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According to the potential disaster points of the rock bedding slope with a weak structural

plane along the Sichuan Tibet railway, the shaking table test of earthquake simulation was

designed and carried out. The acceleration response and displacement response of the

slope under different input earthquake conditions were monitored, and the HHT method

was mainly used to analyze the seismic response of the slope. The results show that

the rock bedding slope shows obvious “elevation effect” and “surface effect” under the

action of seismic waves of different intensities. With the increase of the amplitude value

of the input earthquake, the elevation effect and the surface effect gradually weakened.

When the amplitude of the seismic wave reached 0.9 g, the movement inconsistency of

the slope on both sides increased, and the slope gradually separated from the main body

of the slope, resulting in slope instability. The characteristics of the seismic signal in the

time–frequency domain can be better described by the Hilbert-Huang transform. In the

time domain, the energy is mainly concentrated in 2–6 and 12–15 s, and the predominant

frequency is concentrated between 5 and 40 hz.With the increase of elevation, the former

increases and the latter decreases. In addition, the change of the peak value of the

marginal spectrum can clearly show the development process of the earthquake damage

inside the slope. At the height of 100 cm, the inflection point can be seen obviously in

the slope. It shows that the damage occurs at the height of 100 cm, and the degree of

earthquake damage near the slope is stronger than that inside the slope. The recognition

results of marginal spectrum are in good agreement with the experimental results.

Keywords: bedding rock slopes, shaking table test, seismic response, peak acceleration, time-frequency analysis,

Hilbert-Huang transform

INTRODUCTION

The Sichuan-Tibet railway starts from Chengdu, passes through Ya’an, Kangding, Changdu, and
Linzhi to Lhasa, with a total length of 1,800 km. Influenced by the collision and compression of the
Indian plate on the Eurasian plate, the terrain along the Sichuan-Tibet railway is characterized
by high mountains, deep valleys, and crisscross gullies. There are many active fault zones in
the transition zone between the plateau and the basin, which are the root cause of earthquakes.
Frequent seismic activity and a fragile geological environment are factors that easily induce
large-scale landslides. The Wenchuan Ms 8.0 earthquake, Lushan Ms 7.0 earthquake, and Ludian
Ms 6.5 earthquake have all caused a large number of slope collapses [1–4]. The bedding rock slope is
a very common type of slope distributed in the Sichuan-Tibet railway construction area [5, 6]. Due
to the influence of internal structural characteristics, the stability of this type of slope is poor, and it
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is very prone to collapse in the event of an earthquake [7, 8]. This
seriously affects the safety of the Sichuan-Tibet railway during the
construction and operation period.

Seismic stability of bedding rock slopes has always been
a hot issue in geological disaster research. In general, the
most commonly used method in stability analysis is the quasi-
static method. In this method, the influence of peak ground
motion parameters on slope stability is considered, and the
instantaneous action of earthquake is equivalent to load acting
on the center of gravity of sliding mass [9–12]. Earthquake
modeling in the laboratory scale is one of the most powerful
methods to reveal the dynamic response and failure process
of slopes in the event of strong earthquakes [13–15]. Li L
Q [16] studied the seismic response of bedding and toppling
rock slope through large-scale shaking table tests. According
to the acceleration and earth pressure of different parts of the
slope, it was found that the acceleration amplifying factor was
larger than the earth pressure amplifying factor at the slope
surface. The earth pressure amplifying factor at the top surface
for a toppling rock slope was close to that of a bedding rock
slope. Fan G [17] also used a shaking table test to study the
bedding slope with a weak interlayer. The results show that
the dynamic failure mode of the slope mainly included the
horizontal and vertical staggered cracks, the extrusion of the
weak interlayer, and the fracture of the slope top. Salmi and
Hosseinzadeh [18] used the Universal Distinct Element Code
software package to evaluate the stability of rock slope and
identify the critical failure mode. The study found that bedding
sliding was the main failure mode of the slope, and the nature
of discontinuities plays a key role in the slope instability. Liu
et al. [19] used the programming language FISH in FLAC
(3D) to realize the process of slope vibration degradation, and
used the numerical calculation method to analyze the stability
of the slope in the event of an earthquake and the long-
term stability of the slope under frequent microseisms. The
above study only considers the acceleration and earth pressure
parameters of the seismic wave, and ignores the influence
of the frequency and duration of the seismic wave on the
slope stability.

In the whole process of earthquake motion, the seismic wave
is very complex, and the slope will show obvious non-linear
characteristics [20, 21]. Hilbert-Huang transform (HHT) is a
self-adaptive time-frequency analysis method suitable for non-
linear and unstable signal processing proposed by Huang et al.
[22]. This method has high time-frequency resolution for seismic
signals, and can more accurately describe the energy distribution
of seismic signals in time-frequency. Moreover, the Hilbert
marginal spectrum obtained by integrating the Hilbert spectrum
represents the distribution of the signal energy amplitude in the
frequency domain. Therefore, HHT has been widely used in the
seismic response analysis of non-linear non-stationary dynamic
systems in the field of civil engineering [23–25].

In this paper, the potential rock bedding slope disaster points
in the Sichuan-Tibet railway construction area are selected, and
the similar system of the model is designed. The shaking table
test of the rock bedding slope with a weak structural plane is

carried out to study the seismic dynamic response characteristics
and failure process of this kind of slope. On this basis, the
HHT method is used to analyze the characteristics of seismic
waves in time and frequency domains. The results can provide
reference for the formulation of slope disaster prevention and
mitigation measures.

OVERVIEW OF SHAKING TABLE TEST

A shaking table physical simulation test is one of the most
powerful means of revealing the strong vibration response and
failure process of slopes [26, 27]. An earthquake simulation
shaking table test was carried out in the laboratory of the
School of Architecture and Civil Engineering, Xinyang Normal
University. The shaking table is a large-scale one-way seismic
simulation shaking table with a table size of 3 × 3m. The
table structure is a steel welded single-layer grid. The maximum
load capacity of the table is 10 t and the maximum speed is
0.7 m/s. The frequency of this shaking table is 0.1–50Hz, the
displacement range is ±125mm, and the maximum acceleration
is 15 m/s2, which can meet the requirements of this shaking
table test. This test uses a 64-channel BBM data acquisition
system, the maximum reference error ≤0.5%. The signal
adaptor is connected to the charge converter to convert the
voltage signal, the maximum reference error is ≤1 %. Data
acquisition, monitoring signal, and online analysis are carried out
synchronously, as shown in Figure 1.

Design and Manufacture of Slope Model
The model box used in this model test is a rigid model box
welded by angle steel, channel steel, and steel plate. The model
box is 2.0m long, 2.0m wide and 1.5m high, as shown in
Figure 2. A polyethylene foam with a thickness of 10 cm is placed
between the steel plate and the model as a shock-absorbing layer
to reduce the influence of the model box boundary effect [26].
The slope prototype is the bedding rock slope at the exit of a
tunnel on the Sichuan-Tibet railway. In this test, the density
(ρ), elastic modulus (E), and geometric size (L) are used as
control parameters, and a similar system of the model is designed
through the “π theorem” [28, 29]. The scale ratio of the model is
1:10, and the time similarity ratio is 1:3.16. Simplifying the slope
to facilitate model establishment. After simplification, the slope
angle of the rock layer is 35◦ and the slope foot angle is 60◦.
The thickness of the rock layer is 6 cm and the thickness of the
weak interlayer is 1 cm, as shown in Figure 3. In addition, the
raw materials of the simulation materials used in the experiment
are gypsum, clay, river sand, and water [30]. Through repeated
material ratio tests, it is determined that the ratio of the simulated
rock material is gypsum:clay:river sand:water = 1:5.38:1.52:0.27,
and the ratio of the weak structure plane simulated material
is clay:river sand:water = 1:6.89:0.25. Through density tests,
direct shear tests, and triaxial compression tests, the density
of the rock material is 1.908 g/cm3, the cohesion is 15.5 kPa,
the internal friction angle is 37.9◦, the density of the structural
surface material is 1.72 g/cm3. The cohesion force is 2.7 kPa and
the internal friction angle is 41.7◦.
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FIGURE 1 | Data acquisition system for shaking table test.

FIGURE 2 | Test model box.

Measuring Point Layout
In this test, one-way acceleration sensors, three-way acceleration
sensors, and cable displacement sensors are arranged at different
positions in the slope model to obtain the seismic response
of the bedding rock slope. The acceleration sensor adopts

the three-way acceleration sensor (Type: 1C101) and one-way
acceleration sensor (Type: 1C301) produced by the Donghua
Testing Company. One-way acceleration sensors are mainly used
to test the distribution of the acceleration field in the bedrock,
and three-way acceleration sensors are used to monitor the
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FIGURE 3 | Test model.

FIGURE 4 | Arrangement of measuring points of the shaking table.

acceleration field in the slope. The cable displacement sensors are
also produced by the Donghua Testing Company and its type is
5G203. It is used to monitor the displacement change of the slope
during the earthquake. In addition, in order to more accurately

describe the response of the entire model during the earthquake,
this test used an independently developed high-frequency digital
camera system to record it. The layout of the measuring points is
shown in Figure 4.
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Loading Mode
According to the results of field investigation and seismic
risk assessment, the Wenchuan Wolong wave and El Centro
wave are selected for loading in this test. The acceleration
peak value of the input seismic wave is normalized, and the
duration is adjusted according to a similar relationship. Figure 5
shows the two kinds of adjusted seismic wave acceleration
time-history curves. The acceleration peaks of the two seismic
waves are 0.1, 0.2, 0.4, 0.7, and 0.9 g, respectively, and load
in order from small to large. Before each peak earthquake
wave is loaded, the model is scanned for white noise with
an amplitude of 0.05 g. The loading conditions are shown
in Table 1.

FIGURE 5 | Horizontal seismic wave acceleration curve after adjustment of

test input. (A) Acceleration time-history curve of the Wenchuan Wolong wave

and (B) Acceleration time-history curve of the El Centro wave.

SEISMIC RESPONSE OF THE BEDDING
ROCK SLOPE

Acceleration Amplification Effect of the
Slope
Under the action of an earthquake, the acceleration response
of different parts of the slope often present different changing
laws [31, 32]. In this test, the Y-direction acceleration of
measuring points A1, A2, A3, A4, and A5 is taken as the
basis of the acceleration response of the slope surface, and
the Y-direction acceleration of measuring points A1, A6, A7,
A8, and A9 is taken as the basis of the acceleration response
of the slope body. The acceleration peak amplification factor
(PGA) is defined as the ratio of the y-direction acceleration
peak value of each measuring point above to the y-direction
acceleration peak value of the A10 measuring point, which
is arranged on the vibration table top. Taking the El Centro
earthquake wave as an example, the variation law of the slope and
PGA with different heights under different seismic amplitudes
is described.

Figures 6A,B show the variation of PGA with elevation at
each measurement point in the slope and at the slope surface
at different seismic amplitudes. The GPA on the slope surface
gradually increased along the height direction, while the GPA
of the slope body showed a trend of decreasing first and then
increasing. The bedding rock slope has an obvious “elevation
effect” under earthquake action. With the increase of seismic
amplitude, the dynamic shear strength and modulus of slope
materials decrease gradually, while the damping ratio increases,
which enhances the isolation and damping capabilities of the
slope. In the process of seismic wave propagation from bottom
to top, the loss of energy increases, the PGA amplification
coefficient of each measuring point decreases gradually, and the
elevation effect decreases. When the amplitude of the seismic
wave reaches 0.9 g, the GPA amplification coefficient of the slope
and each measuring point of the slope decreases significantly,
especially at the height of 100 cm.

The reason for the above phenomenon is that the internal
structure of the slope is damaged. Under the action of a 0.9 g
earthquake, the middle and upper part of the slope gradually
slide down along the interlayer structure, and the rear edge of
the slope begins to separate from the model box. Due to the block

TABLE 1 | Loading condition of shaking table test.

Load sequence Loaded wave and its amplitude Load sequence Loaded wave and its amplitude

1 White noise 0.05 g 10 White noise 0.05 g

2 Wenchuan Wolong wave 0.10 g 11 Wenchuan Wolong wave 0.70 g

3 El Centro wave 12 El Centro wave

4 White noise 0.05 g 13 White noise 0.05 g

5 Wenchuan Wolong wave 0.20 g 14 Wenchuan Wolong wave 0.90 g

6 El Centro wave 15 El Centro wave

7 White noise 0.05 g

8 Wenchuan Wolong wave 0.40 g

9 El Centro wave
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FIGURE 6 | PGA of slope surface and body under different seismic

amplitudes. (A) Slope surface and (B) Slope body.

of the middle and lower “locking section” of the slope body, there
are tensile cracks perpendicular to the rock layer at the height
of 100 cm on the slope surface, as shown in Figure 7. The top
of the slope is gradually separated from the slope body, and the
inconsistency of the movement of the slope on both sides of the
structural plane increases, so the GPA magnification coefficient
decreases. In addition, the internal friction and friction energy
consumption of the block increase, which further reduces the
amplification coefficient of GPA.

Acceleration Response Spectrum of Slope
The shape of the acceleration response spectrum of the bedding
rock slope under earthquake action has important reference value
for understanding the dynamic response characteristics of the
slope. In this section, the Y-acceleration time history of each
measuring point of the slope and the slope under the action of an
El Centro seismic wave with a peak acceleration of 0.2 g is selected
for analysis. It is worth noting that this acceleration response

FIGURE 7 | Failure phenomenon of the bedding rock slope. (A) Left view and

(B) Front view.

spectrum calculation uses the damping ratio commonly used in
engineering 5% [33].

It can be seen from Figure 8 that the peak of the acceleration
response spectrum gradually increases along the elevation under
the action of the 0.2 g El Centro seismic wave. The shape of
the acceleration response spectrum of the slope has a double
peak in the lower part of the slope (height below 60 cm), and
single peak in the upper part (height above 60 cm). The excellent
period is concentrated around T = 0.6 s, and the amplitude
of the response spectrum corresponding to the short period
(T = 0.0–1.2 s) has a certain amplification along the elevation.
The shape of the acceleration response spectrum of the slope
along elevation is basically the same, the predominant period
is approximately T = 0.4 s, and the amplitude of the response
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FIGURE 8 | Acceleration response spectrum of the slope surface and body

under 0.2 g seismic amplitude. (A) Slope surface and (B) Slope body.

spectrum corresponding to the short period part (T = 0.0–1.2 s)
also has a certain amplification effect along elevation. Compared
with the amplitude of the acceleration response spectrum of the
slope surface and slope body, the peak value of the acceleration
response spectrum of the slope surface above 25 cm is obviously
larger than that of the slope body. The difference value gradually
increases with the elevation, showing the “trend effect.”

Displacement Response of the Slope
Figure 9 shows the displacement of the slope surface under
different earthquake amplitudes. Under the peak earthquake of
0.1, 0.2, 0.4, and 0.7 g, the displacement response of the slope
surface is smaller, and the displacement of each measuring point
is <5mm.When the amplitude of the seismic wave reaches 0.9 g,
the displacement of the slope increases significantly, and the slope
begins to be damaged. In addition, due to the existence of an
interlayer structure surface, the movement of different parts of
the slope is not consistent, and the displacement of the slope
increases with the increase of elevation. With the increase of

FIGURE 9 | Displacement of the slope surface with different seismic

amplitudes.

seismic amplitude, the non-uniformmovement between the rock
layers further increases. As a result, the shear slip of the top of the
slope relative to the main body, the separation of the back edge
of the slope and the model box, and the tension crack gradually
extend to the structural plane in the slope locking section, which
causes the whole slope to fail.

SEISMIC RESPONSE TIME-FREQUENCY
ANALYSIS

Hilbert-Huang Transform
A Hilbert-Huang transform includes two parts: EMD empirical
mode decomposition and Hilbert spectrum analysis. EMD
empirical mode decomposition assumes that any signal is a
composite signal composed of different intrinsic modal functions
(IMFs), and each IMF component must meet two conditions:
(1) the number of extreme points and zero crossing points were
the same or have at most one difference, (2) the mean of the
upper and lower envelope of the signal was zero. In this way,
any signal can be decomposed into multiple IMFs. Then, the
Hilbert spectrum and marginal spectrum are obtained by Hilbert
transformation for each eigenmode function [34, 35].

For the seismic signal F(t), which was decomposed into
multiple IMFs, its Hilbert transformation is as follows:

G (t) =
1

π
K

∫ ∞

−∞

F (δ)

t − δ
dδ (1)

where K is a Cauchy principal value. Established analytic
signal P(t):

P (t) = F (t) + jG (t) = a(t)ej8(t) (2)
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where a(t) is the amplitude function; and 8(t) is the
phase function.

a (t) =
√

F2(t)+ G2(t) (3)

8(t) = arctan
G(t)

F(t)
(4)

The instantaneous frequency of the signal could be obtained by
differentiating the phase. Therefore, the Hilbert transform of the
decomposed IMF component can obtain the distribution law of
the signal on the time-frequency-energy scale, which is the form
of the Hilbert spectrum:

H (ω, t) = Re

n+1
∑

i=1

ai (t) · e
j
∫

ωi(t)dt (5)

By integrating the time in the expression formula of the Hilbert
spectrum, the distribution law of the signal on the frequency-
amplitude scale can be obtained, which is the form of the
corresponding marginal spectrum:

h (ω, t) =

∫ ∞

−∞

H(ω, t)dt (6)

Hilbert Spectrum Analysis
According to the above method, the acceleration time history of
eachmeasuring point on the slope under the action of 0.1, 0.2, 0.4,
0.7, and 0.8 g Wenchuan Wolong seismic waves is transformed
by HHT. The Hilbert spectrum of each measuring point under
the action of different amplitude seismic waves is obtained. The
characteristics of the seismic signal energy in the time-frequency
domain are represented by a two-dimensional plane contour

FIGURE 10 | Hilbert spectrum of the slope surface. (A) A1, (B) A6, (C) A7, (D) A8, and (E) A9.

FIGURE 11 | Hilbert spectrum of the slope body. (A) A1, (B) A2, (C) A3, (D) A4, and (E) A5.
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map, and the Hilbert spectrum under the action of a 0.2 g
Wenchuan Wolong seismic wave is shown in Figures 10, 11.

According to the comprehensive analysis of Figures 10, 11, it
can be found that the Hilbert Huang transform can accurately
describe the time-frequency characteristics of the seismic signal.
From Figures 10, 11, it can be seen that the energy of the
Wenchuan Wolong earthquake wave gradually increases from
bottom to top. In the time domain, the energy is mainly
concentrated in 2–6 and 12–15 s, corresponding to the time
node when the compression wave of the Wolong earthquake
reaches the double peak value. The predominant frequency
is concentrated between 5 and 40 hz. With the increase of
elevation, the former increases and the latter decreases. The
above phenomenon may be related to the first natural frequency
of the slope test model, which causes the amplification of the
surrounding frequency components. This is consistent with the
conclusion that the slope soil has a filtering effect on the high
frequency component of the seismic wave and an amplifying
effect on the low frequency component [36, 37]. For the bedding
rock slope soil, the natural frequency is relatively small, which can
enlarge the frequency band around the natural frequency of the
seismic wave, and filter the frequency band in other ranges.

Hilbert Marginal Spectrum Analysis
The Hilbert energy spectrum of each measuring point on the
slope under the action of 0.1, 0.2, 0.3, 0.4, and 0.6 g Wenchuan
Wolong seismic waves is integrated in time, and the Hilbert
marginal spectrum of each measuring point under the action
of different amplitude seismic waves is obtained. The marginal
spectrum of the slope under the action of 0.2 and 0.9 gWenchuan
Wolong seismic waves is shown in Figures 12, 13.

It can be seen from Figures 12, 13 that under the action
of a 0.2 g seismic wave, the shape of the marginal spectrum of
each measuring point on the slope and in the slope is basically
the same, all of which are single peaks. The distribution of
the marginal spectrum frequency is relatively pure, and the
predominant frequency is about 18Hz. The peak value of the
marginal spectrum increases with the increase of elevation.
Under the action of a 0.6 g seismic wave, the shape of the
marginal spectrum changes from a single peak to a double
peak. The predominant frequency of A1, A2, and A3 measuring
points has changed, which is concentrated around 12Hz. That
is to say, with the increase of the peak value of the input
ground motion, the high frequency component of the site
is weakened and the low frequency component is increased.
The A6 and A7 measuring points of the slope surface have
a similar marginal spectral peak, while the A3, A4, and A5
measuring points of the slope body have a similar marginal
spectral peak. The difference of the peak value of the marginal
spectrum indicates that earthquake damage has occurred in
the slope [23, 25]. In order to further reveal the damage
development process of the slope, the peak value of the marginal
spectrum of each measuring point under the action of different
amplitude seismic waves is extracted for analysis, as shown in
Figures 14, 15.

Figures 14, 15 show the energy change characteristics in the
frequency domain during the bottom-up propagation of the

FIGURE 12 | The Hilbert marginal spectrum of the slope surface and body

under 0.2 g of seismic amplitude. (A) Slope surface and (B) Slope body.

seismic wave in the slope. Under the action of 0.1, 0.2, 0.4, and
0.7 g seismic waves, the peak value of the marginal spectrum
increases linearly with the height, and there is no obvious
inflection point for the peak value of the marginal spectrum.
It shows that the continuity of each part of the slope is good,
and that the energy of the seismic wave can be transferred
upward smoothly. When the seismic amplitude reaches 0.9 g,
the change rule of the peak value of the marginal spectrum
under the height of 100 cm on the slope does not change. The
turning point can be seen at the height of 100 cm on the slope
surface, and the same phenomenon also occurs in the slope
body. The peak value of the marginal spectrum above 100 cm on
the slope is basically consistent with that under a 0.7 g seismic
wave. It shows that there is damage and a tension crack at
the height of 100 cm, which affects the upward propagation of
the seismic wave. The degree of earthquake damage near the
slope is stronger than that inside the slope. However, the slope
has good continuity at other positions without damage. This
is basically consistent with the failure phenomenon observed
in the test.
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FIGURE 13 | The Hilbert marginal spectrum of slope surface and body under

0.9 g of seismic amplitude. (A) Slope surface and (B) Slope body.

CONCLUSION

In this paper, based on the large-scale shaking table experiment
of similar materials and the HHT method, the seismic dynamic
response and instability mechanism of the bedding rock slope
under different seismic amplitude values are systematically
studied, and the following conclusions are drawn:

Firstly, the bedding rock slope has an obvious elevation
effect under earthquake action. With the increase of the seismic
amplitude value, the energy loss of the seismic wave in the process
of bottom-up propagation increases, the PGA amplification
coefficient of the slope body and each measuring point of the
slope decreases gradually, and the elevation effect weakens.
When the amplitude of the seismic wave reaches 0.9 g, the
GPA amplification coefficient of the slope and each measuring
point of the slope decreases significantly, especially at the
height of 100 cm.

Secondly, under the action of an earthquake, the peak value
of the acceleration response spectrum of the slope gradually
increases along the elevation. The shape of the acceleration

FIGURE 14 | PGA of the slope surface under different amplitudes.

FIGURE 15 | PGA of the slope body under different amplitudes.

response spectrum of the slope has a double peak value in
the lower part (height below 60 cm) and a single peak value
in the upper part (height above 60 cm). The predominant
period is about t = 0.6 s. The acceleration response spectrum
of the slope body is basically the same along the elevation,
and the predominant period is about t = 0.4 s. Compared
with the amplitude of the acceleration response spectrum of
the slope surface and the slope body, the peak value of the
acceleration response spectrum of the slope surface above 25 cm
is significantly higher than that of the slope body, showing a
trend effect.

Thirdly, due to the existence of an interlayer structural plane,
the movement of different parts of the slope is not consistent,
and the displacement of the slope increases with the increase
of elevation. The failure mechanism of the bedding rock slope
is mainly divided into two stages. The first stage: under the
action of gravity and seismic force, the top rock of the slope
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starts to slide along the structural plane, the trailing edge of
the slope is separated from the model box, and a tensile crack
that gradually expands into the structural plane is generated
in the locking section of the slope. The second stage: as the
ground motion continues, the inconsistent motion between
the rock layers increases further, the tensile cracks penetrate
the structural plane, the top slope body slides out along the
shear slip surface, and the entire slope becomes unstable and
is destroyed.

Fourthly, the characteristics of the seismic signal in time–
frequency domain can be better described by the Hilbert Huang
transform. In the time domain, the energy is mainly concentrated
in 2–6 and 12–15 s, corresponding to the time node when the
compression wave of the Wolong earthquake reaches the double
peak value. The predominant frequency is concentrated between
5 and 40 hz. With the increase of elevation, the former increases
and the latter decreases.

Fifthly, the change of the peak value of the marginal spectrum
clearly shows the development process of the earthquake damage
inside the slope. The change rule of the peak value of the
marginal spectrum under the height of 100 cm of the slope has
not changed. At the height of 100 cm, the inflection point can
be seen obviously, and the same phenomenon also occurs in
the slope. It shows that the damage occurs at the height of
100 cm, and the degree of earthquake damage near the slope
is stronger than that inside the slope. The recognition results
of the marginal spectrum are in good agreement with the
experimental results.
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