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Different qualities of radiation are known to cause different biological effects at the same
absorbed dose. Enhancements of the biological effectiveness are a direct consequence of
the energy deposition clustering at the scales of DNA molecule and cell nucleus whilst
absorbed dose is a macroscopic averaged quantity which does not take into account
heterogeneities at the nanometer andmicrometer scales. Microdosimetry aims tomeasure
radiation quality at cellular or sub-cellular levels trying to increase the understanding of
radiation damage mechanisms and effects. Existing microdosimeters rely on the well-
established gas-based detectors or the more recent solid-state devices. They provide
specific energy z spectra and other derived quantities as lineal energy (y) spectra assessed
at the micrometer level. The interpretation of the radio-biological experimental data in the
framework of different models has raised interest and various investigations have been
performed to link in vitro and in vivo radiobiological outcomes with the observed
microdosimetric data. A review of the major models based on experimental
microdosimetry, with a particular focus on ion beam therapy applications and an
emphasis on the microdosimetric kinetic model (MKM), will be presented in this work,
enlightening the advantages of each one in terms of accuracy, initial assumptions, and
agreement with experimental data. The MKM has been used to predict different kinds of
radiobiological quantities such as the relative biological effects for cell inactivation or the
oxygen enhancement ratio. Recent developments of the MKM will be also presented,
including new non-Poissonian correction approaches for high linear energy transfer
radiation, the inclusion of partial repair effects for fractionation studies, and the
extension of the model to account for non-targeted effects. We will also explore
developments for improving the models by including track structure and the spatial
damage correlation information, by using the full fluence spectrum and by better
accounting for the energy-deposition fluctuations at the intra- and inter-cellular level.
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1 INTRODUCTION

Ion beam therapy is becoming a well-established clinical option
for tumor treatment, particularly advantageous for the highly
localized dose deposition and for the radiobiological properties
[1]. While the first feature is obvious, for the macroscopic energy
deposition profile, characterized by the Bragg peak in depth, and
also often by a sharper lateral penumbra, due to the small multiple
Coulomb scattering of fast and heavy particles, the second one is
related to microscopic features of the ionization pattern induced
by particle radiation, for different charge and energy, down to the
molecular scale of the biological target (DNA). The accurate
prediction of relative biological effectiveness (RBE) in different
positions of an irradiating field is a fundamental requirement, in
order to correctly estimate treatment responses [2]. Moreover,
RBE depends on several factors, of different nature, biological,
patient, and treatment-specific, because of the complexity of the
mechanisms of action underlying tumor and normal tissue
responses in radiation therapy. A numbers of models have
been presented, historically, to predict RBE, attempting to
account for such effects. Among these models, the following
four main categories can be identified:

(1) Purely phenomenological models: NIRS1 mixed beam
approach [3–6], mainly used for carbon ion beams.

(2) Dose-averaged LET (LETD)-based models that exploit a
linear relationship between the RBE and the LETD [7–10],
used exclusively for proton beams.

(3) Local effect model (LEM)-based models [11–17], mainly
used for heavier ions, such as carbon ions;

(4) More general models based on microdosimetry concepts:

a. Models based on the microdosimetric kinetic model
(MKM), proposed initially by Hawkins in 1994 [18]
and then explored and extended till nowadays [19–23];

b. Other models, such as the repair–misrepair–fixation
RMF model [24–26] and phenomenological models
based on RBE-weighting functions [27–33].

All the different models present different advantages and
limitations. While RBE is not measurable with physical
methods, the fourth category allows a strong link with physics
measurements through different types of microdosimeters. The
present paper is focused on reviewing the modeling of biological
effect of protons and other ions used in ion beam therapy based on
the microdosimetry concepts with particular emphasis to the
MKM, a widely used model to predict the cell survival and the
RBE by using microdosimetric data. This topical review is
organized as follows: the fundamental microdosimetric
quantities [34, 35], required for addressing the problem, are
defined in Section 2 together with a focus on relevant
experimental quantities. Then, the original formulation of MKM
is presented in Section 3with its theoretical bases (Section 3.1) and
followed by the main extensions such as non-Poisson and

saturation corrections [19, 20] (Section 3.5), the incorporation
of a track model [21], a variable β parameter deriving from the
effects of the lesion yield fluctuations in the cell nucleus and
domains, [22, 23] in Section 3.8, and the generalization of the
model in case of a time structured irradiation introduced in Section
3.7. The available experimental in vitro and in vivo validations are
also reported for each extensions. Figure 1 represents a conceptual
scheme of the main MKM formulations and extensions presented
in this paper. Further, an example of treatment planning systems
(TPS) implementation of the MKM [36] will be given in Section
3.6. Other applications of the MKM, such as the oxygen
enhancement ratio (OER) modeling [37, 38] and the
incorporation of non-targeted effects [39] will be described in
Section 3.9. Finally, othermodels based onmicrodosimetry as well,
i.e., the distribution function by Loncol et al. [40] and the RMF
model [24, 25], will be presented in Section 4.

2 MICRODOSIMETRIC DISTRIBUTIONS
AND THEIR MOMENTS

The main microdosimetric quantities of interest are the
specific energy z and lineal energy y [34, 41–43]. The
specific energy z is the ratio between energy imparted by
ionizing radiation ε and the mass m of the matter that has
received the radiation, that is,

z � ε

m
. (1)

The energy imparted ε may be due to one or more energy
deposition events, i.e., due to one or more statistically
independent particle tracks. The lineal energy y is the ratio
between energy imparted to the matter in a volume of interest
by a single energy-deposition event, ε1, and the mean chord
length in that volume, l, that is,

y � ε1

l
. (2)

The stochastic nature of ε and ε1 implies that also z and y are
stochastic quantities. In the following, given a probability density
distribution f (z), we will assume that the probability that a
specific energy z is produced in the interval [za, zb] is given by∫​zb

za

f (z)dz. (3)

When dealing with specific energy spectra, it is important to
distinguish between the single-event distribution and the multi-
event distribution. It is worth stressing that, although
experimental microdosimetry determines single event
quantities such as the ε1 or the lineal energy y, the starting
point for models are multi-event quantities such as the specific
energy z and its distribution.

The single-event distribution, denoted by f1(z), is the
probability distribution of z conditioned to the fact that
precisely a single-event happened. The single-event
distribution is the building block to define the more-general
n-event distribution fn(z) and the multi-event distribution f (z).1National Institute of Radiological Sciences (NIRS, Chiba, Japan).
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The n-event distribution fn(z), that is, the probability
distribution conditioned to the fact that precisely n events
occurred, can be computed as the n-fold convolution of the
single-event distribution f1(d), as follows:

f2(z) :� ∫​ ∞
0
f1(z′)f1(z − z′)dz′,

. . . ,

fn(z) :� ∫​ ∞
0
f1(z′)fn−1(z − z′)dz′,

(4)

see [42] for details.
Using the n-event distributions defined above, we can define

the general multi-event distribution as

f (z; λn) :�∑∞
n�0

p(n; λn)fn(z), (5)

with p(n; λn) an integer valued probability distribution with
average λn, meaning that

λn :�∑∞
n�0

np(n; λn).

The multi–event distribution f (z; λn) plays a crucial role in
the development of microdosimetric-based radiobiological
models. It is worth noticing that f (z; λn) depends on the

number of events n only through p(n; λn), which is
independent of specific energy z. Also, given p(n; λn), the
single-event distribution f1 completely determines the multi-
event distribution f (z; λn).

Typically, since events are statistically independent, p(n; λn) is
assumed to be a Poisson distribution with mean value λn, so that
Eq. (5) becomes

f (z; λn) :�∑∞
n�0

e−λn
λnn
n!

fn(z). (6)

Denoting by 〈z〉 the first moment of the distribution f (z; λn),
formally

〈z〉 :� ∫​∞

0
zf (z; λn)dz, (7)

it follows that the following relation holds true,

〈z〉 � λnzF , (8)

being zF the frequency-average of the single-event specific energy
defined as

zF :� ∫​ ∞
0
zf1(z)dz, (9)

FIGURE 1 | Conceptual map of the evolution of some of the microdosimetric kinetic models (blue) considered in this review. Some of these models are currently
used for RBE and RBE-weighted dose evaluations in TPS applications (dark cyan). Solid lines refer to the consequentialism of the corrections and extensions while the
dotted lines mark the theoretical bases of the considered formulation (light gray color).
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see [42], Chapter II. In microdosimetry, 〈z〉 is often identified
with the absorbed dose D; we shall use this identification in the
following of the paper.

Above argument, with particular reference to Eq. (8), yields
the form for the average value λn of the multi–event distribution
to be

λn � D
zF
, (10)

see [34, 42]. Again, in the following, if not differently specified, we
will consider λn to be defined as in Eq. (10).

Further computations, see [34, 42], shows that regarding the
second moment it holds∫​∞

0
z2f (z; λn)dz � D2 + zDD , (11)

with zD the dose-average of the single-event specific energy

zD :� 1
zF
∫​∞

0
z2f1(z)dz �

∫​∞
0
z2f1(z)dz∫​∞

0
zf1(z)dz

. (12)

Notation and computations performed in the current section
will be extensively used through the work to formally derive
analytical solution for some relevant biological endpoints,
typically the cell–survival probability, starting from a
mathematical model for DNA damage.

In the following, we assume that a cell nucleus is divided into
Nd domains, so that the above microdosimetric distributions will
be used both on single-domain and on the whole cell nucleus. In
particular, the superscript (c, d) will denote that the
corresponding quantity, such as a microdosimetric distribution
or a corresponding average value, is considered on the domain d
of the cell c. Further, the subscript n denotes that microdosimetric
distributions are on the cell-nucleus, whereas if no subindex is
specified, it is assumed that the corresponding distribution is on
the domain.

In order to make computations less heavy as possible,
whenever we will say that we average a function g(z) over all
domains of a cell nucleus, denoted for short by 〈g〉(c)d , it formally
means

〈g〉(c)d :� 1
Nd
∑Nd

d�1
∫​∞

0
g(z)f (c,d)(z; zn) dz , (13)

where f (c,d)(z; zn) denotes the probability density of z in a domain
for cell with nucleus specific energy zn. Similarly, by averaging
over all cell population function gn(z) defined over a nucleus,
denoted by 〈gn〉c, we mean

〈gn〉c :�
1
Nc
∑Nc

c�1
∫​∞

0
gn(z)f (c)n (z;D)), (14)

whereNc is the total number of the considered cells and f (c)n (z;D)
denotes the probability density of z in a nucleus for a population
of cells irradiated with macroscopic dose D. Notice that in
practical computations of an irradiated population of cells,
such as those described in the immediate next sections, the

probability densities are reasonably considered equals among
different cells and domains. In this case, we will drop the
indexes c and d and the sums in Eqs (13) and (14) can be
carried out implicitly:

〈g〉d � ∫​∞

0
g(z)f (z; zn) dz, (15)

〈gn〉c � ∫ ​∞

0
gn(z)fn(z;D))dz. (16)

2.1 Experimental Quantities
In order to account for the different densities and sizes of the sites
of radiobiological interests. (e.g., the cell nucleus and the
domain), the specific energy z used in the models as described
in the following sections can be obtained experimentally through
the lineal energy y defined in Eq. (2).

The lineal energy can be measured through a microdosimeter
detector, where the most frequently used are the tissue-equivalent
proportional counters (TEPC) [44–47]; analogous information
can be achieved also by solid-state detectors [48, 49] and gas
electron multiplier (GEM) detectors [50, 51], recently
investigated for their use in microdosimetric measurements
[52, 53]. The relationship between l of the tissue-equivalent
volume of the microdosimeter, from which the lineal energy is
calculated, and the physical mean chord of the detector, ldet, is
given approximately by

l � ldet
ρdet
ρ
, (17)

where ρ and ρdet are the densities of the tissue and the detector
material, respectively. For more general conversion methods of
microdosimetric spectra between different materials and shapes
see, for example, [54, 55], for an MC-based method.

The theoretical single-event imparted energy, z1, can be
estimated from the lineal energy y as

z1 � ylt/mt , (18)

where lt , mt are the mean chord length and the mass of the
biological site of interest, respectively. The subscript t is used in
this context to indicate the tissue in terms of material, mass, and
geometry of the biological site. The single-event dose-averaged
specific energy zD can be obtained from the mean-dose lineal
energy yD as

zD � lt
mtyF

∫​∞

0
y2f (y) dy � lt

mt
yD, (19)

where yF is the frequency-average lineal energy.
In the case of a spherical volume with density ρt � 1 g/cm3, the

specific energy z1 is linked to the lineal energy y [56] as

z1 (Gy) � 0.204 × y (keV/μm)[2rdet (μm)]2, (20)

where the constant factor is due to the Gy-keV conversion (1 Gy�
1.6 × 10−16 keV) and to the consideration that the mean chord
length in the case of a sphere is l � 4/3rdet .
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3 MICRODOSIMETRIC KINETIC MODEL

The microdosimetric kinetic (KM) model has been developed by
Roland B. Hawkins [18] by taking inspiration from the theory of
dual radiation action (TDRA) [57, 58], the repair-misrepair
model [59, 60], and the lethal-potentially lethal (LPL) model
[61, 62]. In the following sections, after a brief description of the
historical bases of the model and the details of its original
formulation, we compare and contrast the more recent
developments of the model.

3.1 Historical Bases
This section presents a brief explanation of the theoretical
formulations on which the considered models are based on.
In the theory of dual radiation action (TDRA), the concept of
dual radiation action is introduced as a process in which
cellular lesions are produced as a result of the interaction of
pairs of sublesions that are molecular alterations produced by
ionizing radiation that in turn results in an observable
cellular effect such as a chromosome aberration or cell
reproductive death. The TDRA in its original formulation
developed for neutron irradiation and then further
generalized [57] assumes that, after the cell irradiation, the
number of lethal lesions ϵ in a small volume of the cell
nucleus, defined site, is proportional to the square of the
specific energy z in that site.

ϵ(z) � kz2. (21)

By evaluating the expectation value of z2 (Eq. 11), it is possible
to derive a linear-quadratic relation between ϵ and the dose:

ϵ(D) � k〈z2〉 � k(zDD + D2) � k(zD + D)D. (22)

The interpretation of Eq. (22) is that the number of
sublesions is proportional to D and the mean energy
concentration around the individual sublesions is proportional
to (zD + D). Within the bracket, zD represents the energy
concentration produced by the same particle track (intratrack
action), and D represents the contribution from other particle
tracks (intertrack action). A problem inEq. (22) arise when one has
to account the possibility of a non-vanishing linear term in the dose
(observable for low doses) even for sparsely ionizing radiation, such
as photons, since the term zD is expected to be negligible for such
radiation. This is obtained by generalizing Eq. (21) by including an
additional linear term:

ϵ(z) � k(λ0z + z2), (23

from which one obtains the dose dependence:

ϵ(D) � k((zD + λ0)D + D2). (24)

An important additional assumption that drives the dual
action process is that sublesions can be produced throughout
the nucleus of the cell but can combine with appreciable
probability only over distances smaller than the dimension of
the nucleus. This effect of sublesion proximity on the formation
of lethal lesions was incorporated in the TDRA by the concept of
the sites within which such sublesions can combine. In a

generalization of the TDRA [58], the interaction probability of
sublesions has been also further refined using an explicit function
of their separation.

MKM inherits the concept of damage time evolution for the
repair or conversion into a lethal irreparable lesion (chromosome
aberration) [18, 63, 64] of the primary potentially lethal radiation
induced lesions in DNA from the repair–misrepair (RMR) model,
developed by Tobias et al. to interpret radiobiological experiments
with heavy ions [59, 60]. The RMRmodel considers that the amount
of DSBs in the DNA, U(t), is linearly proportional to the radiation
dose-rate _D(t) � dD(t)/dt; a number of DSBs evolve in lethal
lesions, L(t), while most breaks are successfully repaired with a
first-order process. The model includes also the possibility of a
misrepair as a second-order process since it involves two broken
DNA strands to form a chromosomal aberration. The idea of
misrepair was initially applied by Lea and Catcheside [65] to
describe the formation of chromosome aberrations in Tradescantia.

These assumptions yield the following kinetic equations:

dU
dt

� δ _D︸�︷︷�︸
damage

− λU︸�︷︷�︸
repair

− κU2︸�︷︷�︸
misrepair

,

dL
dt

� (1 − ϕ)λU︸����︷︷����︸
unsuccessful repair

+ σκU2︸��︷︷��︸
lethal misrepair

,
(25)

where δ is the number of DSBs induced per Gy of radiation, λ is
the rate at which DSBs are repaired, κ is the rate constant for
second-order DSB interaction, and ϕ is the fraction of simple
repairs that are successful. The fraction of misrepairs that result in
a lethal lesion is σ.

Like the RMR model, the lethal-potentially lethal (LPL)
model [61, 62] accounts that the damages caused by
ionizing radiation at the molecular level and contributing to
cell death can be separated into two broad classes (i) that which
has the potential of being lethal, P(t) (by fixing or binary
misrepair) but also can be repaired correctly and (ii) that
which is lethal ab initio and cannot be repaired correctly, L(t).
Both lesions are linearly proportional to the radiation dose-
rate [66], and after a prescribed time, the remaining potentially
lethal lesions become lethal as described in the following
equations:

dP
dt

� δη _D︸�︷︷�︸
reparable damage

− λP︸�︷︷�︸
repair

− κP2︸�︷︷�︸
misrepair

,

dL
dt

� δ(1 − η) _D︸����︷︷����︸
irreparable damage

+ κP2︸�︷︷�︸
lethal misrepair

,

(26)

where η is the amount of radiation induced DSBs that are
reparable, while all the other parameters correspond in
meaning to the ones in Eq. (25).

The solutions of the RMR and the LPL models are similar.
However, in contrast to the RMR, the LPL predicts that the
probability of the interaction between potentially lethal lesions is
strongly dependent to the dose-rate and becomes negligible for
low dose-rates, where only the channel of the direct creation of
lethal events through δ dominate.
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3.2 Original Formulation and General
Considerations
The MKM computes the cell survival in a way that emphasizes
subcellular microdosimetry while abstracting the specific
description and modeling of the radiation-induced damage to
the cell by using the general categories of lethal and potentially
lethal lesions as defined in [61]. More specifically, the MKM is
based on the following assumptions [18, 67, 68]:

(1) The cell nucleus is the sensitive target and it is divided intoNd

sub-units, called domains, similar to the sites of TDRA. In
general, domains have a variety of shapes that fit together to
fill the nucleus. In the case of mammalian cells, the domain
diameter is usually considered to be in the range
0.5≤ dd ≤ 1.0 μm and the number of domains per nucleus
is in the order of few hundreds.

(2) Radiation can create two different types of DNA damages,
called of type I and II.

(3) Type I lesions represent damage that cannot be repaired, for
this reason will be also called lethal lesion. On the contrary,
type II lesions, also called sub-lethal or potentially-lethal
lesions, can be repaired or converted into a lethal lesion either
by spontaneous conversion or by binary combination with
another sub-lethal lesion.

(4) Type I and II lesions are confined to the domain in which
they are created. This assumption defines a sub-nuclear
correlation length among lesions in a way that the
interaction of two lesions can happen only if they are in
close spatial proximity. Specifically, a pair of type II lesions
can combine to form a type I lesion only if they are created in
the same domain; a remark on this assumption is needed.
The idea behind the division of a cell into subvolumes arises
because couples of type II lesions are all likely to happen in a
short time period, even for lesions that are far away in the
cell-nucleus. In order to overcome such a problem, a possible
approach is to divide the nucleus into smaller subdomains so
that interactions might happen solely inside a single volume,
as it is assumed in the MKM. It is important to stress the key
role that the choice of such domains plays. In fact, if too big
domains imply that far away lesions can interact, on the
contrary, too small domains yield that the overall number of
lesions inside a single domain is so small that couple
interactions are less likely to happen. Therefore, the choice
of the best possible division of the cell nucleus into smaller
domain is a key aspect of the model and different choices of
domains can in principle lead to different results. A possible
solution to reduce the sensitivity of the model from the
arbitrary choice of the domains is to assume that
interactions are possible also within different domains,
allowing therefore lesions to move from one domain to
another or pairs of lesions to interact if in adjacent domains.

(5) The initial number of type I and II lesions in a single domain
d is proportional to the specific energy z in the domain.

If above assumptions hold, then the following further assumption
is made regarding the reproductive survival of the cell:

(6) If at least one domain contains a lethal lesion, then the whole
cell is “dead.”

It has to be noted that, while theMKM assumptions reported in
this section are general, in many studies [69, 70], the lethal lesions
are intended to represent a specific complex DNA damage (e.g.,
lethal chromosome aberrations) that cannot be repaired, whereas
the creation of sub-lethal lesions are explicitly associated to the
induction of double-strand breaks (DSB) that can be repaired.

Following the MKM notation, we denote by x(c,d,z)I (t) and
x(c,d,z)II (t) the time-dependent average number of type I and type
II lesions for a cell-domain (c, d) caused by an acute dose z(c,d) at
t � 0 deposited in the cell c and domain d. Starting from the
concept, introduced in the TDRA, that a cell experiences a
randomly varying dose in a microscopic volume [34, 41], the
microscopic specific energy z(c,d) is considered as a random
variable with 〈〈z(c,d)〉d〉c � D, the macroscopic dose
experienced by the cell population.

Type II lesions are assumed that can be repaired with a
constant repairing rate r or can be converted to irreparable
lesions through a first order process with constant rate a, or at
the second order, representing pairwise combinations, with
constant rate b. The average number of type I and II lesions at
time 0 is proportional to the amount of specific energy z(c,d) with
factors λ and κ. These assumptions formally define the following
set of coupled ODE similar in concept to Eq. (25):⎧⎪⎨⎪⎩ _x(c,d,z)I � ax(c,d,z)II + b(x(c,d,z)II )2,

_x(c,d,z)II � −(a + r)x(c,d,z)II − 2b(x(c,d,z)II )2, (27)

subject to the initial average number of lesions

x(c,d,z)I (0) � λz(c,d) , x(c,d,z)II (0) � κz(c,d). (28)

In the case of ion radiation, typically the rate of pairwise
combination between type II lesions is negligible with respect to
the first order evaluation of xII for low dose [67], that is,

2b(x(c,d,z)II )2 ≪ (a + r)x(c,d,z)II , (29)

so that the time-evolution of the average number of type II lesion
can be rewritten as

_x(c,d,z)II � −(a + r)x(c,d,z)II . (30)

The solution to Eq. (30) can be seen to be

x(c,d,z)II (t) � κz(c,d)e−(a+r)t . (31)

Substituting Eq. (31) into the kinetic Eq. (27) and integrating
x(c,d,z)II with respect to time, it follows that

x(c,d,z)I (t) � λz(c,d) + aκz(c,d)(1 − e− (a+r)t

a + r
)

+ bκ2(z(c,d))2(1 − e−2(a+r)t

2(a + r) ). (32)

An example of the temporal evolution of lesions in a cell is
depicted in Figure 2.
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It is important to remark that the exponential decay in Eq. (32)
derives from the assumption of first order repair kinetics and that it
could likely represents an approximation of more complex repair
kinetics present in the real cell [72–75]. Postulating that the total
number of lesions xI(t) + xII(t) ∼ NDSB(t) describes specifically the
number of double strand breaks (DSBs) in theDNA, the repair kinetics
represented inEq. (32) can be verified throughH2AXphosphorylation
mapping experiments (γ-H2AX) [76, 77]. In the case of high-LET
particle irradiation, such as carbon ions, the presence of a plateau
(offset) in the observed NDSB(t) [75, 78, 79] suggests the presence of
irreparable complex clustered damage that can be related directly to the
parameter λ of the kinetic equations and hence to the linear parameter
α0 of the macroscopic cell survival LQ formulation that will be
introduced in the following (see Eqs 35 and 39).

In order to connect the above explicit solution of Eqs (31) and
(32), i.e., the average number of type I and II lesions given a
certain energy deposition z(c,d), to the survival probability, one
more fundamental assumption must be made:

(7) The lethal lesion distribution given a specific energy z follows
a Poisson distribution.

Under the Poisson distribution assumptions stated above, the
probability that the domain d does not contain a lethal lesion at time
t→∞ when exposed to the specific energy z(c,d), denoted by
s(c,d)(z(c,d)), can be computed as the probability that the random
outcomeof aPoisson randomvariable is null. Therefore, s(c,d) is givenby

s(c,d)(z(c,d)) � e−limt→∞x(c,d,z)I (t). (33)

Using Eq. (32), it can be seen that the average number of lethal
lesion given z(c,d) as t→∞ can be computed as

lim
t→∞

x(c,d,z)I (t) � (λ + aκ
a + r

)z(c,d) + bκ2

2(a + r)(z(c,d))2, (34)

so that the log-survival for the domain d is given by

log s(c,d)(z(c,d)) � −Az(c,d) − B(z(c,d))2, (35)

with A and B defined as

A � (λ + aκ
a + r

), B � bκ2

2(a + r). (36)

We remark that these constants are independent of the
domain d and specific energy z(c,d) in the domain d.

Indicating with S(c)n (z(c)n ) the probability of the reproductive
survival of the cell c that has received exactly a specific energy z(c)n
in the nucleus, the log-survival of this quantity,
−log S(c)n (zn) � x(c)I,n(zn), represents the expected number of
lethal lesions in the whole cell nucleus and can be therefore
evaluated by summing of the single-domain log-survival
−log s(c,d)(z) � x(c,d)I (z) over all the domains of the cell or,
equivalently, by formally using the average of this quantity
over the domains. Assuming that the probability density
function of specific energy is the same over all domains and
cell, we can drop the index c and d and use Eq. (15) to write

log Sn(zn) :� −xI,n(zn)
� −Nd〈xI(z)〉d � −Nd〈log s(z)〉d
� −Nd(A〈z〉d + B〈z2〉d)
� −NdA∫​ ∞

0
zf (z; zn) dz − NdB∫​ ∞

0
z2f (z; zn) dz,

(37)

where f (z; zn) denotes the probability density of z in a domain for
a cell with a mean specific energy in the nucleus zn. In particular,
as shown in Section 2, the following holds:

FIGURE 2 | Time evolution of xI and xII damages for a single instantaneous irradiation as described by Eqs (31) and (32), respectively (A). Generalization of the
temporal evolution for any time structured irradiation as describe in Sections 3.7 and 3.8.1. The dotted vertical lines represent the energy deposition events in the cell
nucleus due to the passage of ionizing particles (B). Figure from [71].
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zn � 〈z〉d � ∫​∞

0
zf (z; zn)dz. (38)

Using Eqs (11) and (12) derived in Section 2, the log survival
in Eq. (37) can be written as

log Sn(zn) � −(α0 + zDβ0)zn − β0(zn)2, (39)

with α0 :� NdA and β0 :� NdB. Also, zD is the dose-averaged z per
event in a domain, obtained from Eq. (12) applied to the domain
(compare for reference Eq. 24 of the TDRA).

Notice that in Eq. (37), we have used the notation f (z; zn) to
denote the multi-event distribution, rather than f (z; λn), as done
in Section 2. This is due to the fact that, since the following
relation holds true,

λn � zn
zF
, (40)

we have preferred to specify the dependence upon themulti-event
distribution average.

In order to obtain the cell survival S(D) for a population of
cells irradiated with macroscopic dose D, the quantity Sn(zn)
defined in Eq. (37) should be averaged accounting for the
distribution of the specific energy zn over the cell population.
In terms of the logarithm of the cell population survival, logS,
under again the assumption that all the cells have the same
probability distribution of specific energy zn, this can be written as

log S(D) :� log〈Sn(zn)〉c
� log(∫​∞

0
Sn(zn)fn(zn;D) dzn), (41)

where similar to above, we have denoted by fn(zn;D) the
probability density of zn for a macroscopic absorbed dose D
over the cell population, i.e.,

D � 〈zn〉c � ∫ ​∞

0
znfn(zn;D) dzn. (42)

We remark that Eq. (41) is fundamentally different from Eq.
(37) since it considers the average of the argument of the logarithm,
whereas in Eq. (37), the average of the logarithm has been taken.
This basically indicates that, due to the stochastic nature of zn, the
distribution of lethal lesions log Sn(zn) over the cell population is in
general non-Poisson and hence that the log of the survival cannot
be directly related to the average number of lethal lesions per cell,
log S(D)≠ − 〈xI,n(zn)〉c. However, provided that the variance of
zn is small, a Poisson approximation is assumed and the same
procedure used to obtain Eq. (37) can be used. In this
approximation, Eq. (41) can be written as follows:

log S(D) � log〈Sn(zn)〉c
≈ − 〈xI,n(zn)〉c � 〈log Sn(zn)〉c
� ∫​∞

0
log(Sn(zn))fn(zn;D) dzn

� −(α0 + (zD + zn,D)β0)D − β0D
2,

(43)

with zn,D the dose-averaged zn in the nucleus per event. All the
quantities zn,D, zD, and zn ≈ 〈zn〉c � D are assumed to be the same
for each cell or domain. All other notations are used as previously
introduced. Since the size of the domain is usually much smaller

than the size of the nucleus, it holds that zn,D ≪ zD (see [67]) so
that we eventually obtain

log S � −αPD − βD2, (44)

with

αP :� α0 + zDβ0, β :� β0. (45)

where the subscript P indicates that the relationships hold when
the assumption of Poisson distribution of lethal lesions among
the irradiated cell population is reasonable, i.e., for low-LET
irradiation, as it is discussed in the following section.

A further refinement of the MKM kinetic equations involves a
fourth type of possible interaction that happens at time tr . The
following is assumed:

(8) After a time tr > 0, all the remaining sub-lethal lesions are
automatically transformed into lethal lesions.

The mathematical formulation of the main kinetic equations
remain the same as in Eqs (27)–(32) in the time interval
t ∈ [0, tr). As soon as tr passes, all type II lesions that have not
been either repaired or converted into type I lesion, will
immediately be converted into type I lesions, meaning

xII(t) � 0, t > tr . (46)

The solution for the average number of type I lesions can be
now explicitly found for t > tr , adding all type II lesions that
persisted after tr passes, that is,

x(c,d,z)I (t) � x(c,d,z)I (t) + x(c,d,z)II (tr), (47)

so that we obtain

lim
t→∞

x(c,d,z)I (t) � lim
t→∞

x(c,d,z)I (t) + x(c,d,z)II (tr)

� (λ + aκ

(a + r) +
κr

(a + r)e
−(a+r)tt)z(c,d)

+ bκ2

2(a + r) (1 − e−2(a+r)tr )(z(c,d))2.
(48)

Proceeding as above, taking therefore the average over all cell
domains and cell population, we obtain the generalization of Eq.
(44) to be

log S � −αD − βD2, (49)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
α :� α0 + z(c,d)D β0, β :� β0

α0 :� Nd(λ + aκ

(a + r) +
κr

(a + r)e
−(a+r)tt),

β0 :� Nd
bκ2

2(a + r) (1 − e−2(a+r)tr ).
(50)

3.3 Link to the Radiobiological Observables
From Eqs (44) and (45), it is possible to obtain the direct link of
the model to the phenomenological LQ formulation of the cell
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survival. The α coefficient is therefore explicitly dependent on the
radiation quality through a single term, the dose-averaged specific
energy per event zD, that can be related to microdosimetric
measurements (Eq. 19). It has to be noted that, in this
formulation of the MKM, there is no explicit dependence to the
radiation quality in the quadratic coefficient β0 that is considered
constant analogously to the result of the TDRA [57]. The latter is an
approximation of the model that is in contrast with experimental
observations [80–82] although in many cases, considering in
particular the experimental uncertainties associated to the β0
determination (see for example Figure 3), and it is assumed to
be reasonable. In an evolution of the model which accounts for the
stochastic aspects of the irradiation, as described in Section 3.8, this
approximation will be relaxed and the β coefficient will be
considered dependent on the quality of the radiation.

From the knowledge of the LQ parameters, it is possible to
derive the dose (D) and radiation quality (zD) dependent RBE
[83, 84]:

RBE(D, zD)

� R
2D
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − 1 +

����������������������������
1 + 4

R
⎛⎝RBEα(zD)D + (RBEβD)2

R
⎞⎠√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (51)

where R � αX/βX , RBEα(zD) � α(zD)/αX , and RBEβ �
����
β/βX
√

,
and αX and βX are the phenomenological LQ coefficient for
the photon reference radiation.

Since the parameters α0 and β0 are assumed to be independent
on the radiation quality and β � β0, it is possible to identify α0 �
α(LET→ 0) and β0xβX (RBEβx1).

In the case of LET low enough that lethal lesions are Poisson
distributed, it is possible to write

RBEα � αP

αX
� α0

αX
+ β0
αX

z(c,d)D ≈
α0
αX

+ 1
R
zD, (52)

where the ratio R can be derived from a nonlinear regression
analysis of measured cell survival data for a low-LET reference
radiation. Equation (52) can be generalized as

RBEα � k1 + k2
R
yD, (53)

where k1 and k2 are phenomenological parameters. Since zD is
proportional to the dose-averaged lineal energy yD (Eq. 19),
Eq. (53) is analogous to the linear RBE models based on the
dose-averaged LET (LETD) used for protons [7–10].
Following the MKM model premises, Eq. (53) could also
be generally used for other ions to describe the linear growth
of the RBE as a function of the yD (or LETD) in the low-LET
region (see Figure 3). However, the linear dependence on the
LET fails to be adequate in the region of mid- and high-LET
as found in experimental studies [82]. In these regions,
further corrections to the MKM are used to reproduce the
experimental observations. Different corrective approaches

FIGURE 3 | (A) Experimental in vitro RBEα (panel a) and RBEβ (panel b) vs. LETD/R. The data have been taken from the Particle Irradiation Data Ensemble (PIDE
v3.2) database [82]. The continuous line in (A) is the fit of the linear Poisson solution of the MKM (Eq. 53) carried out in the low-LET region (LETD <20 keV/μm) for ion
irradiation with charge Z ≤ 11. The dashed line in (B) corresponds to the constant RBEβ � 1.
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for high-LET irradiation are described in the following
sections.

3.4 Non-Poisson Correction
In the approximation introduced in Eq. (43), it is assumed that
the variance of the specific energy zn among cells is sufficiently
small. In this assumption, the number of lethal events follows the
same Poisson distribution in each cells, with average xn,I .

However, in general, the specific energy observed in the cell is a
stochastic quantity that varies from cell to cell, bringing also a
deviation from the Poisson distribution when considering the
whole population of irradiated cells. We remark that this
deviation is present even if the radiation is perfectly mono-
energetic. In this case, the variance of the specific energy zn
arises from the fluctuation of the number of particles that are
hitting the cells. The fluctuations are particularly relevant when
the LET of the particle is relatively high since, given a
macroscopic dose D, the average number of high-LET particles
interacting with the cell is lower than the number of low-LET
particles. To account for the non-Poisson distribution of the
lethal events, a correction to the MKM has been introduced by
Hawkins in 2003 [19], bringing a deviation from the linear
behavior of the RBE vs. LET, described in Eq. (52), in the
high-LET region.

The effect of the non-Poisson distribution of lethal lesions is
considered by explicitly evaluating the fraction of hit and non-hit
cell nuclei. Considering a high-LET irradiation in the limit of very
low dose, D→ 0, the probability for a cell to interact with more
than one particle is negligible. In this case, the population of cells
can be subdivided in a fraction Φ of cells that suffer a single
particle interaction and a fraction 1 − Φ of cells with zero
interactions.

A further approximation is assumed in order to match the
request of still having a Poisson distribution in the population
of hit cells: only a single well defined value of zn � zn,D is
observed when the particle hits the cell. Generally, this is
not the case and the specific energy can also vary due to
energy straggling and the random impact parameter of the
particle with respect to cell nucleus. This assumption can be
reasonable when low energy particles with high LET (see also
Section 3.6) are considered.

We denote with xI,n(zn,D) the average number of type I lethal
lesions in the fraction Φ of cells whose sensitive nucleus has been
hit by a single particle imparting exactly a specific energy zn,D in
the nucleus. Then, recalling Eq. (39), we obtain

xI,n(zn,D) � −log S(zn,D) � (α0 + zDβ0)zn,D + β0z
2
n,D. (54)

It is possible to explicitly write the global surviving fraction of
cells (including both hit and non-hit nuclei) as

S(D) � (1 −Φ) +Φe−xI,n(zn,D). (55)

This corresponds to consider a probability density function
fn(zn;D) � (1 − Φ)δ(zn) +Φδ(zn − zn,D) in Eq. (41). Since the
number of lethal lesions per cell averaged over the whole cell
population (including both hit and non-hit nuclei) exposed to the
macroscopic dose D can be directly evaluated as

〈xI,n(zn)〉c � ΦxI,n(zn,D), (56)

Equation (55) can be rewritten as

S(D) � 1 + 〈xI,n(zn)〉c
xI,n(zn,D) (e− xI,n(zn,D) − 1)

� 1 + ⎡⎣ e−(α0+zDβ0)zn,D−β0z2n,D − 1(α0 + zDβ0)zn,D + β0z
2
n,D

⎤⎦((α0 + β0zD)D + β0D
2).
(57)

Notice that, in the last passage, we exploited Eq. (43) in order
to evaluate the average 〈xI,n(zn)〉c as an explicit function of the
dose. Taking the log of S, expanding around D � 0 and dropping
terms in D2 or higher powers, the linear term of log S(D) can be
written as

−log S(D)∣∣∣∣D→ 0
≈ (α0 + zDβ0)⎛⎝ 1 − e−(α0+zDβ0)zn,D−β0z2n,D(α0 + zDβ0)zn,D + β0z

2
n,D

⎞⎠D.
(58)

The explicit non-Poisson α coefficient is then derived from Eq.
(58) and can be formulated as a correction to αP (defined in Eq.
45) as

αNP � αP(1 − e−αPzn,D−β0z
2
n,D

αPzn,D + β0z
2
n,D

)
x(1 − exp( −αPzn,D))( 1

zn,D
), (59)

where following also the original formulation of Hawkins [19], in
the last passage, the quadratic terms z2n,D ≪ zn,D were also
neglected. According to Hawkins, one can also approximate
zn,D ∝ LET∞/A, where LET∞ is the unrestricted linear energy
transfer in keVμm−1 of the incident particle and A is the area of
the cell nucleus in μm2, assuming ρ � 1 g cm−3 for the density of
water. By assuming A � πR2

n, Eq. (59) becomes

αNPx(1 − exp( −αP
LET∞

ρπR2
n

))( ρπR2
n

LET∞
). (60)

No correction is considered for the β coefficient and it is still
assumed to be independent on the energy and particle type.

The non-Poisson correction to the RBE in the limit of zero
dose (RBEα) is given by

RBEα,NP � αNP

αX
� (1 − e−αPzn,D

αPzn,D
)RBEα,P, (61)

with RBEα,P given by Eq. (52). No corrections are applied to the
RBEβ, that is still assumed constant (RBEβ ∼ 1) and independent
on the quality of the radiation.

The correction causes the RBEα to be less than indicated by the
extrapolation of the linear relationship (Eq. 53) to higher LET
and to pass through a maximum in the range of LET of
50–150 keV/μm. This behavior is compatible with several
experimental studies from the literature [82] and it shows also
a sensitivity of the maximum of the RBE to the response of the cell
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at low-LET, related to the parameter R � αX/βX [85]. An
exemplification of the RBE behavior and the prediction of the
model is reported in Figure 4.

We remark that, while the non-Poisson correction factor
associated to the linear parameter α is derived in the limit
D→ 0 (and, by definition, it is independent on the dose), the
non-Poisson concept of Hawkins’s correction is in general
inapplicability to a high dose irradiation, since all nuclei and
domains will be hit in such irradiation. The quantity RBEα
defined in Eq. (61) is hence expected to represent the relevant
behavior for low doses, where the linear term is dominant and the
RBE is maxed out [83, 84], whereas the correct stochastic
evaluation of β could be critical in the study of clinical
applications with high doses per fraction (see Section 3.8). In
Figure 5, some qualitative implications of the non-Poisson
regime in high-LET and low dose per fraction ion beam
therapy are depicted.

3.5 The Saturation Correction
Kase et al. [20] introduced a correction factor in the MKM to
account for the decrease in RBE due to the overkill effect observed
in high-LET radiations (see, for example, Figure 6). The
correction factor was applied to the dose-averaged specific
energy per event, zD, for mixed radiation field with wide-
ranging spectra.

In terms of lineal energy, the corrected value of yD (and hence
zD) was obtained by applying a correction for each lineal energy
component of the lineal energy spectrum. The correction of the
components was obtained by using an empirical saturation
parameter y0 based on the saturation correction method
introduced by [89] and then used in the TDRA [58]

ypD � y20∫​[1 − exp(−y2/y20)] f (y) dy∫ ​y f (y) dy . (62)

The saturation parameter indicates the lineal energy above
which the correction due to the overkill effects became
important.

The correction to cell survival is then obtained by evaluating
the saturation-corrected dose-averaged specific energy per event
zpD in the domain, which can be obtained from the saturation-
corrected dose-averaged lineal energy (62) using the relationships
reported in Eqs (12) and (19):

zpD � ld
md

ypD � ypD
ρπr2d

, (63)

where ρ, rd , ld , and md are the density, radius, mean cord length,
and mass of the domain, respectively. The equation for the cell
survival (Eq. 44) is then modified as follows:

−ln(S) � (α0 + β0z
p
D)D + β0D

2. (64)

Considering the linear term in the macroscopic dose D, the
corrected α* coefficient is hence

αp � (α0 + β0z
p
D). (65)

No correction is considered for the β coefficient and it is still
assumed to be independent on the energy spectrum.

An example of the prediction by MKM modified with the
saturation correction compared with experimental data is
reported in Figure 6, where the α vs. yD for HSG cells
irradiated with carbon ions is shown. It is interesting to note,
by comparing Eqs (59) and (65), that the saturation correction
can be considered an alternative way to describe the non-
Poisson correction defined in Section 3.4, since both factors
modulate the behavior of RBEα in similar ways (see also
Figure 4). In particular, it was shown in [20] that in the case
of mono-energetic spectra, Eqs (58) and (65) are functionally
equivalent for y < 500 keV/μm. Thus, by matching these
equations in the limit of low LET (yD → 0), and defining
zn,D � yD/ρπRn, with Rn the radius of the nucleus,
analogously to Eq. (63) for the domain, it is possible to link
the saturation correction parameter y0 with the other
parameters of the model

y0 � ρπrdR2
n����������

β0(r2d + R2
n)√ . (66)

A typical used value of the saturation parameter was y0 � 150
keV/μm [20, 36].

Other quantities that one needs to determine for the RBE
evaluations are the lineal energy spectra, obtainable with a
microdosimeter detector such as TEPC [43] and the values of
α0, rd , and RN from which the correction to the ypD is
calculated. The α0 and rd coefficients can be extrapolated
experimentally from the initial slope of the survival curves
(Eq. 65) for low-LET irradiation (in the limit of yD → 0
and D→ 0)

FIGURE 4 | Comparison of MKM estimates of particle RBEα to
experimental values for V79 cells. Red curves show RBEα for cells
synchronized at G1-S transition for cross sections of σ � 32.0 and 24.6 μm2

(reference radiation: 250 kVp X-rays, αR � 0.234Gy−1, and
βR � 0.042Gy−2). Black curve shows RBEα for cells synchronized in late S
phase for cross sections of σ � 18.2 μm2 (reference radiation: 250 kVp X-rays,
αR � 0.064Gy− 1, and βR � 0.0165Gy−2). Dashed lines represent RBEα �
0.02 + 0.19 × LET in the Poisson regime. Experimental data are from [86, 87],
plot taken from [26].
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rd �

������������
β(yD − (yD)X)
ρπ(α − αX)

√√
,

lim
yD→0

α ≡ α0 � αx − ( α − αx

yD − (yD)X)(yD)X,
(67)

where ρ � 1.0 g/cm3, αX is the LQ parameter of the X-Ray, and
(yD)X is the dose-averaged lineal energy for X-ray irradiation.

The saturation-corrected formulation of the MKM is one of
the most widely used approaches to estimate the RBE from
microdosimetric measurements. Many studies have been
published where the computed RBE is compared with the RBE
measured along single Bragg peaks or more complex mixed field
irradiations [49, 90–92]. In Figure 7, the RBE vs. depth for a
proton spread-out Bragg peak is reported as an example of these
assessments [92].

3.6 Track Structure Model Incorporation
In 2008, Kase et al. [21] introduced the usage of amorphous track
structure models as an alternative numerical approach to evaluate
theoretically the dose-averaged per event in the nucleus zn,D and
in the domain zD for the MKM calculations. This approach has
the advantage of bypassing the necessity to acquire experimental
lineal energy spectra to evaluate the RBE; this approach is
particularly useful when experimental spectra are not available,
such as in TPS calculations. Another interesting aspect is the
possibility to evince the dependence of LET-RBE curves on the
ion type.

The amorphous track model adopted for the MKM calculation is
based on a combination of the Kiefer model for the penumbra region
[93] and the Chatterjee model for the core radius [94], introduced for
explaining the responses of the diamond detector to heavy-ion beams
[95].Here, the core radiusRc (μm), the penumbra radiusRp (μm), and
the dose zKC as function of track radius r (μm) are evaluated as follows:

FIGURE 5 | Evaluation of the RBEα vs. LETD evaluated via Eq. (61) in combination with an amorphous track model (see Section 3.6) for proton (A) and for carbon
and other ions (B). Using the same x axis of the plot is reported for comparison of the LETD volumetric distribution (filled areas) found in a patient (a pediatric brain tumor
case) irradiated with a primary beam of protons (A) and carbon ions (B). The LETD distribution is normalized and evaluated in 3 volumes: total body (red), brainstem
(green), and the planning target volume, PTV (blue). Annotated in the plot are the low-LET range for the Poisson regime, applicable mainly for the proton treatment,
and the Non-Poisson regime, in the case of high-LET carbon ion treatment (for both the primary carbon ions and the fragments). The gray bands represent the 95%
confidence band obtained with a bootstrap procedure to the fit of the input parameters (α0 , β0 ,Rn, rd) of the model to the in vitro experimental data taken for cells with
Rx10 Gy from the PIDE database [82]. The evaluations have been carried out with a research TPS [88].
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Rc � 0.0116 × βion, (68)

Rp � 0.0616 × (Es)1.7, (69)

zKC(r ≤Rc) � 1
R2
c

(LET∞

rρ
− 2πKpln(Rp/Rc)), (70)

zKC(r >Rc) � 1.25 × 10− 4(Zp/βion)2r−2, (71)

where Es is the specific kinetic energy in MeV/u, Zp is the
effective charge given by the Barkas expression, βion is the
velocity relative to the speed of light, LET∞ is the unrestricted
LET, and ρ is the density of water ; Kp is a parameter that
depends only on the effective charge given with the Barkas
expression and the β ion is the velocity relative to the light
velocity [21]. In order to evaluate the dose-averaged specific
energy, the domain and nucleus are assumed to have a
cylindrical symmetry with the direction of the incident ion
parallel to the cylinder axis. Using this geometry, it is possible
to write explicitly the single-track dose-averaged specific
energy (Eq. 12) for both domain and nucleus as

zD � ∫​bmax

0
zKC(b)2b db/∫​bmax

0
zKC(b)b db, (72)

zn,D � ∫​b(n)max

0
zKC(b)2b db/∫​b(n)max

0
zKC(b)b db, (73)

where bmax and b(n)max are the maximum impact parameters to have
a non-negligible energy deposition in the domain and in the
nucleus, respectively. These parameters, or equivalently the
radius of the domain rd and of the nucleus Rn, represent two
parameters of the model. Examples of these evaluations are

shown in Figure 8. In principle, Rn can be related to direct
observations while rd does not represent a measurable
quantity, since it cannot be uniquely identified with any
structure in the cell or cell nucleus. rd can be used as a free
parameter to be fixed by fitting the model to the experimental
survival and RBE data.

As seen in Section 3.4, in the case of high LET irradiation, the
zD value is comparably very large with respect to the (zD)X
evaluated for photon; consequently, from Eq. (36). α0 and β0
can be approximated with the experimental αX and βX . An
example of the model evaluations compared to the
experimental data is reported in Figure 9.

Interestingly, the explicit usage of a track model shows how
some aspects of the MKM are conceptually similar to that of the
LEM [11–17]. In both MKM and LEM, the principal target is the
cell nucleus for any radiation quality, the nucleus is divided into
small independent sub-volumes (infinitesimal volumes in the
case of LEM and domains in the case of MKM), and a cell survival
curve for X-rays is adopted as the local dose-effect curve of each
sub-volume. Finally, the summation of the local effect in all sub-
volumes over the whole nucleus determines the cell survival
probability.

The inclusion of the amorphous track model allows to
evaluate directly zD and zn,D without the necessity to obtain
these values by extrapolating them from microdosimetric
measurements via scaling relationships such as Eq. (19).
This aspect can be particularly advantageous for some
applications where these spectra are generally not easily or
partially available such as in the simulation and optimization
of treatments in TPS applications, where the biological effect
should be evaluated in the whole irradiated 3-D patient
volume.

At present, the MKM is implemented in the proton and
carbon ion TPS used clinically at the National Institute of
Radiological Sciences (NIRS) in Japan to evaluate the RBE and
the RBE-weighted dose optimized for the individual patients.
The computation method, developed by Inaniwa et al. [36, 96],
takes advantage of the incorporation of the amorphous track
model in combination with the saturation-corrected dose-
averaged approach developed by Kase et al. [20] described
in Section 3.5, for evaluations in case of mixed field
irradiation. In the TPS implementation, a set of pre-
calculated look-up tables of the saturation corrected specific
energies for mono-energetic beams are created using a
generalization of Eqs (72), (73) where the saturation effect
is explicitly included for the dose-averaged specific energy for
the domain

z*D � ∫​bmax

0
zsat(b)zKC(b)b db/∫ ​bmax

0
zKC(b)b db (74)

and equivalently for the nucleus, where zsat is the saturation-
corrected specific energy

zsat(b) � z20
zKC(b)(1 − exp( − zKC(b)2

z20
)), (75)

FIGURE 6 | Experimental α values, fitted by the linear-quadratic model
from the survival curves of HSG cells value with β0 � 0.05Gy− 2, as a function
of the dose-averaged lineal energy, yD. The yD were measured by the TEPC
with a simulated diameter of 1.0 μm. The solid line indicates the curve
calculated using Eq. (65) with the following model parameters: rd � 0.42 μm,
Rn � 4.1 μm, α0 � 0.13 Gy− 1, and β0 � 0.05 Gy− 2. Plot taken from [20].
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with saturation coefficient z0 � y0(ld/md) (see Eq. 66) evaluated
in the cylindrical geometry (see also panel (c) of Figure 8). The
effect of the mixed-field of the treatment at a position is hence
evaluated through a dose-weighted linear combination

(zpD,mix)i � ∑​Nb
j�1Dij(zpD)ij∑​Nb

j�1Dij

, (76)

whereNb is the number of beams of the treatments,Di,j is the dose
released at position i by the beam j, and

(zpD)ij � ∑​Nij

k�1ek(zpD)k∑​Nij

k�1ek
(77)

is the saturation-corrected dose-averaged specific energy of the
domain of cells at position i delivered by the j-th beam, obtained
through the sum of mono-energetic evaluations, (zpD)k,
described in Eq. (74), where k is an index of the deposition
events and the sum is performed from 1 to Nij, the observed
number of the deposition events in cell i delivered by the
j-th beam.

FIGURE 8 | (A) and (B) track structures for a carbon-ion beam with a specific kinetic energy of 50 MeV/u calculated with the Kiefer–Chatterjee model and the
corresponding dose-averaged specific energy z and saturation-corrected dose-averaged specific energy zsat as functions of the impact parameter for domain and
nucleus with different sizes. (C) Schematic of an incident ion with respect to a cylindrical sensitive volume. Plots taken from [36].

FIGURE 7 | Clinical SOBP of CATANA. Dose profile measured with the Markus chamber in black, total LET-dose from Geant4 MC simulation in blue. Crosses
indicate positions at which both detectors are measured. The box reports the normalized spectra obtained with the mini-TEPC (black) and the silicon telescope (red) at a
depth of 29.08 mm. Plots taken from [92].
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To obtain the energy imparted ek and the number Nij, Monte
Carlo (MC) simulations are used, taking advantage of available
codes such as, for example, those derived from the Geant4
libraries [97–99] and Fluka [100].

3.7 The Dependence of the Biological Effect
on the Dose-Rate Time Structure
One of the interesting features of the MKM, in contrast to other
radiobiological models used in ion beam radiotherapy such as the
LEM, is the possibility to account inherently for arbitrary time
dependent dose-rates, such as protracted irradiations and
fractionations. This feature derives from the explicit
description of the time depending response of the cell to the
irradiation through the kinetic equations (Eq. 32).

Different approaches to investigate and to model the dose-rate
time effects have been carried out using the MKM as a theoretical
base. Some examples of these approaches can be found in [23, 39,
67, 101–104]. In these studies, the kinetic Eq. (27) is slightly
generalized to account for an arbitrary time dependent specific
energy deposition rate _z(c,d) in the domains:⎧⎪⎨⎪⎩ _x(c,d)I � λ _z(c,d) + ax(c,d)II + b(x(c,d)II )2,

_x(c,d)II � κ _z(c,d) − (a + r)x(c,d)II − 2b(x(c,d)II )2xκ _z(c,d) −(a + r)x(c,d)II ,

(78)

where in the second equation, as described in Section 3.2, the
second order process describing the pairwise combination
between type II lesions has been removed since it is
considered negligible if compared to the first-order process.

In [101, 104], the effects of dose-delivery time structure on the
RBE in a mixed radiation field of therapeutic carbon ion beams
are investigated using the modified microdosimetric kinetic
model introduced by Kase et al. [20, 21, 36]. These studies
evaluate the biological effect of the irradiation in two different

dose-rate conditions: a split-dose irradiation and a protracted
continuous irradiation.

In the case of a split-dose irradiation, a population of cells is
considered exposed to a macroscopic dose D1 at time t � 0 and a
dose D2 at time t � ΔT , where a domain absorbs z1 and z2 from
the two separate irradiations, respectively. Evaluating xI in the
limit t→∞ by integrating Eq. (27) and using the saturation-
corrected dose-averaged specific energy as given in Eq. (64), we
obtain for the cell survival

ln S(D,ΔT) � −(α0 + β(zpD)1)D1 − βD2
1 − (α0 + β(zpD)2)D2 − βD2

1

−2βD1D2e
−(a+c)ΔT1 − e−2(a+c)(tr−ΔT)

1 − e− 2(a+c)tr
,

(79)

where (zpD)1 and (zpD)2 are the saturation-corrected dose-
averaged specific energy of the first and second irradiation and
the total dose D � D1 + D2. The time parameters tr indicate the
time after which all sub-lethal lesions that are still unrepaired are
fixed in lethal lesions, according to assumption (9) introduced in
Section 3.2. If the quality of the radiation does not change
between the two irradiations, then (zpD)1 � (zpD)2 � zpD and Eq.
(79) can be simplified as

ln S(D,ΔT) � −α0(D1 + D2) − zpDβ(D1 + D2) − β(D1 + D2)2

+ 2βD1D2[1 − e−(a+c)τ
(1 − e−2(a+c)(tr− τ))
(1 − e− 2(a+c)tr ) ].

(80)

The values of (a + c) and tr can be determined by using the
following approximations (see Eqs 35, 40 in [101]):

(a + c) � 1
2βD1D2

[1
S
dS
dτ
]
τ�0

, (81)

tr � − ln(α/κ)(a + c) . (82)

In the case of a continuous protracted irradiation, a
population of cells receive a constant macroscopic dose-rate
of _D starting at time t � 0 and ending at t � T . In order to carry
out the evaluation, the irradiation is assumed microscopically
equivalent to a number N of instantaneous irradiations with
random doses to a domain delivering every infinitesimal
interval. The time interval between these irradiations is
δt � T/(N − 1), with δt≪ 1/(a + c), and each domain absorbs
z1 , z2 , . . . , zN . The number of lethal lesions per domain xI is
therefore obtained by integrating and summing the solution of
Eq. (27) for each time segment. The final cell survival
probability is then obtained by introducing the
corresponding saturation-corrected dose-averaged specific
energy in a way analogous to the split dose evaluation. In the
case in which the quality of the radiation does not change with
time, the final log survival is given as

ln S � −(α0 + β0z
p
d,D)D − β′D2, (83)

where

FIGURE 9 | Global fitting of the MKM to experimental RBEα data for
different ion irradiation subsetted from the PIDE database [82] with R �
αX /βX ∈ [2.8, 3.2]Gy. The plotted points indicate the experimental results and
the lines represent the MKM results calculated with the Kiefer–Chatterjee
track structure model. The bands represent the 90% confidence band
obtained from the MKM parameters {α0 , β0 ,Rn, rd} probability distribution,
evaluated through a bootstrap procedure.
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β′ ≡ β0
⎡⎢⎢⎣1 − 2

N2
∑N−1

n�1

⎧⎨⎩(N − n)⎛⎝1 − e
− (a+r) n

N
→−1

T

× (1 − e− 2(a+r)(tr− n
N−1T))

(1 − e−2(a+r)tr )
⎞⎠⎫⎬⎭⎤⎥⎥⎦. (84)

The notation used in Eqs (83) and (84) highlights the
importance of the quadratic term β, which modulates the
impact of the dose-rate time structure, according to the LQ
interpretation of the biological effects [105–108].

It is worth remarking that theseMKM-based temporal formulations
of the cell survival derived from the kinetic Eq. (78) do not account for
re-population and cell cycle redistribution. Figure 10 reports the
evaluation via Eq. (80) of the survival fraction of HSG cell line for
various time intervals compared to experimental data. An initial rise in
cell survival due to repair is visible until time interval ΔT � 0.75 h
followed by a decrease in survival due to cell cycle redistribution and a
rise due to re-population (1.4<ΔT < 4 h ) and by the saturation region
forΔT > 4 h. The predicted cell survival reasonably agrees with data in
the first and last regions, while it does not account for re-population
and redistribution. The temporal formulations described in this section
have been also incorporated in the TPS used at NIRS [36] (see also
Section 3.6) and successfully used to estimate the impact of the beam
interruption in single-fractionated treatments with carbon ions for
patients with prostate tumor [104].

3.8 Stochastic Approaches and Variable β
As discussed in the previous sections, the MKM accounts for the
stochastic aspects of the induction of damage in the cell by
exploiting probability theory to develop simple formulas for

the LQ coefficients of the cell survival (Eqs 44, 45, 58, 64,
and 83). These formulations of the model are obtained
introducing approximations [19] or ad-hoc corrections [20]
that shows some discrepancies with experiments for high-LET
irradiation, in particular in the determination of the β
coefficient, since the measured β tends to decrease at very
high LET [82, 109–111], while the β derived from the MKM
is considered constant.

The disagreements in the β coefficient are ultimately
acknowledged to be induced by the partial accounting of the
stochastic nature of the specific energies in the MKM calculations
that play an important role for high-LET irradiation [22].
Following these considerations, attempts to improve the
model, introducing more refined approaches to account a
variable β, have been made [22, 23, 70, 112]. In the rest of
this section, some of these developments, based on improved
stochastic modelings of the specific energy depositions, are
described in detail.

3.8.1 Monte Carlo-Based Evaluations
A method to account in a natural and straightforward way the
inherent stochastic nature of the irradiation is to implement a
Monte Carlo algorithm in the MKM, as recently shown by
Manganaro et al. [23, 113] in their formulation of the model
named MCt-MKM (Monte Carlo temporal microdosimetric
kinetic model). The implemented model accounts also for the
stochastic temporal correlations characteristic of the irradiation
process and the cellular repair kinetics by solving explicitly in the
MC evaluations the kinetic Eq. (78) where the time dependent
specific energy rate _z(c,d) appears explicitly [101, 114].

FIGURE 10 | Survival fraction of HSG tumor cells after exposure to two equal doses of carbon-ion beams with D1 � D2 � 2.5 Gy separated by time interval τ (ΔT in
the text) from 0 to 9 h. Three different series of experiments (runs) are shown. The estimated tangent at τ � 0 h is reported in dashed line, while the solid curve is the
predicted survival by Eq. (80) with β � 0.0703 Gy− 2, β � 0.237 Gy− 2, (a + c) � 2.187 h−1, and tr � 2.284. Plot taken from [101].
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In the MC approach, the irradiation of a complete
population of Nc cells is simulated, where Nc is supposed to
be large enough in order to achieve statistical convergence. The
irradiation is modeled as an ordered temporal sequence of
particles (primaries and secondaries) that interact with the cell
nucleus at random spatial coordinates and random times
t(c)0 ≤ t(c)1 ≤ t(c)2 ≤/, compatible with the chosen irradiation
setting and the definition of the time-dependent
macroscopic dose-rate _D(t). The irradiation is hence
modeled as a sequence of spikes in _z(c,d)(t), each one of
them corresponding to the passage of a particle through or
nearby the nucleus, delivering a sequence of random specific
energies in the domains

z(c,d)0 (t0), z(c,d)1 (t1), z(c,d)2 (t2), . . . (85)

depending on the particle spectra and track impact positions with
respect to the cell. A depiction of the temporal evolution of the
lesions (xI and xII) due to the effects of the irradiation as
described in Eq. (85) is reported in panel (b) of Figure 2. For
a macroscopic dose D and a component e, indicating a specific
particle and bin of the kinetic energy histogram sampled from the
particles interacting with the cell nucleus, the total number of
particles Ne interacting with the nucleus follow a Poisson
distribution with mean

Ne � ρσDwe

LETF
, (86)

where LETF is the frequency-average LET of the radiation
computed on the total energy spectrum, considering all the
contributing particles, σ is the cross section of the nucleus, ρ
is the density of the tissue, and we is the normalized weight of the
e-th bin of the energy and particle histogram.

In principle, the tracks can be directly sampled from the full
measured microdosimetric spectra (i.e., not only the first and
second moment) from which the experimental we can be
obtained. From a practical point of view, the specific energies
deposited randomly in each domain of each nucleus are evaluated
by coupling general purpose MC tools (such as Geant4 [97, 115]
or Fluka [116]) in combination with an amorphous track
structure model as described in [21, 36]. The MC code is used
to identify the ions that can interact with a cell located in a certain
point of the irradiated macroscopic volume at a certain time. The
domains are arranged according to a close packing hexagonal
structure inside the nucleus.

Once the time sequence of specific energies in the domains
(85) are obtained, the kinetic Eq. (78) can be formally solved for
t→∞ to obtain the average number of lethal lesions for each cell-
domain (c, d):

−log s(c,d) � x(c,d)I

∣∣∣∣t→∞ � α0

Nd
∑nc−1
i�0

z(c,d)i + Gc,d
β0
Nd

⎛⎝ ∑nc− 1
i�0

z(c,d)i
⎞⎠2

,

(87)

where nc is a Poisson random variable indicating the number of
particles that interacted with the cell c, τ � 1/(a + r) is the time
constant that defines the first order repair kinetics, and G is the

generalized Lea-Catcheside time factor [57, 65] defined at the
nanodosimetric level of the domain:

G(c,d) � 1 − 2(∑​nc−1
i�0 z(c,d)i )2 ∑nc−2i�0

∑nc−1
j�i+1
(1 − e−

1
τ(t(c)j −t(c)i ))z(c,d)i z(c,d)j .

(88)

The survival fraction S is obtained by averaging over the entire
cell population the survival probability evaluated for each single
cell Sn(c) (see for comparison Eqs 37, 41)

S(D) � 〈S(c)n ;D〉c � 〈exp⎛⎝ −∑Nd

d�1
x(c,d)I

⎞⎠〉
c

� 〈exp( − Nd〈x(c,d)I 〉d)〉c . (89)

Notice that the Monte Carlo approach does not compute
directly the LQ coefficients α and β, in contrast to the
analytical approaches described in the previous sections.
However, it is possible to derive the LQ coefficients by
simulating a complete survival curve, i.e., by evaluating (89)
using different macroscopic doses D1 <D2 <D3 < . . ., and then
fitting the curve with the LQ formula. An example of a complete
simulated survival curve is reported in Figure 11. We remark also
that, as done in Section 3.7, the cell population generated by the
solutions of the kinetic Eq. (78) neglects re-population and cell
cycle re-distributions.

One of the benefits of the MCt-MKM approach is that both α
and β coefficients, obtained through the survival fitting, show the
expected saturation behavior for high-LET irradiation without
adding any corrective factors, like the non-Poisson (Section 3.4)
or (Section 3.5) saturation. The disadvantage of the approach,
other than the inherent approximations specific to the used MC
transport code and the adoption of an amorphous track model, is
that it can be particularly computing intensive, although this is
mitigated by exploiting the multi-core parallelism of modern
CPUs [113].

The MCt-MKM has been validated on in-vitro experiments
considering acute and split-dose irradiation on HSG, T1, and V79
cell lines in aerobic conditions of H, He, C, and Ne ion beams
[23]. An example of the behavior of the LQ α and β coefficients is
reported in Figure 12, where also a comparison with the
prediction of other models, a non-stochastic MKM evaluation,
the LEM, and the repair–misrepair–fixation (RMF) model (see
Section 4.2), is shown. The main difference with respect to the
original MKM is that theMCt-MKM predicts a non-constant and
vanishing β with high LET values. This behavior is ultimately due
to the non-Poisson statistics inherently implemented in the
model. However, we remark that, although, as previously
noted, there is a general consensus for a vanishing β for high
LET irradiation, there are still contradictory experimental results
and significant uncertainties for β vs. LET behavior (see, for
example, also [118]). In particular, in Figure 12, the data show a
beta significantly larger than zero for a large number of
experimental points for He and C ions also for relatively
high LET.
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The model was also implemented in a TPS [88] to evaluate
the effect of the temporal protraction of treatments with
different ion beams. The effect of the protraction, described
microscopically by Eq. (88), was shown to be compatible with
a macroscopic first order effect with temporal constant τ [23].
We remark that, in the framework of the LQ formalism, in the
studies of high dose irradiation and the dose-rate effect, such
as those reported in [23, 101–104], the specific way β is
modeled which plays a fundamental role [119, 120]. In
particular, the behavior of a vanishing β for high LET is
compatible with the experimental observation of a
reduction of the sensitivity to the dose-rate (including the
fractionation) in healthy tissues for treatments with high-LET
ions and, hence, the potential advantage of hypofractionated
treatments with these particles.

3.8.2 The Stochastic Microdosimetic Kinetic Model
The analytical computation method proposed by Sato and
Furusawa [22] introduces a correction to the original
formulation of MKM, taking into account the stochastic
nature of specific energy in both the domain z and the cell
nucleus zn, to improve the adherence of the model to the
measured survival fractions for high-LET and high-dose
irradiation. The new model is named double-stochastic
microdosimetric kinetic (DSMK) model. In the same
study [22], a second model, termed stochastic
microdosimetric kinetic (SMK) model, is derived to
represent the stochastic nature of domain specific energy z
by its approximated mean value and variance in order to
reduce the computational time.

Based on radiobiological evidences that state that DNA
damage saturates at high-LET regions [121, 122], the original
assumption of the MKM, that the initial numbers of lethal and
sub-lethal lesions produced in a domain to be proportional to the
specific energy in the site, is changed in the DSMKM, assuming
that the initial numbers of lethal and sub-lethal lesions produced
in a domain are proportional to the saturation-corrected specific
energy, zp in the domain, calculated as

zp � z0
���������������
1 − exp[−(z/z0)2],√

(90)

where z0 can be obtained from z0 � y0(ld/md) with the saturation
correction parameter y0 defined in Eq. (66).

By applying this new parameter, the natural logarithm of
survival for a domain and the nucleus, Eqs (35) and (37), can
be rewritten, respectively, as

log(s(z)) � −Azp − Bzp2 ,

log(Sn(zn)) � −α0∫​∞

0
zpf (z; zn) dz − β0∫​∞

0
zp2f (z; zn) dz,

(91)

with the natural log of the survival fraction of cell irradiated with
doseD, log S(D) � 〈Sn〉c, given by substituting Eq. (91) in Eq. (41).

The evaluation of the multi-event probability density f (z; zn)
is obtained numerically by applying a general n-fold convolution
method such as the one presented in Section 2 (Eqs 4 and 6) to
the single event probability density f1(z). The evaluation of f1(z)
is performed exploiting a microdosimetric function implemented
in the PHITS Monte Carlo code [123, 124]. The sum in Eq. (6)
can be truncated for practical purposes, with 100 events being
enough to evaluate the density probability function of cells
with zn � 100 Gy.

The same approach is used to calculate the multi-event
probability density of the cell nucleus specific energy, for an
absorbed macroscopic dose D, fn(zn,D), from the single event
function fn,1(zn). However, since the nucleus radius is over the
available range of the microdosimetric function implemented in
PHITS, fn,1(zn) is determined from the frequency distribution of
the LET L, FL(L):

fn,1(zn) � ∫​∞

0
FL(L)fn,1(zn, L) dL, (92)

where fn,1(zn, L) represents the probability density of zn from a
particle with LET � L. Following the formalism carried out in
[125], the expression for fn,1(zn, L) is written as a Fermi function:

fn,1(zn, L) � 2C(Lη)2 zn
exp[(zn − Lη)/c] + 1

, (93)

where C is a normalization constant and η is a units conversion
coefficient. The parameter γ tunes the slope of the Fermi function
or, equivalently, the magnitude of the fluctuation of zn due to the
energy straggling.

Once fn,1(zn) is determined, the multi-event function fn(zn;D)
for the nucleus is obtained with the same n-fold convolution
procedure used in the case of f (z; zn). In this case, however, due to
the higher average number of events that can happen in the nucleus

FIGURE 11 | Simulated survival curves obtained for acute irradiation,
(t0 � t1 � t2 � /), of mono-energetic carbon ion (8 MeV/u) with imposed
macroscopic doses ranging from 0.1 to 8 Gy represented in different colors.
The dots represent the values of cell survival S(c)

n (z(c)n ) with specific
energy z(c)n � Nd∑​ Nd

d�1∑​ (nc−1)
i�0 z(c,d)i delivered in the cell c (a small dot for each

simulated cell); the variability of the delivered dose with respect to the imposed
dose derives by the fluctuation determined by the MC simulation. The two
curves were fitted using the LQ model (solid and dashed lines, respectively) in
order to get the LQ parameters. The blue curve is fitted directly to the S(c)

n (zn)
data and corresponds to the Poisson approximation described in Eq. (43).
The black line corresponds to the fit to the population averages 〈S(c)

n ;D〉c
defined in Eq. (89) for each imposed dose D (open dots) and corresponds to
the non-Poisson formulation of Eq. (59). Plot taken from [117].
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compared to the domain, λn(D)≫ λ(zn), the computation is
significantly more demanding and cannot be practically used
for applications inherently complex such as TPS evaluations for
ion beam treatments. To overcome this problem, in the case of
high-dose irradiations, a pre-evaluated database of probability
densities derived from mono-energetic irradiations is used and
combined in a central limit approximation.

To overcome the long computational time of the DSMK
model in a TPS workflow, a further optimization is performed for
the computation of the survival in (91) that bypasses the necessity
to compute the n-fold convolution integral (Eq. 6). In this
formulation of the model (SMK), it is assumed that a saturation
effect triggered by multiple hits of radiations to a domain is
negligibly small so that the magnitude of the effect for the
n-event energy deposition can be derived from the estimate
with the single event density probabilities (see also Eqs 9 and 12):∫​∞

0
zpf (z, λn) dz∫ ​∞

0
zf (z, λn) dz

≈
∫​∞
0
z*f1(z) dz∫​∞

0
zf1(z) dz

� zpF
zF

(94)

and ∫ ​∞
0
zp2f (z, λn) dz∫​∞

0
z2f (z, λn) dz

≈
∫​∞
0
zp2f1(z) dz∫ ​∞

0
z2f1(z) dz

� zpD
zD
. (95)

Following these approximations, the natural log of the survival
fraction of a cell can be calculated by substituting Eqs (94) and
(95) in Eq. (91), 0btaining

log(Sn(zn)) � −α0znzF*zF − β0(zDzn + z2n) zD*zD . (96)

In order to reduce further the computational effort for TPS
applications, assuming that in standard condition of ion beam
radiotherapy the events inducing the saturation of complex DNA
damages are rare, and hence z*F/zF ≈ 1, the following
approximation of Eq. (41) was derived [112]:

log S(D) � log{1 + D[ − βSMK + 1
2
(αSMK + 2βSMKD)2]zn,D}

− αSMKD − βSMKD
2,

(97)

with

αSMK :� (α0 + zD*β0), (98)

βSMK :� β0(zD*/zD). (99)

Both DSMK and SMK models can reproduce the measured
survival fractions, even for high-LET and high-dose irradiations,
whereas the simple saturation-based MKM [20] predicts lower
values for these irradiations due to the intrinsic ignorance of the
stochastic nature of the cell nucleus specific energies (see Figure 13).
In particular, the DSMKmodel can account for the decrease in the β
parameter observed in high-dose irradiations over 10 Gy due to the
saturation effect triggered by multiple hits of radiations to a domain.

3.9 Extensions and Further Improvements
In recent years, a number of studies have been published
reporting further refinements and extensions of the MKM.
Among these are further improvement accounting of the non-
Poissonian statistics [112, 126], the inclusion of an explicit DNA
modeling [69, 70], the effect of a heterogeneous cell population

FIGURE 12 | Linear quadratic α (panel A) and β (panel B) parameters as a function of LET for the irradiation of V79 cells with different ions. Points represent
experimental data taken from PIDE [82], different colors/gray levels and shapes refer to H, He, C, and Ne ions, respectively (the color/gray level and shape legend refers
both to panels A and B). In panel A, solid and dashed lines represent, respectively, the extrapolation with the MCt-MKM and the original MKM, while in panel B, a
comparison between different models is reported (namely, MKM, MCt-MKM, LEM-II, and RMF). In the case of the MCt-MKM, overlapped to the α and β curves, the
MC statistical confidence bands (68%) are reported. These bands are small due to the high statistics and they blend with the curves’ thickness. A saturation effect is
observed for both α and β parameters. Plot taken from [23].
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including the cell-cycle variance [39, 114, 127], and the inclusion
of non-target effects [128]. Extension of the model has been also
proposed to compute quantities beyond the RBE, such as the
oxygen enhancement ratio (OER) [37, 38]. In the following of this
section, some details about a selection of these developments are
described.

3.9.1 Oxygen Enhancement Ratio (OER) Modeling
Several experiments show that cellular oxygenation condition
strongly affects their response to ionizing radiation. In particular,

a significantly lower cell death rate is observed after exposure to
ionizing radiation in the presence of a reduced concentration of
oxygen in the cells, i.e., in hypoxic conditions. As clinically
observed, solid tumors can contain oxygen-deficient regions,
thus increasing their radioresistance and potentially leading to
treatment failure [129, 130]. An understanding of why high-LET
radiations are so effective at overcoming tumor hypoxia [131,
132] is also particularly relevant for the individualization and
optimization of ion beam radiotherapy. For this purpose,
attempts to extend the MKM to describe the dependence of

FIGURE 13 | The measured survival fractions of the HSG cell exposed to 3He, (A)–(C); 12C, (D)–(F); and 20Ne-ion beams, (G)–(I) at different LETs reported by
Furusawa et al. [109] (dots), compared with the estimations based on themodified SMK (solid curves) and theMKM (dashed curves). Experimental data taken from [109].
Plot taken from [112].
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the radiation effects on the oxygen concentration in cells and to
model the oxygen enhancement ratio (OER) have been made
[37, 38].

It is interesting to note that these MKM-based approaches,
although different, do not focus on OER modeling, a relative
value, but directly on the prediction of hypoxic cell survival data,
being the OER a derived quantity.

In [37], the reduction of lethal (xI) and potentially lethal (xII)
damage due to the absence of oxygen is linked in the low-LET
region to the phenomenological photon OER. This linking is
realized through the application of an Alper and Flanders
functional formalism [133] to add an explicit dependence to the
oxygen concentration to the parameters λ and κ (Eq. 28) and the
sizes of the domain and nucleus. In particular, the parameters λ and
κ and the domain size are assumed to vary with the inverse of the
photon OER while the nucleus size is assumed to be proportional
to the photon OER as a function of oxygen concentration.

In [38], the general approach proposed byWenzl andWilkens
[134] has been adapted to the amorphous track approach to the
MKM [21] (the latter described in Section 3.6). The inclusion of
track model ultimately brings to the OER an explicit dependence
on ion type while the Wenzl and Wilkens formalism brings an
explicit dose and oxygen concentration dependence in the α and β
parameters. These characteristics have been exploited, by
integrating the model in a TPS, to evaluate the tumor control
probability (TCP), to facilitate the identification of the optimal
treatment conditions in terms of ion choice and dose
fractionation in the presence of hypoxia.

The MKM-based OER models were verified against in vitro
data from HSG, V79, and CHO cells in aerobic and hypoxic
conditions, irradiated with different ion beams [109]. Examples of
the model prediction vs. the experimental data are reported in
Figure 14.

3.9.2. Non-Targeted Effects
In the majority of cell survival modeling approaches, it is assumed
that biological effects of radiation are exclusively due to direct
DNA damage resulting from the ionization caused by the incident
radiation. In recent years, this assumption has been extensively
challenged by considering a variety of indirect processes, also
referred to as bystander or non-targeted effects (NTE) that
significantly impact on the cellular response to the radiation
[137]. NTEs have been interpreted as a result of intercellular
communication with cell-killing signals between hit and non-hit
cells [138, 139], resulting in induced DNA damage in non-hit
cells [140].

Attempts to derive kinetic equations to model the intercellular
signaling which incorporates signal production and response
kinetics have been made [141–143]. In recent studies, such as
by Matsuya et al. [128], an integration of these signaling kinetic
equations in the MKM has been proposed.

In this formulation, denoted integrated microdosimetric
kinetic (IMK) model, the number of signaling activation
events, NNT, in the domain is assumed to be a linear-quadratic
function of the specific energy z. Thus, following the same
procedure and the assumption of a Poisson statistics used to

derive Eqs (44), (45), the dose dependent fraction of receiving
cells that are activated is written as

fNT(D) � 1 − e−〈NNT〉c � 1 − e−(αNT+zDβNT)D+βNTD2
, (100)

where αNT and βNT are the LQ coefficients of the signal
activation process. The propagation of the cell-killing
signal is modeled as a diffusion process with diffusion
constant θ and a simple exponential decay with a rate
constant λ. The signal concentration ρs(r, t), where r is a
spatial position and t is time, can hence be obtained by
solving the continuity equation:

zρs(r, t)
zt

� θ∇2ρs(r, t) − λρ(r, t) . (101)

In non-hit cells, the NTE sub-lethal lesions [xII]NT are
assumed to be induced in proportion to the signal
concentration ρs(r, t) and then converted to lethal lesions xI
with the same constant rate a of Eq. (27) so that the number of
sub-lethal lesions is written as[ _xII(r, t)]NT � (1 − fNT(D))[xII(r, t)]NTκNTRNTρs(r, t)

− (a + rNT)[xII(r, t)]NT , (102)

where RNT is the constant rate for cell-killing signals reacting with
the nucleus of non-hit cells, κNT is the number of sub-lethal
lesions per domain caused by the signals, and rNT is a constant
rate for repair in non-hit cells (in general, rNT ≠ r, i.e., the repair
rates in target and non-target cells are different). In [128], the
following functional form for the cell survival fraction by the NTE
(SNT) has been proposed as an approximate solution of the
previous equations

log SNT � −〈[xI,n]NTE〉c � −δ(1 − e−(αNT+zDβNT)D+βNTD2)
e−(αNT+zDβNT)D+βNTD2

,
(103)

where δ is a function of the other parameters introduced in the
former equations that characterize the intercellular signaling
process.

In order to compute the cell survival probability S with the
inclusion of both NTEs and targeted effects, an approximation is
made in which it is assumed that the probability of interactions
between sub-lethal lesions xII and [xII]NT in the domain is
negligible. This assumption factorizes the two systems of Eqs
(27) and (102) and hence considers the total cell survival as the
product of S � ST × SNT, where the survival for targeted cells, ST,
is given by Eq. (43). Figure 15 shows an example of the fitting of
the IMK model with experimental clonogenic data. It is
interesting to note the possibility of the IMK model to
account for deviations from the LQ formalism, reproducing
the low-dose hypersensitivity behavior of cell response and
evincing its relation with DNA repair mechanisms.

4 OTHER MODELS

This section presents alternative models to determine RBE
based on microdosimeric approaches.
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4.1 RBE Weighting Functions
The microdosimetric RBE weighting function approach has
been proposed initially by Menzel, Pihet, and Wambersie et al.
[27, 33] to compare the beam quality of different neutron [27]
and proton [144, 145] therapeutic installations using measured
microdosimetric distributions of lineal energy. Based on
previous studies on proton beams [146, 147], this approach
uses measured microdosimetric distributions of lineal energy,
y, combined with an experimentally derived biological
weighting function, for specific cell line and endpoints, r(y),
to evaluate the RBE.

Let P(y) be the cellular response function for a population
suffering the fraction of dose d(y)dy corresponding to the lineal
energy y. d(y) is the dose probability density of y and can be
evaluated as d(y) � y

yF
f (y) [34]. The linear α parameter,

interpreted as the biological effect E per unit dose, is expressed as

α � E/D � ∫ ​P(y)
y

d(y) dy ≡ ∫ ​

r(y)d(y) dy, (104)

where r(y) is defined as the response function. Therefore, the
model is rigorously valid under the assumption of a low dose
approximation where the cellular response function is linear.

P(y) or directly r(y) is experimentally derived. A formulation
for r(y) is given in the following [148, 149]:

r(y) � σE[1 − exp( −a1y − a2y
2 − a3y

3)]/y , (105)

where the σE, a1, a2, and a3 are parameters specific to the
radiobiological end points and are independent on the quality
of the radiation. These parameters are determined experimentally
by fitting a set of different measurements of αi or RBEα,i � αi/αX
using different irradiation modalities with different radiation
qualities i � 1, 2, 3, . . . ,N .

The set of relations that have to be fitted is hence

RBEα,i � ∫​

r(y)di(y) dy; i � 1, . . . ,N . (106)

The solution of the system of Eq. (106) can be obtained with
different methods, such as non-parametric multi-objective
optimization methods [150] or iterative procedures [40]
through which an initial guess function r(y) is iteratively
updated to best fit Eq. (106).

4.2 The Repair–Misrepair–Fixation (RMF)
Model
The repair–misrepair–fixation (RMF) model combines the RMR
and LPL models, adding the consideration of intra- and inter-
track2 binary misrepair to predict the biological effect of LET
[24–26]. The RMF model considers the entire cell nucleus as the
volume for pairwise DSB interactions. In the RMF model, a
coupled system of nonlinear ordinary differential equations is
used to model the time-dependent kinetics of DSB induction,
rejoining, and pairwise DSB interaction to form lethal (and
nonlethal) chromosome damage. The model treats initial DSB
formation as a compound Poisson process and postulates a first-
order repair term that gives rise to exponential rejoining kinetics
for most DSB (> 98%) and a second-order (quadratic) term to

FIGURE 14 | (Left) D10% values for oxic (closed symbols) and extremely hypoxic (open symbols) V79 cells as a function of dose-averaged LET [109]. The lines
represent the MKM calculations (solid lines) and the hypoxia-adapted MKM calculations with parameters optimised for the V79 cell line (dashed lines). Plot from [37].
(Right) The OER as a function of the dose-averaged LET for the irradiation of HSG cells with different ions. The points represent the experimental data taken from
Furusawa et al. [109]. The continuous lines represent the OER simultaneously evaluated bymeans of theMKM-basedmodel for He, C, and Ne. In the same plot, the
OER calculated by other models is reported for comparison (non-continuous lines). The model by Scifoni et al. [135] is associated with carbon ions only, while the model
by Wenzl and Wilkens [134] is not associated with any specific ion. An evaluation with the model proposed in Antonovic [136] is also shown. Plot taken from [38].

2Intratrack binary misrepair occurs when an energy deposition along the track
forms two or more DSBs that interact in pairwise mode to form an exchange.
Intertrack, instead, is a binary misrepair arising from the pairwise interaction of
break ends associated with DSBs that were formed by two separate radiation tracks
through a cell.
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account for the small subset of the initial DSB (< 2%) that
undergo pairwise DSB interactions to form an exchange.

An LQ approximation of the solution of the RMF system of
differential equations can be expressed as follows [24, 25]:

RBEα � Σ
ΣX
(1 + 2

RΣX
(Σzn,F − ΣX(zn,F)X)), (107)

RBEβ � Σ
ΣX

, (108)

where Σ is the initial number of DBS per gray per giga base pair (Gy−1

Gbp−1) and zn,F is the frequency-average specific energy evaluated in
the nucleus (seeEq. 9), for the particle radiation. The suffixX indicates
the same quantities for the reference photon radiation. RBEα, RBEβ,
and R are defined in Eq. (51), while the ratio Σ/ΣX � RBEDSB can be
interpreted as the RBE for DSB induction.

From Eq. (107), it follows that the radiation response of a cell
exposed to a low- or high-LET radiation is uniquely determined
by one microdosimetric parameter (zn,F) and two biological
parameters (RBEDSB) and R. zn,F can be derived from
microdosimetric measurements or computed via Monte Carlo
simulations. Implicit in the determination of zn,F is the knowledge
of the size of the nucleus. For a spherical water target of diameter
d, the frequency-average specific energy can be approximated by
Eq. (20). A complication arises from the fact that, in general,
RBEDSB also strongly depends on particle type and kinetic energy
(and thus LET or lineal energy) although it is considered to be the
same among all eukaryotes. Consequently, R is basically left as the
main parameter of the RMF is needed to discriminate the
radiation response among different cell lines (compare also the
MKM formulation, Eq. 53).

From a practical point of view, RBEDSB is obtained and stored
in a look-up table as a function of particle type and kinetic energy
by means of Monte Carlo computations. TheMCDSMonte Carlo
code [151, 152], which is able to simulate also the dependence on
the oxygen concentration, is typically used in these computations,
so that the RMF has been also used to predict the OER [153] along
with the clonogenic data [25] and DSB induction estimates [24]
for ion irradiations.

In panel (b) of Figure 12, the RMF prediction of the RBEβ

compared with experimental data and the evaluations of other
models is reported. It is worth noting that the RMF model
predicts an increasing β for increasing LET (see Eq. 107). This
is in contrast with other models, such as the LEM, which predict a
decreasing β, or the MKM, which, depending on the specific
formulation, predicts both a constant and a decreasing β.

The RMF has been also implemented in a TPS to evaluate the
3D RBE distribution in irradiated patients [154]. It is interesting to
note that one of the appealing aspects of the RMF for TPS studies is
that the specific response of the tissue, both healthy and tumoral, is
explicitly determined by a single parameter, R. This is a
simplification, but allows to study the effect of the specificity of
the tissue response in a direct way, also allowing for a distribution
of R values and hence easily accounting for the variability and the
uncertainty associated to this clinical parameter.

5 SUMMARY

In clinical treatment planning, the RBE has to be calculated by
radiobiological mathematical models, which, in spite of all
validation efforts, still involve significant sources of uncertainty.

FIGURE 15 | (A) Comparison between the IMK model (Eq. 103), continuous gray line in the plot, and experimental medium transfer bystander effect
(MTBE) cell survival data. (B) Fitting of the IMK model to experimental cell survival data for V79-379A. Plot taken from [128] (http://creativecommons.org/
licenses/by/4.0/).
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The aim of this review was to present the theoretical aspects of
a selection of radiobiological models that emphasize the link of
in vitro and in vivo radiobiological outcomes, such as the RBE, to
microdosimetric experimental data.We approached these models
through a conceptual sketch of their assumptions, highlighting
the continuity and leaps of their mathematical formulations. For
each model, we addressed the limit of applicability and eventual
improvements and the link of their input parameters to
experimental observables.

A particular emphasis to the microdosimetric kinetic (MKM)-
based models has been given. Starting from its first seminal
formulation by Hawkins [18], the MKM has represented an
effective approach to link the microdosimetric quantities,
which describe the quality of the radiation, to the
radiobiological effects and, at present, it is one of the most
widely used models to evaluate the RBE in both research and
clinical applications. The MKM approach for RBE evaluations
has gained a particular interest in recent years, with the
appearance of different studies aimed to improve the accuracy
of the model and to extend its range of applicability in different
biological contexts, such as the OER prediction and non-target
effects.

Although sharing similar theoretical bases, the MKM-
based models make different assumptions and
approximations in their implementation. Based on these
differences, the models considered in this review
(including also the RMF model) make, in particular,
different predictions in the dependence of β on particle
LET and the RBE for cell survival in the overkill regime,
for particles with a LETa150 keV/μm.

Two main aspects of the considered models, where recent
efforts have brought interesting insight, and where further
future studies could bring potential improvements, could be
identified. One aspect is the ascertainment of a more accurate

link of the theoretical descriptions to specific cellular
mechanisms of DNA damage induction and its evolution,
exploiting also information from nanodosimetric data.
Another aspect is to improve the theoretical statistical
description of the involved processes, be them either the
stochastic nature of the energy deposition or the stochastic
nature of the cell response to the irradiation.

Future comparisons of model predictions with experimental
data are hence needed to fully discriminate among competing
mechanisms to be incorporated for the improvement of these
models to evaluate the RBE.

AUTHOR CONTRIBUTIONS

VB and AA have provided a critical interpretation of the
theoretical aspects of each model and its applications, deciding
structure and principal contents of this review. They have cured
the links with experimental data underlining limitations and
strengths of each approach. The experience and accuracy of
AA have leaded the entire work. FG has principally handled
the mathematical aspects of the work, his help has been precious
in revising notation and clarifying model formulation. ES has
helped particularly in the general parts and introduction and has
given also his valuable opinion on the structure and contents.
MM and FT have given a contribution to experimental links, CT
has supervised.

FUNDING

This work has been partially funded by MoVeIT, NEPTUNE
INFN CSN5 projects, and Fondazione CARITRO Cassa di
Risparmio di Trento e Rovereto.

REFERENCES

1. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical
uses and future perspectives. Nat Rev Clin Oncol (2017) 14:483. doi:10.1038/
nrclinonc.2017.30

2. Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin
Oncol (2010) 7:37. doi:10.1038/nrclinonc.2009.183

3. Kanai T, Furusawa Y, Fukutsu K, Itsukaichi H, Eguchi-Kasai K, Ohara H.
Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion
radiotherapy. Radiat Res (1997) 147:78–85.

4. Kanai T, Endo M, Minohara S, Miyahara N, Koyama-Ito H, Tomura H,
et al. Biophysical characteristics of HIMAC clinical irradiation system for
heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys (1999) 44:
201–10.

5. KawachiMatsufuji H, Mizoe J, Kamada T, Baba M, Kato S, Kato H, et al.
Overview of clinical experiences on carbon ion radiotherapy at NIRS.
Radiother Oncol (2004) 73(Suppl 2) S41–9. doi:10.1016/s0167-8140(04)
80012-4

6. MiyamotoTsuji J, Wambersie A, Octave-Prignot M, De Coster B, Grégoire V.
Radiobiological characterisation of clinical beams: importance for the quality
assurance (QA) programme in ion beam therapy. Int J Radiat Oncol Biol Phys
(2006) 9:173–178. doi:10.1080/713844023

7. Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range
uncertainty in proton therapy due to variable biological effectiveness. Phys
Med Biol (2012) 57:1159–72. doi:10.1088/0031-9155/57/5/1159

8. Wedenberg M, Toma-Dasu I. Disregarding RBE variation in treatment plan
comparison may lead to bias in favor of proton plans. Med Phys (2014) 41:
091706. doi:10.1118/1.4892930

9. Jones B. Towards achieving the full clinical potential of proton therapy by inclusion
of LET and RBE models. Cancers (2015) 7:460–80. doi:10.3390/cancers7010460

10. McNamara AL, Schuemann J, Paganetti H. A phenomenological relative
biological effectiveness (RBE) model for proton therapy based on all
published in vitro cell survival data. Phys Med Biol (2015) 60:8399–416.
doi:10.1088/0031-9155/60/21/8399

11. Scholz M, Kraft G. A parameter-free track structure model for heavy ion action
cross sectionsBiophysical modelling of radiation effects. Radiat Res (1997) 147:
78–85 (1992).

12. Scholz M, Kraft G. Track structure and the calculation of biological effects of
heavy charged particles. Adv Space Res (1996) 18:5–14. doi:10.1016/0273-
1177(95)00784-c

13. Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell
survival in heavy ion beams for therapy. The model and its approximation.
Radiat Environ Biophys (1997) 36:59–66. doi:10.1007/s004110050055

14. Elsässer T, Scholz M. Cluster effects within the local effect model. Radiat Res
(2007) 167:319–29. doi:10.1667/RR0467.1

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 57849224

Bellinzona et al. Ion Beam Radiobiological Microdosimetric Models

https://doi.org/10.1038/nrclinonc.2017.30
https://doi.org/10.1038/nrclinonc.2017.30
https://doi.org/10.1038/nrclinonc.2009.183
https://doi.org/10.1016/s0167-8140(04)80012-4
https://doi.org/10.1016/s0167-8140(04)80012-4
https://doi.org/10.1080/713844023
https://doi.org/10.1088/0031-9155/57/5/1159
https://doi.org/10.1118/1.4892930
https://doi.org/10.3390/cancers7010460
https://doi.org/10.1088/0031-9155/60/21/8399
https://doi.org/10.1016/0273-1177(95)00784-c
https://doi.org/10.1016/0273-1177(95)00784-c
https://doi.org/10.1007/s004110050055
https://doi.org/10.1667/RR0467.1
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


15. Elsässer T, Krämer M, Scholz M. Accuracy of the local effect model for the
prediction of biologic effects of carbon ion beams in vitro and in vivo. Int
J Radiat Oncol Biol Phys (2008) 71:866–72. doi:10.1016/j.ijrobp.2008.02.037

16. Elsässer T, Weyrather WK, Friedrich T, Durante M, Iancu G, Krämer M, et al.
Quantification of the relative biological effectiveness for ion beam
radiotherapy: direct experimental comparison of proton and carbon ion
beams and a novel approach for treatment planning. Int J Radiat Oncol
Biol Phys (2010) 78:1177–83. doi:10.1016/j.ijrobp.2010.05.014

17. ScholzKragl T, Scholz U, Elsässer T, Durante M, Scholz M. Calculation of the
biological effects of ion beams based on the microscopic spatial damage
distribution pattern. Int J Radiat Biol (2012) 88:103–7. doi:10.3109/
09553002.2011.611213

18. Hawkins RB. A statistical theory of cell killing by radiation of varying linear
energy transfer. Radiat Res (1994) 140:366–74.

19. Hawkins RB. A microdosimetric-kinetic model for the effect of non-Poisson
distribution of lethal lesions on the variation of RBE with LET. Radiat Res
(2003) 160:61–9. doi:10.1667/rr3010

20. Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, et al.
Microdosimetric measurements and estimation of human cell survival for
heavy-ion beams. Radiat Res 166 (2006) 629–38. doi:10.1667/RR0536.1

21. ShinodaSakama Y, Kanai T, Matsufuji N, Furusawa Y, Elsässer T, Scholz M.
Biophysical calculation of cell survival probabilities using amorphous track
structure models for heavy-ion irradiation. Phys Med Biol (2007) 53:37. doi:10.
1088/0031-9155/53/1/003

22. Sato T, Furusawa Y. Cell survival fraction estimation based on the probability
densities of domain and cell nucleus specific energies using improved
microdosimetric kinetic models. Radiat Res (2012) 178:341–56. doi:10.
1667/rr2842.1

23. Manganaro L, Russo G, Cirio R, Dalmasso F, Giordanengo S, Monaco V, et al.
A Monte Carlo approach to the microdosimetric kinetic model to account for
dose rate time structure effects in ion beam therapy with application in
treatment planning simulations. Med Phys (2017) 44:1577–89. doi:10.1002/
mp.12133

24. AttiliMuraro DJ, Stewart RD, Semenenko VA, Sandison GA. Combined use of
Monte Carlo DNA damage simulations and deterministic repair models to
examine putative mechanisms of cell killing. Radiat Res (2008) 169:447–59.
doi:10.1667/RR1046.1

25. Frese MC, Yu VK, Stewart RD, Carlson DJ. A mechanism-based approach to
predict the relative biological effectiveness of protons and carbon ions in
radiation therapy. Int J Radiat Oncol Biol Phys (2012) 83:442–50. doi:10.1016/j.
ijrobp.2011.06.1983

26. Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. A
comparison of mechanism-inspired models for particle relative biological
effectiveness (RBE). Med Phys (2018) 45:e925–2. doi:10.1002/mp.13207

27. Pihet P, Menzel H, Schmidt R, Beauduin M, Wambersie A. Biological
weighting function for RBE specification of neutron therapy beams.
Intercomparison of 9 European centres. Radiat Protect Dosim (1990) 31:
437–42.

28. Menzel HG, Pihet P, Wambersie A. Microdosimetric specification of radiation
quality in neutron radiation therapy. Int J Radiat Biol (1990) 57:865–83. doi:10.
1080/09553009014550991

29. Wambersie A, Pihet P, Menzel H. The role of microdosimetry in radiotherapy.
Radiat Protect Dosim (1990) 31:421–32.

30. Wambersie A. Contribution of microdosimetry to the specification of neutron
beam quality for the choice of the clinical RBE’in fast neutron therapy. Radiat
Protect Dosim (1994) 52:453–60.

31. Gerlach R, Roos H, Kellerer AM. Heavy ion RBE and microdosimetric spectra.
Radiat Protect Dosim (2002) 99:413–8. doi:10.1093/oxfordjournals.rpd.
a006821A

32. Wambersie A, Hendry JH, Andreo P, DeLuca PM, Gahbauer R, Menzel H,
et al. The RBE issues in ion-beam therapy: conclusions of a joint IAEA/ICRU
working group regarding quantities and units. Radiat Protect Dosim 122
(2006) 463–70. doi:10.1093/rpd/ncl447

33. Whitmore A, Sato T, Matsuya Y, Kase Y, Magrin G, Verona C, et al.
Development of a new microdosimetric biological weighting function for
the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to
238U. Phys Med Biol (2020) 27:87–123. doi:10.1088/1361-6560/abbf96

34. Booz J, Braby L, Coyne J, Kliauga P, Lindborg L, Menzel H, et al. Journal of the
International Commission on radiation Units and measurements. NP–NP
(1983). Report 36.

35. Kellerer AM, et al. Fundamentals of microdosimetry. Dosim Ion Radiat (1985)
1:77–162.

36. Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, et al.
Treatment planning for a scanned carbon beam with a modified
microdosimetric kinetic model. Phys Med Biol (2010) 55:6721. doi:10.1088/
0031-9155/55/22/008

37. NodaFurusawa C, Hirayama R, Inaniwa T, Kitagawa A, Matsufuji N, Noda K.
Adaptation of the microdosimetric kinetic model to hypoxia. Phys Med Biol
(2016) 61:7586. doi:10.1088/0031-9155/61/21/7586

38. Strigari L, Torriani F, Manganaro L, Inaniwa T, Dalmasso F, Cirio R, et al.
Tumour control in ion beam radiotherapy with different ions in the presence
of hypoxia: an oxygen enhancement ratio model based on the microdosimetric
kinetic model. Phys Med Biol (2018) 63:065012. doi:10.1575/1912/bco-dmo.
712761.1

39. Matsuya Y, McMahon SJ, Tsutsumi K, Sasaki K, Okuyama G, Yoshii Y, et al.
Investigation of dose-rate effects and cell-cycle distribution under protracted
exposure to ionizing radiation for various dose-rates. Sci Rep (2018a) 8:
8287–14. doi:10.1038/s41598-018-26556-5

40. DateMori T, Cosgrove V, Denis J, Gueulette J, Mazal A, Menzel H, et al.
Radiobiological effectiveness of radiation beams with broad LET spectra:
microdosimetric analysis using biological weighting functions. Radiat
Protect Dosim (1994) 52:347–52.

41. Rossi HH, Zaider M. Elements of microdosimetry. Med Phys (1991) 18:
1085–92. doi:10.1118/1.596616

42. Zaider M, Rossi BHH, Zaider M. Microdosimetry and its applications. Berlin:
Springer (1996).

43. Lindborg L, Waker A.Microdosimetry: experimental methods and applications.
Boca Raton: CRC Press (2017).

44. Wilson KS, Field SB. Measurement of LET spectra using a spherical tissue-
equivalent proportional counter. Phys Med Biol (1970) 15:657.

45. Lindborg L, Kyllönen JE, Beck P, Bottollier-Depois JF, Gerdung S, Grillmaier
RE, et al. The use of TEPC for reference dosimetry. Radiat Protect Dosim
(1999) 86 285–8. doi:10.1093/oxfordjournals.rpd.a032959

46. Schrewe H, Khvostunov IK, Cucinotta FA. The response of tissue-equivalent
proportional counters to heavy ions. Radiat Res (2002) 157:435–45. doi:10.
1667/0033-7587(2002)157[0435:trotep]2.0.co;2

47. Conte V, Moro D, Grosswendt B, Colautti P. Lineal energy calibration of mini
tissue-equivalent gas-proportional counters (TEPC). AIP Conf Proc Am Inst
Phys (2013) 1530:171–8. doi:10.3403/30106322u

48. Bradley PD, Rosenfeld AB, ZaiderM. Solid state microdosimetry.Nucl Instrum
Methods Phys Res B (2001) 184:135–57. doi:10.3403/30106322

49. Rosenfeld AB. Novel detectors for silicon based microdosimetry, their
concepts and applications. Nucl Instrum Methods Phys Res Sect A Accel
Spectrom Detect Assoc Equip (2016) 809:156–70. doi:10.1016/j.nima.2015.
08.059

50. Byun SH, Spirou GM, Hanu A, Prestwich WV, Waker AJ. Simulation and
first test of a microdosimetric detector based on a thick gas electron
multiplier. IEEE Trans Nucl Sci (2009) 56:1108–13. doi:10.1109/tns.2008.
2009214

51. Orchard G, Chin K, Prestwich W, Waker A, Byun S. Development of a thick
gas electron multiplier for microdosimetry. Nucl Instrum Methods Phys Res
Sect A Accel Spectrom Detect Assoc Equip (2011) 638:122–6. doi:10.1016/j.
nima.2011.01.179

52. Schuhmacher H, Dangendorf V. Experimental tools for track structure
investigations: new approaches for dosimetry and microdosimetry.
Radiat Protect Dosim (2002) 99:317–23. doi:10.1093/oxfordjournals.
rpd.a006793

53. Braby L. Experimental microdosimetry: history, applications and recent
technical advances. Radiat Protect Dosim (2015) 166:3–9. doi:10.1093/rpd/
ncv137

54. Magrin G. A method to convert spectra from slab microdosimeters in
therapeutic ion-beams to the spectra referring to microdosimeters of
different shapes and material. Phys Med Biol (2018) 63:215021. doi:10.
1088/1361-6560/aae655

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 57849225

Bellinzona et al. Ion Beam Radiobiological Microdosimetric Models

https://doi.org/10.1016/j.ijrobp.2008.02.037
https://doi.org/10.1016/j.ijrobp.2010.05.014
https://doi.org/10.3109/09553002.2011.611213
https://doi.org/10.3109/09553002.2011.611213
https://doi.org/10.1667/rr3010
https://doi.org/10.1667/RR0536.1
https://doi.org/10.1088/0031-9155/53/1/003
https://doi.org/10.1088/0031-9155/53/1/003
https://doi.org/10.1667/rr2842.1
https://doi.org/10.1667/rr2842.1
https://doi.org/10.1002/mp.12133
https://doi.org/10.1002/mp.12133
https://doi.org/10.1667/RR1046.1
https://doi.org/10.1016/j.ijrobp.2011.06.1983
https://doi.org/10.1016/j.ijrobp.2011.06.1983
https://doi.org/10.1002/mp.13207
https://doi.org/10.1080/09553009014550991
https://doi.org/10.1080/09553009014550991
https://doi.org/10.1093/oxfordjournals.rpd.a006821
https://doi.org/10.1093/oxfordjournals.rpd.a006821
https://doi.org/10.1093/rpd/ncl447
https://doi.org/10.1088/1361-6560/abbf96
https://doi.org/10.1088/0031-9155/55/22/008
https://doi.org/10.1088/0031-9155/55/22/008
https://doi.org/10.1088/0031-9155/61/21/7586
https://doi.org/10.1575/1912/bco-dmo.712761.1
https://doi.org/10.1575/1912/bco-dmo.712761.1
https://doi.org/10.1038/s41598-018-26556-5
https://doi.org/10.1118/1.596616
https://doi.org/10.1093/oxfordjournals.rpd.a032959
https://doi.org/10.1667/0033-7587(2002)157[0435:trotep]2.0.co;2
https://doi.org/10.1667/0033-7587(2002)157[0435:trotep]2.0.co;2
https://doi.org/10.3403/30106322u
https://doi.org/10.3403/30106322
https://doi.org/10.1016/j.nima.2015.08.059
https://doi.org/10.1016/j.nima.2015.08.059
https://doi.org/10.1109/tns.2008.2009214
https://doi.org/10.1109/tns.2008.2009214
https://doi.org/10.1016/j.nima.2011.01.179
https://doi.org/10.1016/j.nima.2011.01.179
https://doi.org/10.1093/oxfordjournals.rpd.a006793
https://doi.org/10.1093/oxfordjournals.rpd.a006793
https://doi.org/10.1093/rpd/ncv137
https://doi.org/10.1093/rpd/ncv137
https://doi.org/10.1088/1361-6560/aae655
https://doi.org/10.1088/1361-6560/aae655
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


55. Bolst D, Guatelli S, Tran LT, Chartier L, LerchML, Matsufuji N, et al. Correction
factors to convert microdosimetry measurements in silicon to tissue in 12C ion
therapy. Phys Med Biol (2017) 62:2055. doi:10.1088/1361-6560/aa5de5

56. Kase K. The dosimetry of ionizing radiation. Elsevier (2012).
57. Kellerer AM, Rossi HH. The theory of dual radiation action. Curr Top Radiat

Res (1972) 8:85–158. doi:10.1667/RRAV17.1
58. Kellerer AM, Rossi HH. A generalized formulation of dual radiation action.

Radiat Res (1978) 75:471–88.
59. Tobias CA. The repair–misrepair model of cell survival. Berlin: Springer.

(1980).
60. Tobias CA. The repair-misrepair model in radiobiology: comparison to other

models. Radiat Res Suppl (1985) 8:S77–95.
61. Curtis SB. Lethal and potentially lethal lesions induced by radiation--a unified

repair model. Radiat Res (1986) 106:252–70.
62. Curtis SB. Quantitative mathematical models in radiation biology. The lethal

and potentially lethal model—a review and recent development. Berlin:
Springer. (1988). p. 137–46.

63. Schürmann R, Vogel S, Ebel K, Bald I. The physico-chemical basis of DNA
radiosensitization: implications for cancer radiation therapy. Chem A Eur J
(2018) 24:10271–9. doi:10.1002/chem.201884161

64. Van Houten B, Santa-Gonzalez GA, Camargo M. DNA repair after oxidative
stress: current challenges. Curr Opin Toxicol (2018) 7:9–16. doi:10.1016/j.
cotox.2017.10.009

65. Lea DE, Catcheside DG. The mechanism of the induction by radiation of
chromosome aberrations in Tradescantia. J Genet (1942) 12:60–9. doi:10.1007/
BF02982830

66. Kuang Y, Nagy JD, Eikenberry SE. Introduction to mathematical oncology.
Boca Raton: CRC Press (2016).

67. Hawkins R. A microdosimetric-kinetic model of cell death from exposure to
ionizing radiation of any LET, with experimental and clinical applications. Int
J Radiat Biol (1996) 69:739–55. doi:10.1080/095530096145481

68. Hawkins RB. A microdosimetric-kinetic theory of the dependence of the RBE
for cell death on LET. Med Phys (1998) 25:1157–70. doi:10.1118/1.598307

69. Matsuya Y, Ohtsubo Y, Tsutsumi K, Sasaki K, Yamazaki R, Date H.
Quantitative estimation of DNA damage by photon irradiation based on
the microdosimetric-kinetic model. J Radiat Res (2014) 55:484–93. doi:10.
1093/jrr/rrt222

70. Chen Y, Li J, Li C, Qiu R, Wu Z. A modified microdosimetric kinetic model for
relative biological effectiveness calculation. Phys Med Biol (2017) 63:015008.
doi:10.1118/1.4958000

71. Manganaro L. Dose delivery time structure effects in particle therapy:
development of a time-resolved microdosimetric-kinetic model and
implementation of spatiotemporal treatment plan optimization. [Ph.D.
thesis]. Italy: University of Turin (2018).

72. Dikomey E, Franzke J. DNA repair kinetics after exposure to X-irradiation and
to internal beta-rays in CHO cells. Radiat Environ Biophys (1986) 25:189–94.
doi:10.1007/BF01221225

73. Fowler JF. Is repair of DNA strand break damage from ionizing radiation
second-order rather than first-order? A simpler explanation of apparently
multiexponential repair. Radiat Res (1999) 152:124–36.

74. Dale RG, Fowler JF, Jones B. A new incomplete-repair model based on a
‘reciprocal-time’ pattern of sublethal damage repair. Acta Oncol (1999) 38:
919–29. doi:10.1080/028418699432608

75. Carabe-Fernandez A, Dale RG, Paganetti H. Repair kinetic considerations in particle
beam radiotherapy. Br J Radiol (2011) 84:546–55. doi:10.1259/bjr/19934996

76. Schettino G, Ghita M, Richard DJ, Prise KM. Spatiotemporal investigations of
DNA damage repair using microbeams. Radiat Protect Dosim (2011) 143:
340–3. doi:10.1093/rpd/ncq485

77. Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, et al.
Use of the γ-H2AX assay to investigate DNA repair dynamics following
multiple radiation exposures. PloS One 8 (2013) e79541–12. doi:10.1371/
journal.pone.0079541

78. Schettino A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ. Repair of
HZE-particle-induced DNA double-strand breaks in normal human
fibroblasts. Radiat Res (2008) 169:437–46. doi:10.1667/rr1165.1

79. Asaithamby A, Hu B, Chen DJ. Unrepaired clustered DNA lesions induce
chromosome breakage in human cells. Proc Natl Acad Sci USA (2011) 108:
8293–8. doi:10.1073/pnas.1016045108

80. Prise KM. A review of DSB induction data for varying quality radiations. Int
J Radiat Biol (1998) 74:173–84. doi:10.1080/095530098141564

81. StenerlöwAhnström JA, Harper JV, Cucinotta FA, O’Neill P. Participation of
DNA-PKcs in DSB repair after exposure to high- and low-LET radiation.
Radiat Res (2010) 174:195–205. doi:10.1667/RR2071.1

82. Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Systematic analysis
of RBE and related quantities using a database of cell survival experiments
with ion beam irradiation. J Radiat Res (2013) 54:494–514. doi:10.1093/jrr/
rrs114

83. Dale RG, Jones B. The assessment of RBE effects using the concept of
biologically effective dose. Int J Radiat Oncol Biol Phys (1999) 43:639–45.

84. Carabe-Fernandez A, Dale RG, Jones B. The incorporation of the concept of
minimum RBE (RbEmin) into the linear-quadratic model and the potential for
improved radiobiological analysis of high-LET treatments. Int J Radiat Biol
(2007) 83:27–39. doi:10.1080/09553000601087176

85. Weyrather WK, Debus J. Particle beams for cancer therapy. Clin Oncol (2003)
15:S23. doi:10.1053/clon.2002.0185

86. Bird RP. Cysteamine as a protective agent with high-LET radiations. Radiat
Res (1980) 82:290. doi:10.2307/3575380

87. Bird RP, Zaider M, Rossi HH, Hall EJ, Marino SA, Rohrig N. The sequential
irradiation of mammalian cells with X rays and charged particles of high LET.
Radiat Res (1983) 93:444. doi:10.2307/3576024

88. Russo G, Attili A, Battistoni G, Bertrand D, Bourhaleb F, Cappucci F,
et al. A novel algorithm for the calculation of physical and biological
irradiation quantities in scanned ion beam therapy: the beamlet
superposition approach. Phys Med Biol (2015) 61:183. doi:10.1088/
0031-9155/61/1/183

89. MarchettoCiocca EL, Lyman JT, Tobias CA. Some effects of accelerated
charged particles on bacterial spores. Int J Radiat Biol Relat Stud Phys
Chem Med (1968) 14:313–30. doi:10.1080/09553006814551171

90. Kase Y, Kanai T, Sakama M, Tameshige Y, Himukai T, Nose H, et al.
Microdosimetric approach to NIRS-defined biological dose measurement
for carbon-ion treatment beam. J Radiat Res (2011) 52:59–68.doi:10.1269/
jrr.10062

91. Matsufuji C, Fleta C, Rodríguez J, Lozano M, Gómez F. Preliminary
microdosimetric measurements with ultra-thin 3D silicon detectors of a 62
MeV proton beam. J Instrum (2015) 10:P01008. doi:10.1088/1748-0221/10/01/
p01008

92. Bianchi A, Selva A, Colautti P, Bortot D, Mazzucconi D, Pola A, et al.
Microdosimetry with a sealed mini-TEPC and a silicon telescope at a
clinical proton SOBP of CATANA. Radiat Phys Chem (2020) 171:108730.
doi:10.1088/1742-6596/444/1/012058

93. Kiefer J, Straaten H. A model of ion track structure based on classical collision
dynamics. Phys Med Biol (1986) 31:1201.

94. Chatterjee A, Schaefer HJ. Microdosimetric structure of heavy ion tracks in
tissue. Radiat Environ Biophys (1976) 13:215–27. doi:10.1007/BF01330766

95. SakamaM, Kanai T, Kase Y, Komori M, Fukumura A, Kohno T. Responses of a
diamond detector to high-LET charged particles. Phys Med Biol (2005) 50:
2275. doi:10.1088/0031-9155/50/10/007

96. Inaniwa T, Kanematsu N, Matsufuji N, Kanai T, Shirai T, Noda K, et al.
Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment
planning at the National Institute of Radiological Sciences, Japan. Phys Med
Biol 60 (2015a) 3271–86. doi:10.1088/0031-9155/60/8/3271

97. TsujiiTsuji S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al.
GEANT4 - a simulation toolkit. Nucl Instrum Methods Phys Res Sect A Accel
Spectrom Detect Assoc Equip (2003) 444:63. doi:10.1016/S0168-9002(03)
01368-8

98. Aso T, Kimura A, Kameoka S, Murakami K, Sasaki T, Yamashita T. GEANT4
based simulation framework for particle therapy system. IEEE Nucl Sci Symp
Conf Rec (2007) 33:278–9. doi:10.1109/NSSMIC.2007.4436673

99. Zhu H, Chen Y, Sung W, McNamara AL, Tran LT, Burigo LN, et al. The
microdosimetric extension in TOPAS : development and comparison with
published data. Phys Med Biol (2019) 64:145004. doi:10.1088/1361-6560/
ab23a3

100. Magro G, Dahle TJ, Molinelli S, Ciocca M, Fossati P, Ferrari A, et al. The
FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose
calculations in carbon ion therapy. Phys Med Biol (2017) 62:3814. doi:10.
1088/1361-6560/aa642b

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 57849226

Bellinzona et al. Ion Beam Radiobiological Microdosimetric Models

https://doi.org/10.1088/1361-6560/aa5de5
https://doi.org/10.1667/RRAV17.1
https://doi.org/10.1002/chem.201884161
https://doi.org/10.1016/j.cotox.2017.10.009
https://doi.org/10.1016/j.cotox.2017.10.009
https://doi.org/10.1007/BF02982830
https://doi.org/10.1007/BF02982830
https://doi.org/10.1080/095530096145481
https://doi.org/10.1118/1.598307
https://doi.org/10.1093/jrr/rrt222
https://doi.org/10.1093/jrr/rrt222
https://doi.org/10.1118/1.4958000
https://doi.org/10.1007/BF01221225
https://doi.org/10.1080/028418699432608
https://doi.org/10.1259/bjr/19934996
https://doi.org/10.1093/rpd/ncq485
https://doi.org/10.1371/journal.pone.0079541
https://doi.org/10.1371/journal.pone.0079541
https://doi.org/10.1667/rr1165.1
https://doi.org/10.1073/pnas.1016045108
https://doi.org/10.1080/095530098141564
https://doi.org/10.1667/RR2071.1
https://doi.org/10.1093/jrr/rrs114
https://doi.org/10.1093/jrr/rrs114
https://doi.org/10.1080/09553000601087176
https://doi.org/10.1053/clon.2002.0185
https://doi.org/10.2307/3575380
https://doi.org/10.2307/3576024
https://doi.org/10.1088/0031-9155/61/1/183
https://doi.org/10.1088/0031-9155/61/1/183
https://doi.org/10.1080/09553006814551171
https://doi.org/10.1269/jrr.10062
https://doi.org/10.1269/jrr.10062
https://doi.org/10.1088/1748-0221/10/01/p01008
https://doi.org/10.1088/1748-0221/10/01/p01008
https://doi.org/10.1088/1742-6596/444/1/012058
https://doi.org/10.1007/BF01330766
https://doi.org/10.1088/0031-9155/50/10/007
https://doi.org/10.1088/0031-9155/60/8/3271
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/NSSMIC.2007.4436673
https://doi.org/10.1088/1361-6560/ab23a3
https://doi.org/10.1088/1361-6560/ab23a3
https://doi.org/10.1088/1361-6560/aa642b
https://doi.org/10.1088/1361-6560/aa642b
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


101. MairaniInaniwa T, Suzuki M, Furukawa T, Kase Y, Kanematsu N, Shirai T,
et al. Effects of dose-delivery time structure on biological effectiveness for
therapeutic carbon-ion beams evaluated with microdosimetric kinetic model.
Radiat Res 180 (2013) 44–59. doi:10.1667/RR3178.1

102. Hawkins RB, Inaniwa T. A microdosimetric-kinetic model for cell killing by
protracted continuous irradiation including dependence on LET i: repair in
cultured mammalian cells. Radiat Res (2013) 180:584–94. doi:10.1667/
RR13257.1

103. Hawkins RB, Inaniwa T. A microdosimetric-kinetic model for cell killing by
protracted continuous irradiation II: brachytherapy and biologic effective
dose. Radiat Res (2014) 182:72–82. doi:10.1667/rr13558.1

104. Inaniwa T, Kanematsu N, Suzuki M, Hawkins RB. Effects of beam
interruption time on tumor control probability in single-fractionated
carbon-ion radiotherapy for non-small cell lung cancer. Phys Med Biol
(2015b) 60:4105. doi:10.1088/0031-9155/60/10/4105

105. Deehan C, O’Donoghue JA. Biological equivalence between fractionated
radiotherapy treatments using the linear-quadratic model. Br J Radiol
(1988) 61:1187–8. doi:10.1259/0007-1285-61-732-1187

106. Fowler JF. The linear-quadratic formula and progress in fractionated
radiotherapy. Br J Radiol (1989) 62:679–94. doi:10.1259/0007-1285-62-
740-679

107. Yaes RJ, Patel P, Maruyama Y. On using the linear-quadratic model in daily
clinical practice. Int J Radiat Oncol Biol Phys (1991) 20:1353–62. doi:10.1016/
0360-3016(91)90249-4

108. McMahon SJ. The linear quadratic model: usage, interpretation and
challenges. Phys Med Biol (2018) 64:01TR01. doi:10.1088/1361-6560/
aaf26a

109. Furusawa Y, Fukutsu K, AokiM, Itsukaichi H, Eguchi-Kasai K, Ohara H, et al.
Inactivation of aerobic and hypoxic cells from three different cell lines by
accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res (2000) 154
485–96. doi:10.1667/0033-7587(2000)154[0485:ioaahc]2.0.co;2

110. AndoYatagai C, Suzuki M, Kanai T, Fujitaka K. LET and ion species
dependence for cell killing in normal human skin fibroblasts. Radiat Res
(2005) 163:494. doi:10.1667/rr3360
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