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In the standard Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-
Removed (SEIR) models, the peak of infected individuals coincides with the inflection point
of removed individuals. Nevertheless, a survey based on the data of the 2009 H1N1
epidemic in Istanbul, Turkey displayed a time shift between the hospital referrals and
fatalities. An analysis of recent COVID-19 data and the records for Spanish flu (1918–1919)
and SARS (2002–2004) epidemics confirm this observation. We use multistage SIR and
SEIR models to provide an explanation for this time shift. Numerical solutions of these
models present strong evidence that the delay between the peak of R′(t) and the peak of
J(t) � ∑i Ii(t) is approximately half of the infectious period of the epidemic disease. In
addition, we use a quadratic approximation to show that the distance between successive
peaks of Ii is 1/ci, where 1/ci is the infectious period of the ith infectious stage, and we
present numerical calculations that confirm this approximation.

Keywords: COVID-19, epidemic models, multistage Susceptible-Infected-Removed model, multistage Susceptible-
Exposed-Infected-Removed model, time shift

1. INTRODUCTION

From the early attempts [1–4] to recent studies, epidemic modeling which is applicable in a wide
range of fields from informatics [5, 6] to chemistry [7–9] has drawn the attention of researchers in
various disciplines. Since the basic compartmental model Susceptible-Infected-Removed (SIR) which
is commonly used to model diseases for which the infection confers permanent immunity was
introduced by Kermack and McKendrick in 1927 [4]; other compartmental models [10–12] have
been developed to model diseases with different structures and dynamics. Especially in recent years,
major outbreaks such as avian flu in 2005, swine influenza in 2006, and H1N1 influenza in 2009 have
highlighted the need for more effective and reliable models to control the spread of disease and to
provide a better knowledge for the prediction of future threats and for the development of stronger
containment strategies. In Refs. [13–18], some results on the modeling of different types of epidemic
diseases, the solution form of these models, the observation of global stability, and the determination
of the final size of the epidemic are obtained. In Ref. [15], global stability criteria are derived for the
SEIS model which can be regarded as a model with no immunity, and different SIR models are
examined in Refs. [16, 17]. Moreover, the works [17, 18] provide some useful results on the final size
of the epidemic for SIR models. With the same motivation of these works but rather a different
contribution to literature, we use a multistage model [14] in this article to explain the time shift
observed in several surveys such as Spanish flu (1918–1919) [19], SARS (2002–2004), the 2009 H1N1
in Istanbul, and recently, COVID-19 [20] (see Figures 1–3).
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In the literature, available observed data that are used for
the ordinary differential equation system representing the
classical SIR epidemic model is based on the curve of
removed individuals. Usually, this curve is obtained by
taking into consideration only the fatality data of the
epidemic disease, whereas in some research studies, not
only the fatality data but also the hospitalization data for
the epidemic are taken into account in the modeling
process. In Ref. [21], it is shown that there exists a delay
between the peak of the hospitalization (infectious) curve and
the inflection point of the fatality (removed) curve based on the
data collected. The original contribution of this article to the
literature is that we explain this time shift by the
multidimensional form of SIR and SEIR models and also
provide numerical evidence that the expected delay is
approximately half of the infectious period of the epidemic
disease for both of the multistage systems.

In the second section of this work, we give a brief summary of
the classical epidemic SIR and SEIR models and define the
multistage form of these models that will be used in further
analysis. The graphs obtained by the numerical evaluations of the
classical SIR and SEIR models and their multistage forms are also
given. Analysis of these graphs confirms that the multistage SIR
and SEIR models explain the time shift observed in several
surveys. In the third section, the evaluation of delay for
different epidemic parameters is presented by using the
numerical evaluations of these multistage models. In the
fourth section, the distance between the points where
successive stages and hence any two stages assume their
maximum is found approximately. The last section includes a
summary of the results obtained in the previous sections as well as
motivations for future analysis.

2. STANDARD EPIDEMIC MODELS AND
EPIDEMIC MODELS WITH MULTIPLE
INFECTIOUS STAGES
The SIR model is commonly used to model diseases for which the
removed individuals are assumed to be immune to reinfection. In
addition, the total population with constant size is divided into
three distinct compartments the size of which change with time t.
These compartments are called the susceptible class S, the
infective class I, and the removed class R. Healthy individuals
with no immunity are members of class S until they are infected
with a pathogen and become capable of transmitting the disease
to others. They move from the class S into the class I once they are
infected and then from I to R once they recover or die. Childhood
illnesses like measles or rubella are good examples for the
SIR model.

The SIR epidemic model without vital dynamics, that is, the
recruitment of new susceptible through birth or immigration as
well as the loss through mortality or emigration are ignored, is
defined by the following system of nonlinear ordinary differential
equations:

SIR : S′ � −βSI,
I′ � βSI − cI,

R′ � cI,
(1)

where the coefficient β refers to the disease transmission rate and
1/c represents the duration of infection period. Note that since
S′ + I′ + R′ � 0, we may assume S + I + R � 1 by the use of
appropriate normalization.

The standard SIR model ignores a latent phase which is the
delay between the time of the acquisition of infection and the
onset of infectiousness. In order to define this latent phase, the
introduction to the SIR model of an exposed class E whose
members are individuals who have been infected with a
pathogen but are not yet infectious due to the incubation
period of pathogen yields the SEIR model. Chicken pox is
suitable for the SEIR model, which is defined by the following
system of ordinary differential equations

FIGURE 1 | (A) Weekly number of influenza cases and respiratory
deaths (pneumonia and influenza) in Copenhagen, Denmark, during
1918–1919 are presented. This figure was taken from the study of Andreasen
et al. [19] (copyright Andreasen et al. [19]). A shift occurred between the
maxima of curves. (B) Daily number of total cases and cumulative number of
the fatalities for the 2003 SARS epidemic in the world are shown. The data
provided by WHO were used in the generation of this figure (https://www.
who.int/csr/sars/country/en/) (last access: September 15, 2020). An explicit
shift was also observed for the SARS epidemic.
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FIGURE 2 | Daily number of referrals to hospitals and cumulative number of fatalities for the 2009 H1N1 epidemic in Istanbul, Turkey. The scatter in the number of
daily referral to hospitals indicates that the hospitalization rate varies during the epidemic. The asymmetry of the incidence curve is still observable. The fatalities shown
here are adjusted to at most 15 days after referral to the hospital (left panel). The duration of symptoms prior to hospitalization (light color) and the duration of
hospitalization prior to death (dark color) for the fatalities in Istanbul, Turkey, due to 2009 H1N1 epidemic (right panel).

FIGURE 3 | Graphs of total cases (TC) and removed individuals (R) for selected countries. The dataset of each country is collected according to published official
reports and available at the website http://www.worldometers.info/coronavirus/ (last access: June 28, 2020). Updated data are also available at the website http://
epikhas.khas.edu.tr/. The last data in this work were collected on the 16th of June 2020. Data cover the period January 22–June 28, 2020, and in the following, “Day 1”
corresponds to January 22, 2020.
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SEIR : S′ � −βSI,
E′ � βSI − ϵE,
I′ � ϵE − cI,
R′ � cI,

(2)

where 1/ϵ represents the mean exposed period. Note that we may
assume S + E + I + R � 1 by the use of appropriate normalization.

These two models are suitable for mathematical modeling of
seasonal diseases, but they fail to reproduce the time shift that was
observed in the modeling of the 2009 H1N1 epidemic in Istanbul,
Turkey [21], as shown in Figure 2. For COVID-19, a similar time
shift is observed between the curves of total cases and removed
individuals in China, South Korea, Iran, Turkey, Germany, and
Brazil as shown in Figure 3. Publicly accessible data that have been
released by the state offices of each country are used for this analysis.

In the literature, a similar time shift is also observed for
Spanish flu [19] and SARS epidemics. The graphs for the data
of these epidemics are shown in Figure 1. Weekly case and fatality
reports for Copenhagen, Denmark, in 1918–1919 are displayed in
Figure 1A. In this figure, it can clearly be seen that there is a time
shift between the peak of the infectious cases and the peak of
fatalities. Similarly, in Figure 1A–B, the time shift is also
observable between cumulative cases and cumulative fatalities.

In this study, we use multiple infectivity periods [13, 14] to
explain this delay that is unforeseen in the standard SIR
model. The approach of multiple infectious stages consists
of replacing the single infectious stage I with N + 1 substages
denoted by Ii, which is the density of individuals in the ith
infectious stage. Unlike the model in Ref. [14], each of these
stages may have different infectivity βi and a variable
infectious period 1/ci. In order to compare the solution
curves with the ones for the standard SIR and SEIR
models, we set

1
c0

+ 1
c1

+/ + 1
cN

� 1
c
.

The multistage SIR and SEIR epidemic models are defined by the
following systems:

Multistage SIR : S′ � −S(β0I0 + β1I1 +/ + βNIn),
I′0 � S(β0I0 + β1I1 +/ + βnIN) − c0I0,
I′1 � c0I0 − c1I1,
/ //
/ //

I′N � cN−1IN−1 − cNIN ,
R′ � cNIN ,

(3)

FIGURE 4 | Numerical solutions of classical SIR (1) and SEIR (2) models with R0 � 2.5 and 10. Here, ϵ and γ are chosen as 1/3 and 1/5 (D � 5), respectively. Time
shift does not occur in classical models.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5784554

Peker-Dobie et al. Time Shift in Epidemic Models

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Multistage SEIR : S′ � −S(β1I1 +/ + βNIN),
E′ � S(β1I1 +/ + βNIN) − ϵE,
I′1 � ϵE − c1I1,
I′2 � c1I1 − c2I2,
/ //
/ //
I′N � cN−1IN−1 − cNIN ,
R′ � cNIN .

(4)

The multistage SIR and SEIR systems with β0 � . . . � βn and c0 �
. . . � cn correspond to the choice of gamma-distributed
“Infection Period Distribution” (IPD) in the integral equation
formulation of the SIR model [14].

The linear parts of apparently different infectious stages for
i≥ 1 in the multistage SIR model and i≥ 2 in the multistage
SEIR model have a similar structure. We write the linear parts
of each equation above as a system and then rearrange and
rename as follows to keep the models as clear and simple as
possible

SJR : J � I0 + β1
β0
I1 +/ + βN

β0
IN ,

S′ � −β0SJ ,
I′0 � β0SJ − c0I0,

I′i � ci−1Ii−1 − ciIi, for i � 1, . . .N ,

R′ � cNIN ,

(5)

SEJR : J � I1 + β2
β1
I2/ + βN

β1
IN ,

S′ � −β1SJ ,
E′ � β1SJ − ϵE,
I′1 � ϵE − c1I1,

I′i � ci−1Ii−1 − ciIi, for i � 2, . . .N ,

R′ � cNIN .

(6)

Subsequently, the numerical evaluations of these two systems, SJR
and SEJR, defined above will be used for some of the structural

FIGURE 5 |Numerical solutions of the multistage SIR model for different stage numbers N � 5, 10, 30, and 60. Here, R0 � 2.5 and c � 0.2 × N. In the graphs,
* represents the location of the maximum value of J and o represents the location of the inflection point of R. Graphs show that there is a time shift between these
points.
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comparisons of the classical models and multistage models. A
MATLAB® ODE45 solver is used for all the numerical
evaluations. In typical cases, initial conditions are chosen so
that S(0) is close to 1, whereas E(0) and Ii(0) are close to
zero, and R(0) is chosen so that the sum of all variables is 1,
that is,

S(0) � 1 − 10− 4, I0(0) � 10− 4, Ii(0) � 0, i � 1, . . . .,N ,

R(0) � 0;
(7)

and for the SEJR model,

S(0) � 1 − 10− 4, E(0) � 5 × 10− 5, I1(0) � 5 × 10− 5, Ii(0) � 0,

i � 2, . . . .,N , R(0) � 0.

(8)

Numerical evaluations of the classical SIR and SEIR models are
made for specific epidemic parameters, and the results are given
in Figure 4. For the evaluations of the classical models, c and ϵ are
fixed as 1/5 and 1/3, respectively, whereas the value of R0 is
chosen to be 2.5 and 10, respectively. In all cases, the maximum of
the infectious stage and the inflection point of the removed stage
occur at the same point in time; hence, there is no time shift in
these classical models.

Numerical evaluations of the multistage SIR model are
repeated for various stage numbers. First, R0 is set as 2.5,
while the total number of stages, N, is given the values
5, 10, 30, and 60, and the corresponding graphs of the
solutions are shown in Figure 5. In these evaluations, ci is
chosen to be 0.2 × N , for i � 0, 1, . . . ,N . In Figure 5, the time
shift between the maximum point of the curve, representing the
sum of the infectious stages, J(t) and the inflection point of R(t)
can clearly be seen. As predicted, the system given by Eq. 5
confirms the delay and therefore seems adequate to explain the
time shift between infectious and removed stages observed in
Istanbul data [21]. Note that the time shifts for N � 10, 30, 60
seem to be equal but the one for N � 5 is smaller.

Similarly, numerical evaluations of the multistage SEIRmodel
are obtained for various stage numbers. First, R0 is set as five,
while the stage number N is given the values 5, 10, 30, and 60,
and the corresponding graphs of the solutions are shown in
Figure 6. In these evaluations, ϵ and ci are chosen to be 1/3 and
0.2 × N , respectively, for i � 1, . . . ,N . Figure 6 illustrates that
just like it is seen in the SJR system, there exists a time shift
between the maximum point of J and the inflection point of R
in the SEJR model, with characteristics similar to the ones for
the SIR model.

FIGURE 6 | Numerical solutions of the multistage SEIR model for different stage numbers N � 5, 10, 30, and 60. Here, R0 � 2.5, ε � 1/3, and c � 0.2 × N. In the
graphs, * represents the location of the maximum value of J and o represents the location of the inflection point of R. Graphs show that there is a time shift between these
points.
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3. NUMERICAL RESULTS FOR MODELS
WITH MULTIPLE INFECTIOUS STAGES

In this section, we investigate the dependency of the delay on
the epidemic parameters by numerical evaluations of system
Eq. 5. Graphs I(i(t) for N � 1, 2, 3, 4 for the SIR and SEIR
models are given in Figures 7 and 8, respectively. To analyze
the nature of the time shift for relatively large values of the
stage number, the graphs of the solutions for the same
epidemic parameters are obtained for N ranging from 2 to
16 in steps of two and the corresponding graphs are given in
Figure 9. As it can be seen from Figure 9, the solution curves
start to resemble as the stage number N increases. Finally, in
Figure 10, we present the dependency of the time shift on the
number of stages N, for 1≤N ≤ 150. Similar computations are
repeated for the SEIR model and the results are presented in
Figures 11, 12.

For the SIR model, to investigate the effect of the basic
reproduction number R0 and the infectious period 1/c on the
infectious dynamics and the resulting delay, system (5) is solved
with the initial conditions given by Eq. 7 for some parameter
values. To this end, the pair (R0, 1/c) is chosen (2.5, 5), (5, 5),
(10, 5), (2.5, 10), (5, 10), (10, 10), (2.5, 20), (5, 20), and (10, 20),
respectively, and the numerical evaluations for various infectious
stages N are shown in Figure 10. It can be observed from this

figure that the delay is almost half of the infectious period. This
fact can also be seen in Figure 9 where the time value of the
maximum of J/N (normalized J) in time is located at the middle
of time values of the maximum of the first infectious stage and the
maximum of the last infectious stage. Comparison of panels of
Figure 10 shows that the change in the reproduction number R0

for a fixed infection period has no effect on the delay. On the
other hand, the delay depends on the infection period; in fact, it is
approximately half of it for large N.

The same analysis is repeated for the multistage SEIR model.
The system defined by Eq. 6 is solved for the same epidemic
parameters and initial conditions as above and with ε � 1/3, and
the resulting graphs are given in Figure 11. As for the SIR model,
the solution curves start to resemble for large N and the peak of
J(t) is located at the midpoint of the delay interval.

To illustrate the dependency of the delay on the system
parameters of the SEIR model, the pairs (ε, c) are chosen as
(1/3, 1/3)(1/3, (1/5), (1/5, 1/3), (1/5, 1/5), and variations of the
delay for each of these cases are presented in Figures 12A–D, for
R0 � 5 and R0 � 7.5. An analysis of these graphs yields that as N
increases, the delay converges to a value. Moreover, it could easily
be observed that the delay is independent of ϵ and R0, but yet it is
influenced by 1/c (i.e., infectious period). Note that the delay for
the multistage SEIR model is shorter than the delay observed in
the multistage SIR model.

FIGURE 7 | Graphs of the independent infectious stages I0 , . . . IN from numerical solutions of the multistage SIR model (5). Here, R0 � 2.5 and c � 0.2 × N. In the
graphs, vertical lines indicate the position of maximum points of the independent infectious stages. The distance between these vertical lines is approximately 1/c.
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4. ESTIMATION OF THE DELAY

In this section, we use a quadratic approximation to each Ii(t)
around the peak of Ii−1(t) to show that within the validity of the
quadratic approximation, the delays between successive peaks are 1/ci
.

Let ti be the time where each Ii assumes its maximum and 1/ci be
the corresponding infectious period for i � 0, 1, . . .N . To determine
the distance between the points ti where each substage Ii assumes its
maximum value, we use quadratic approximation of the Taylor
series expansion of Ii at the point t � ti−1 where,

Ii(t) � Ii(ti−1) + I′i(ti−1)(t − ti−1) + 1
2
I′′i (ti−1)(t − ti−1)2, (9)

for i≥ 1. Differentiating

I′i(t) � I′i(ti−1) + I′′i (ti−1)(t − ti−1) (10)

and then substituting t � ti in Eq. 10 and using the fact that
I′i(ti) � 0 since Ii reaches its maximum at ti, one obtains

ti − ti−1 � −I
′
i(ti−1)
I′′i (ti−1)

. (11)

The multistage SIR model defined by the equations in Eq. 5
suggests that for i≥ 1,

I′i(t) � ci−1Ii−1(t) − ciIi(t). (12)

Differentiating Eq. 12 yields

I′′i (t) � ci−1I
′
i−1(t) − ciI

′
i(t). (13)

By considering the fact that I′i−1(ti−1) � 0 since Ii−1 assumes its

maximum value at ti−1, one gets the following by replacing t � ti−1
in equation

I′′i−1(ti−1) � −ciI′i(ti−1).
Substitution of the equation above in Eq. 11 gives the
approximate distance formula as follows:

ti − ti−1 � 1
ci
. (14)

Therefore, the distance between any ti is ti − tj � ∑
k�j+1

i
1
ck
.

Results obtained by the numerical evaluations are compatible
with Eq. 14. To observe the distance between the maximum points
of the independent infectious stages, solutions of the multistage SIR
model with respect to various infectious periods are chosen. In this

FIGURE 8 | Graphs of the independent infectious stages I1 , . . . IN from numerical solutions of the multistage SEIR model (6). Here, R0 � 2.5, ε � 1/3, and
c � 0.2 × N. In the graphs, vertical lines indicate the position of maximum points of the independent infectious stages. The distance between these vertical lines is
approximately 1/c.
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respect, the basic reproduction numbers R0 and ci (i.e., duration is
5) are set as 2.5 and 0.2 × N , respectively, and the related graphs of
the solutions for various stage numbers (N � 1, 2, 3, 4) are given in
Figure 7. Comparison of graphs in Figure 7 reveals that the value of
the difference of the points where successive stages reach their
maximum is approximately 1/ci.

It should be emphasized that Eq. 14 is also valid for the
multistage SEIR model. The distance between the maximum
points of the independent infectious stages including the E stage
is approximately 1/ci. Since the proof is the same as in the SIR case,
we do not repeat the derivation of Eq. 14 again to avoid repetition.
However, to observe the distance between the maximum points of

the infectious stages numerically, the basic reproduction numbers
R0, ϵ, and ci (i.e., duration is 5) are set as 5, 1/3, and 0.2 × N . Then,
the SEIR model is solved for N � 1, 2, 3, and 4, and the related
graphs are given in Figure 8. As in the case of the SIR model, it is
observed that the distance between the maxima is found to be
approximately 1/ci, too.

5. CONCLUSION

Epidemic data display a time shift between the peaks of infectious
cases and fatalities. This time shift is not foreseen by the ordinary

FIGURE 9 | Change of the position of maximum of J/N (normalized J) in time with respect to the number of stages N for the multistage SIR model. “o”
indicates the position of the maxima of J/N (thick curves). Vertical lines represent the position of maximum points of the first stage, J/N, and the last stage,
respectively.
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FIGURE 10 | Variations of time shift (delay) with respect to the number of stages N for R0 � 2.5, 5, and 10; D � 5, 10, and 20 in the multistage SIR model. For all
cases, the time shift becomes stable at a constant value after a critical stage number N.

FIGURE 11 | Change of the position of maximum of J/N (normalized J) in time with respect to the number of stages N for the multistage SEIR model. “o” indicates
the position of the maxima of J/N (thick curves). Vertical lines represent the position of maximum points of the first stage, J/N, and the last stage, respectively.
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differential equations for the SIR and SEIR models since in both
of them, the derivative of R(t) is proportional to I(t).
Nevertheless, this can be remediated by using gamma
distributions instead of exponential distributions for the
infectious period distribution (IPD) in the original SIR model
of Refs. [4, 10] given in terms of integral equations [14], leading to
a multistage model.

In this article, we propose a generalization of these multistage
models by allowing the parameters to be unequal in different
stages. We showed that within the validity of a quadratic
approximation to Ii(t), the distance between the points
where each infectious stage reaches its maximum is
approximately 1/ci.

We solved the multistage models for a range of epidemic
parameters, and we have seen that the solution curves reveal the
time shift. While the delay varies for relatively small stage
numbers, it is observed that the delay becomes nearly stable as
the number of stages increases, and it is independent of the basic

reproduction number. This fact supports the validity of the
quadratic approximation and shows that the delay
phenomenon observed in the infectious diseases defined by the
epidemic models SIR and SEIR can be successfully explained by
the multistage forms of these models.

In addition to a theoretical contribution, the existence and the
estimation of the time shift between the progression of the
infectious cases and the fatalities have a practical importance,
in the sense that, in order to take timely actions, the severity of the
epidemic should be measured in terms of the increase in the
number of infectious cases.

Finally, we note that the importance of the effects of
quarantine is realized during the COVID-19 pandemic. In
the literature, there are two basic approaches, one of which
adds a compartment to the model as in Ref. [22] and the other
adds a function β/(c + Q(t)), where Q(t) is a time-dependent
rate as in Ref. [23] and has the effect of shortening the
duration of the infection period. This may explain the

FIGURE 12 | Variation of time shift for R0 � 5 and 7.5 in the multistage SEIR model. Here, ϵ � 1/3, 1/5, and D � 3, 5 are taken. For each case, delay becomes
stable at a constant value after a critical stage number N.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 57845511

Peker-Dobie et al. Time Shift in Epidemic Models

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


relatively shorter delays in China (compared with South
Korea) where strict quarantine was in effect.
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