussian modes are not exact solutions to Maxwell’s
equations, corrections can be found and expressed as an infinite
sum according to the method of Lax et al. [25]. Those can be
related to complex sourced vortices [23]. The main advantage of
using the elegant version of Hermite-Gaussian modes over
standard modes is the following useful relation [26],

f (m,n)
1,2 (r) � zm+nf (0,0)1,2 (r)

zxmzyn
, (5)

which greatly simplifies further considerations and enables us to
rewrite Eq. 2 as

Ex(r) � ∑m2

m�m1

∑n2
n�n1

am,nf (m,n)
1 (r) + 1

2k2
∑m4

m�m3

∑n4
n�n3

bm,nf (m+1,n+1)
2 (r),

Ey(r) � 1
2k2

∑m2

m�m1

∑n2
n�n1

am,nf (m+1,n+1)
1 (r) + ∑m4

m�m3

∑n4
n�n3

bm,nf (m,n)
2 (r),

Ez(r) � i
k

∑m2

m�m1

∑n2
n�n1

am,nf (m+1,n)
1 (r) + i

k
∑m4

m�m3

∑n4
n�n3

bm,nf (m,n+1)
2 (r),

(6)

where the expansion coefficients am,n and bm,n uniquely describe a
tightly focused field and its linearly polarized constituents. In a
similar fashion we can express the projections of the electric field
energy densities of s- or p-polarized projections of arbitrary
beams in the focal plane. We multiply Eq. 6 with its complex
conjugate and integrate over the y-axis, so that indices n
disappear from the sum Eq. 6. In this manner we arrive at the
following expressions for p- and s-polarized projections,

UE,x(x) � ∑
m1 ,m2

Bm1 ,m2g
(m1)
1 (x)g(m2)

1 (x),
UE,y(x) � ∑

m1 ,m2

Bm1 ,m2g
(m1)
2 (x)g(m2)

2 (x),
UE,z(x) � ∑

m1 ,m2

αm1 ,m2Bm1 ,m2g
(m1+1)
1 (x)g(m2+1)

1 (x),
(7)

where Bm1 ,m2 are unknowns describing the intensity profiles,
functions g(m)

1,2 are projections of HG-modes f (m,n)
1,2 onto the xz-

plane and αm1 ,m2 are coefficients, which correct the amplitudes of
the z-components in Eq. 6. They have to be obtained separately.

We now discuss an azimuthally and radially polarized beam
and their linear constituents in more detail. A paraxial radially
polarized beam is a superposition of two orthogonal HG modes,
an x-polarized f (1,0)1 and a y-polarized f (0,1)2 mode, whereas a
paraxial azimuthally polarized beam is obtained by a
superposition of a y-polarized f (1,0)2 and an x-polarized f (0,1)1
mode. Under tight focusing conditions, each HG-mode changes
and new components of the electric field appear, which can be
described using Eq. 2. However, we restrict ourselves here to the
approximations of Eq. 6, which we use to determine the shape of
projections in the form of Eq. 7. We compare now projections,
which we derive using Eq. 7, with projections calculated by
Richards-Wolf integrals [3] for the cases discussed in the
experimental part. As a proof-of-concept, we demonstrate the
fitting procedure for one particular wavelength and for several
projections of Hermite-Gaussian input beams in Figure 3,
where we use as a criterion for convergence that the paraxial
beam overlaps with the central part of the obtained exact
projections. This way, the central part of the p-polarized
projection of an HG10 beam (y-polarized HG10 mode) was
fitted by a paraxial beam function from Eq. 7. The result of
the fitting procedure is shown in Figure 3A. We can see that the
paraxial model describes the y-component sufficiently well. The
central part of the s-polarized projection of a HG10 beam
(x-polarized HG10) was also fitted using the aforementioned
paraxial beam functions, see Figures 3B,C. Here we can see that
the x-component can be approximated well, whereas the
z-component shows minor discrepancies with respect to the
paraxial function. Lastly, we have fitted the s- and p-polarized
projection of an HG01 beam (x-, y-polarized HG01) using
paraxial beam functions from Eq. 7. The results presented in
Figures 3D,E prove again the appropriateness of the chosen
approximation.

2.3 Corrections to the Knife-Edge Based
Reconstruction Scheme for Modes of First
Order
In our previous work [19], we presented a numerical technique to
correct for artifacts in profiling of linearly polarized fundamental
Gaussian beams, which are introduced by the interaction of the
knife-edge with the focused light field [21]. This approach finally
enables the usage of any kind of opaque material as a knife-edge
material. Here, we now discuss a generalization of this numerical
technique, which will also allow for the correction of artifacts
observed in beam profiling of s- and p-polarized projections of the
electric field intensity, which can be represented using Eq. 7. For
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that purpose, we start the discussion with a short excursus,
describing the light-matter interaction between the focused
light beam and the knife-edge as it is recorded by a detector,
see Eq. 1.

First, the integration in Eq. 1 over the y-axis reduces the
dimensionality of the electric field energy density. Therefore,
beam profiling of this kind does not result directly in the
reconstruction of the electric field intensity distribution I but
its projection UE onto the xz-plane. Thus, eigenmodes of the
knife-edge problem consist of two independent classes:
transverse electric (in our notation p-polarized) and
transverse magnetic (s-polarized) modes. The projection of
the electric field energy density, i.e., UE in the case of
p-polarization has a non-vanishing component UE,y parallel
to the knife-edge and a z-component UE,z , indistinguishable
in shape from UE,y because of the symmetry of Eq. 7. The
s-modes have two non-vanishing and distinguishable
components of the projection UE , where the main
component UE,x is perpendicular (s-polarization) to the
knife-edge [18, 27, 28]. In order to analyze the interaction of
the focal electric field distribution Eb of a highly focused beam
with the knife-edge, we need to start by decomposing it into its
s- and p-polarized constituents. In this manner the resulting
beam will be described by a sum (Eq. 6). We start by taking the
derivative of Eq. 1 and rewriting the result as [19, 21].

zP
P0zx0

� UE(x0) +∑∞
n�1

Cn
znUE(x0)

zxn0
, (8)

with Cn � (inn!)− 1znT̂/zknx . Here UE(x) is the projection of the
electric field energy density onto the xz-plane at the position of
the knife-edge, and T̂(kx) is a spectral representation of the
polarization-dependent knife-edge interaction operator.

The physical meaning behind Eq. 8 is the following. The first
term in the sum (n � 1) is a result of the local response of the
knife-edge to the s- or p-polarized electric field components, and
it is mainly associated with the translation operator
UE(x + dx) ≈ UE(x) + dxzUE(x)/zx. Indeed, if we take either
the projection of the s-polarized constituents of a radially
polarized beam (see Eq. 7) or p-polarized constituents of an
azimuthally polarized beam and plot the resulting beam profiles
for various values of C1, we result in a profile, which is displaced
into the knife-edge or away from it, see Figures 4A,B. As the
expansion coefficient C1 increases, artifacts such as negative
values and distortions of UE can be observed in the resulting
profile. We note that the coefficients Cn are knife-edge specific,
and they have to be obtained either experimentally [19] or
numerically from the analytical model [18, 21].

We substitute now the expressions from Eq. 7 into Eq. 8 and
obtain for s- and p-projections

zP
P0zx0

� ∑
m1 ,m2

Bm1 ,m2
⎡⎣G(s,p)m1 ,m2 +∑∞

n�1
∑n
l�0

Cnn!
l!(n − l)!G

(s,p)
m1+1,m2+n−l⎤⎦, (9)

where

G(p)m1 ,m2 � g(m1)
2 (x)g(m2)

2 (x),
G(s)

m1 ,m2
� g(m1)

1 (x)g(m2)
1 (x) + αm1 ,m2g

(m1+1)
1 (x)g(m2+1)

1 (x).
(10)

We recently demonstrated that for functions with Gaussian
envelopes, derivatives up to fourth order are sufficient [19].
Thus, the inner sum in Eq. 9 contains up to 14 different
combinations of HG polynomials for a single unknown Bm1,m2.
It is noteworthy that by choosing lower limits of the indices m1

and m2, the fitting algorithm becomes more robust, however
resulting also in a reduced accuracy. Nonetheless, if Cn

FIGURE 3 | Comparison of calculated components of the projections of electric field energy densities between an approximation (paraxial theory, red) and exactly
calculated projections using Richards-Wolf integrals (vectorial diffraction theory (Debye), black). The wavelength is λ � 700 nm, the numerical aperture (NA) is 0.9, the
focal length is f � 2.0mm and the beam width of HG modes at the entrance pupil is w0 � 1.74mm. Indices for Hermite-Gaussian modes are shown in the graphs.
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coefficients were determined either numerically or
experimentally, the algorithm can still be used for beam
reconstruction.

3 Experimental Results and Adapted Fit
Algorithm
In the following section we briefly discuss the experimental setup,
the principle of the measurement and the studied knife-edge
sample. A detailed discussion of the experimental concept was
introduced earlier in Refs. 18 and 21. The experiments were
performed at wavelengths between 535 and 700 nm using a
tunable laser system from TOPTICA. The emitted laser beam
is coupled into a single-mode photonic crystal fiber (PCF) to
obtain a Gaussian beam profile. After collimation this linearly
polarized Gaussian beam is converted into a radially or
azimuthally polarized mode by using a liquid crystal
polarization converter (LCPC) (see Figure 5A) [29]. Afterward
the beam is filtered by a Fourier spatial filter (FSF), consisting of
two lenses and a pinhole to achieve a high mode quality. The
resulting beam is guided into a high NAmicroscope objective by a
set of mirrors, and focused onto the knife-edge sample. For
measurements with the fundamental x- and y-polarized linear
constituents of the radially or azimuthally polarized modes, a
linear polarizer is used in front of the objective. The knife-edges
are line-scanned through the focal spot by a piezostage, and the
power of the light beam that is not blocked by the knife-edge is
detected by a photodiode placed directly underneath. This way

projections of the beam profile are measured as already discussed
in Section 2.1. For the measurements, knife-edges made of gold
with a thickness h � 70 nm and a width d0 � 3 μm (±50 nm) are
fabricated on commercial silicon (Si) photodiodes as substrate
(see Figure 5B). Similar samples have been utilized and discussed
already in Ref. 21.

We start the discussion of our experimental results by
demonstrating the appearnace of the aforementioned artifacts
while beam profiling a radially and an azimuthally polarized
beam and their linearly polarized constituents at two different
wavelengths, see Figures 6A,B. In all cases one can notice the
impact of the wavelength on the shape and relative position of the
measured beam projections. While for a wavelength of λ �
535 nm the shape of the p-polarized linear constituent of an
azimuthally polarized beam seems to be sufficiently preserved, see
Figure 6A, further analysis reveals a shift of the profile into the
knife-edge and a significantly modified beam width. The
projection of the s-polarized constituent in this case has a
Gaussian shape, its width however is also modified and its
center is shifted away from the knife-edge. This behavior is
comparable to the artifacts observed in beam profiling of
linearly polarized fundamental Gaussian beams [18], as shown
recently. While the projection of the p-polarized constituent of a
radially polarized beam is shifted into the knife-edge, the
projection of the s-polarized constituent of a radially polarized
beam is strongly altered in all cases Figures 6A,B. We find that
the contribution of the z-component of the electric field in the
measured beam profile in the latter case is much weaker than

FIGURE 4 | Dependence of calculated beam projections of (A) x− and (B) y− polarized HG10 modes on the coefficientsC1 according to Eq. 9 for a response to the
local electric field.

FIGURE 5 | Schematic illustration of the experimental setup (A) (P, Polarizer; LCPC, liquid crystal polarization converter; FSF, Fourier spatial filter; MO, microscope
objective), SEM image of the used knife-edge sample (B) (gold with a thickness h � 70 nm and a width d0 ≈ 3 μm fabricated on a silicon photodiode).
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expected as the reconstructed HG10 mode shows a minimum
reaching almost zero. Therefore the observed profile is more
typical for the linearly polarized constituent of a azimuthally than
for a radially polarized beam. The projection of the p-polarized
constituent of an azimuthally polarized beam not only
experiences relative shifts (see Figure 6B), but one notices
negative values of the projection curve at the center of the
beam. This finding is especially surprising, considering the fact
that a p-polarized HG10 mode has no z-component in the center
of the beam. It should be noted here that in contrast to actual
electric field intensity energy density distribution of a beam of
light, the projected intensities can reach values below zero.

As a next step, we have retrieved specific points from the
projections of all linearly polarized constituents, indicated in
Figures 1 and 2 by the red and blue vertical lines respectively,
to determine the shift of the projections ds and dp from the knife-
edges in a systematic way. We found, in agreement with

theoretical predictions, that the projections of s- and
p-polarized constituents of both radially and azimuthally
polarized beams experience similar shifts of their relative
positions with respect to the knife-edge indicating that
s-polarized projections move away from the knife-edge
whereas p-polarized projections move into the knife-edge.
Similar phenomena were recently reported for linearly
polarized Gaussian beams, see Ref. 21. Finally, we compare the
measured relative shifts ds − dp between s- and p-polarized
projections of a linearly polarized Gaussian beam and radially
and azimuthally polarized beams, see Figure 7A. As expected,
their relative shifts are also comparable to each other for different
wavelengths, hinting at an experimental verification of the
coefficients Cn in Eq. 8. As indicated before, coefficients Cn

depend on the specific knife-edge sample and being
independent of the beam shape, which is actually profiled as
long as the polarization state is linear.

FIGURE 6 | Experimentally measured projections of radially and azimuthally polarized beams (black) and their linear s-, p- polarized constituents (red, blue) for (A)
λ � 535 nm, (B) λ � 633 nm. The accuracy of determining the actual position of the projections relative to the knife-edge is limited by the error in measuring the width d0 of
the knife-edge in an SEM.

FIGURE 7 | Experimentally measured relative shift ds − dp for linearly, s- and p-polarized Gaussian beams (black) and for the linearly s- and p-polarized constituents
of radially (red) and azimuthally (blue) polarized beams for different wavelengths λ (A). Comparison between the projected intensity (PI) for the z-component of the electric
field in the center of the measured beam (experiment) and numerically obtained values from vectorial diffraction theory [3] (B).
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In a next step, we compare the measured intensities for the
z-component of the electric field of the projected linear
constituents at the specific points (see Figure 2) with those
obtained numerically from Debye integrals [3], see Figure 7B.
In all cases we have normalized the on-axis intensity at the point
z � 0 to the maximum value of the s- and p- polarized HG10

modes. We notice that the conventionally reconstructed linear
constituent of the radially polarized beam has on-axis intensity,
which is many times smaller than numerically expected. For one
particular wavelength, the on-axis intensity reaches 20% of the
maximum value, which is almost three times smaller than one
might expect from the numerical simulations. At a wavelength of
λ � 700 nm we observe negative values of the projected on-axis
intensities. The same is observed for all wavelengths for the
reconstructed projections of a HG10 mode in the case of
azimuthal polarization. In all cases our experimental
observations are in line with our expectations from previous
sections.

Based on the ansatz proposed in Eq. 9, we have implemented a
least-square fitting algorithm as a proof-of-concept, where we have
restricted ourselves to up to the fourth derivative of the electric field
energy density projection UE(x0) and use calculated beam widths
from Debye theory as a fixed parameter. For the sake of simplicity,
we have used approximations fromEq. 7 for the components of the
s- and p-polarized beams in the plane of the projection. In addition
the real position of the knife-edge was predetermined before fitting

to reduce the number of free parameters in the fitting routine and
to fix the coordinate frame. For this purpose, we experimentally
measure the distances d0 between both edges using a scanning
electron microscope (SEM), find the center xc between the peak
values of both projections in one scan and finally set the actual
positions of both knife-edges to be at xc ± d0/2. An example of
such a fitting procedure is presented in Figure 8 for s- and
p-polarized constituents of radially and azimuthally polarized
beams at wavelengths of 535 and 700 nm. It turns out that for
all investigated wavelengths between 535 and 700 nm, by
simultaneously ensuring ds � dp � d0, the fitting algorithm has
successfully converged toward realistic beam projections, resulting
in a good overlap between the theoretical expectations from
vectorial diffraction theory and reconstructed beam profiles.

Lastly, we have used those successfully converged iterations to
numerically determine the coefficients Cn in Eq. 9 for each
wavelength, which we have used in our experiments. This
numerical determination of the knife-edge parameters greatly
reduces the number of unknowns in the reconstruction algorithm
and gives us the opportunity to numerically reconstruct radially
and azimuthally polarized beams directly without the need of
using a polarizer in front of the focusing objective for separating
linearly polarized constituents. An example of such numerically
reconstructed electric field density projections is presented in
Figure 9 at wavelengths of 535 and 633 nm. As one can see, the
distortions observed while straightforwardly implementing the

FIGURE 8 | Depiction of the adapted knife-edge method for linear constituents of tightly focused radially (A,C) and azimuthally (B,D) polarized beams. The
derivatives of the experimentally measured photocurrents (gray circles) and the fitted curve (black) with the beam profile (red) are shown together with its first four
derivatives at λ � 535 nm (A,B) and λ � 700 nm (C,D). The states of polarization are s (first row) and p (second row).
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knife-edge method have disappeared after implementation of the
adapted fit algorithm.

In the end we would like to stress that the implementation of
the fitted knife-edge algorithm performs an additional smoothing
of some fine scale numerical artifacts. This can happen because
the beams in our basis are perfect and symmetric in shape. One
can argue, that by approximating the beam as a combination of
Hermite-Gaussian modes, the algorithm restores only “perfect”
shapes of a beam. Furthermore, if this method is applied to an
irregularly shaped beam, it could completely remove the
irregularities and artificially reconstruct it into a “perfect”
shape beam. This is a natural outcome given the fact that the
beams are very tightly focused here, and numerically observed
irregularities have very high transverse wave-vectors, which
would require an introduction of evanescent Hermite-Gaussian
fields in order to describe them. However, we would like to point
out that Eq. 8 can be rewritten without implementation of
Hermite-Gaussian polynomials and the whole adapted knife-
edging algorithm can be implemented as a system of linear
equations for a few adjacent x-coordinates. This
implementation would produce less smooth curves than those
we observe in Figures 8 and 9.

4 CONCLUSION

In conclusion, we have analyzed the performance of the knife-
edge method for pure materials applied to linearly polarized
Hermite-Gaussian modes of first order, which are the
constituents of radially and azimuthally polarized beams.
For the correction of the observed modifications in these
knife-edge measurements we presented a straight-forward
and easy to implement method that is based on the adapted
knife-edge reconstruction scheme. This way we are able to
retrieve the beam projections of linearly polarized Hermite-

Gaussian modes, for which shifts and deformations of the
reconstructed projections as observed in conventional knife-
edge measurements can be corrected.
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