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In this paper, the maximum principle of variable-order fractional diffusion equations and the
estimates of fractional derivatives with higher variable order are investigated. Firstly, we
deduce the fractional derivative of a function of higher variable order at an arbitrary point.
We also give an estimate of the error. Some important inequalities for fractional derivatives
of variable order at arbitrary points and extreme points are presented. Then, the maximum
principles of Riesz-Caputo fractional differential equations in terms of the multi-term space-
time variable order are proved. Finally, under the initial-boundary value conditions, it is
verified via the proposed principle that the solutions are unique, and their continuous
dependance holds.

Keywords: maximum principle, fractional diffusion equation, fractional derivative with variable order, extreme point,
boundary value problem

1. INTRODUCTION

Fractional calculus Podlubny [1]; as a natural extension of traditional integer calculus, has become
a classical and essential branch of mathematics through a long historical development. Recently
Al-Refai and Baleanu [2], obtained the estimates of fractional derivatives with higher order for
extreme points, providing an approach to the establishment of the maximum principles, as well as
the results of the existence and uniqueness of solutions for the fractional differential equations
(FDEs). As a kind of well-known technique for handling FDEs, the maximum principle may
facilitate to acquire the key access to the solutions in the absence of any prior detailed knowledge
about the solutions Protter and Weinberger [3]. Liu et al. [4] derived a maximum principle for
fractional differential equations (VOFDEs, for short) with multi-term time variable order
0<a(¢,r)<1 and space variable orders 0<y((,7)<1 and 1<g({,7)<2 in the sense of Riesz-
Caputo, and showed the uniqueness of solutions as well as continuous of VOFDEs via the
dependance. Ye et al. [5] investigated the solutions maximum principle. More researches in this
area can be consulted in Luchko [6-8]; Li et al. [9]; Al-Refai and Luchko [10]; Yang et al. [11];
Coronelescamilla et al. [12]; Hajipour et al. [13].

However, the restriction for most of the aforesaid fractional diffusion equations is that their orders
are constant. Such a restriction was relaxed by Samko and Ross [14] via a proposed variable-order (VO)
operator to describe the diffusion process. In fact, VOFDE:s are widerly used as powerful tools in many
research topics, such as visco-elasticity Coimbra [15]; oscillation Ingman and Suzdalnitsky [16];
anomalous diffusion Sun et al. [17]; etc. For more applications of fractional differential equations,
please refer to Cooper and Cowan [18]; Liu [19]; Sun et al. [20]; Liu and Li [21]; Yang [22], etc.
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The contributions of this paper can be summarized as follows:

(1) The higher derivative of fractional function with variable order
is given. On the basis of it, three useful theorems are given,
which provide theoretical guarantee for the applications.

(2) The maximum principle for one-dimensional multi-term
space-time higher VOFDEs is given.

(3) Based on the proposed method, a concrete example is given
for the practical applications.

The paper is structured as the following. In Section 2, we
recall some fundamental definitions that will be used in this
paper. In Section 3, we derive some equalities and inequalities
of the higher VOFDE:s at arbitrary points and extreme points.
We also give an estimate of the error. In Section 4, by virtue of
these important inequalities, we establish the maximum
principle for Riesz-Caputo FDEs with multi-term time
variable order and space variable orders. In Section 5, based
on the given principle, the uniqueness of solutions with their
continuous dependance in the present of initial-boundary value
conditions are strictly proved.

Notations: Throughout this paper, ¢ denotes the space variable
and r denotes the time variable. Q1 := (0,L) x (0, T], Qr and 0Q7
are the closure and the boundary of ar, respectively. «(-,-), y (-, )
and g (-, -) represent binary VO functions. It is supposed that the
VO functions a,ay, . . ., a,, f and y satisfy that

1<o, (1)< < () <a((,7)<2, ((7)€Qr,

where (¢,7) € Qr, (¢ 1) € (1,2] and y(¢, 1) € (0,1]. Also, the
functions e(¢, 1), m(¢, 1), n(¢,r) and a; (¢, 7),i=1,2,..
supposed to be all continuous on Qr with m(¢,7) >0, n({,7) >0
and e((,7) <0.

., n are

2. PRELIMINARIES

Throughout this paper, R, denotes the set of all positive real
numbers. Let C"[0,T] = {f : f" € CJ0, T]} be a Banach space
with the norm feor = max;c jo,7] [|f(t |f(”) (t)| For
more details about the relevant concepts and results, please see
Podlubny [1]; Liu et al. [4]; Kilbas et al. [23].

Definition 1. Let f € C[0, T] and « : (0,L) x (0,T) —» R, bea
VO function. The Riemann-Liouville fractional integrals of left-
side VO and right-side VO are defined as

€f (1) T ) @ an>o
Ig,‘rﬂ T)=
Lf (D) wlo3) =
’ (_ 1)[a(()7)] i 90(((,1)—1 9)d9 ( 0
16 (1) = | ey ), - T @ a8 a@n>0,
f(), s =0,

respectively, wherer[a (¢, 7)] = Jgo o) 1e0dg and [a (¢, 7)] is the
smallest integer not less than a((, 7).
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Definition 2. Let f € C"[0, T] and a : [0,L] x [0, T] > R, bea
VO function. The Caputo fractional derivatives of left-side VO
and right-side VO are defined respectively as

DI (1) = I{;;““’”i (1)

N pay |, o @as no1<a@n<n
f<n) (T)’ 0‘((’ T) =n,
ﬂ((T)f(T) ;l a((r) f(T)
(_71) ! _ g\ra({n)-1¢(n) _

PR jo“ TS (98, n-1<a(lr)<n
FO ), a((,7) =n.

Definition 3. The VO Riesz-Caputo fractional operator CR’; @) of
VO (¢, 7) with n — 1 <g(¢,7)<n and 0<¢ <L is defined as

Dﬂ (T))w((, 1),

jgo g (6r)-1g=0 g, Paee = 2 'cos™ ! [B(¢, 1)n/2] s

C
B((1) ._ (&)
Rw(( 1) = —Pmm( Dﬁ(

where T« (¢,7)] =

the coefficient with g(¢,7)#1,2,3,..., and

¢ (&) ; N (S lanw (9, T)
Do WD) = £ g ) j « o
C B _ (_1) _ n,,;((,f),la"w(& T)
Dff W((,T)—ir(n_/),((,_r)) L( {) e

Moreover, if g(¢,7) = n, CR?(Z’T)W((, 7) = [0"w(¢, 1)/0¢"].
In this paper, we are interested in the following VOFDEs:

Prr EDIW () = = [m (1) RECOw((, 1)

+n((, T)CR}((‘T)W(C, 7)

+e((,Tw((,7)]
+F(,t,w), ({,7) € Qr, (D

where P, .. (gD,) denotes the multi-term time VO Caputo
fractional derivative operator, i.e.,

Poca] ..... Ay (th)W c T) (T)W(( T)

+Zai(C,r)(fD;"'“”’w(C,r). @

3. THE VARABLE-ORDER FRACTIONAL
DERIVTIVES AT ARBITRARY POINTS AND
EXTREME POINTS

In this section, we are in position to give some basic results.

Theorem 1. Letf € C"[0, T]. and 5, (-, -) be a VO function. If ,,
satisfies

n—1<n,({,1)<n, Y1) €y,

Frontiers in Physics | www.frontiersin.org

November 2020 | Volume 8 | Article 580554


https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Xue et al.

then for any arbitrary point o € (0, T), the following equation holds

Dq,,((fo)f(,l, Tk 1, ({,70) h(k) (0)

0,79

Z k+1—11n (1)) °

1

e U 1 " _ ) M (Gro)-1
+F[—’1n((> To)) JO (ro=9)" 1 (s)ds,

n-1
=Y P () - 70)/K1].

Proor. We shall pkr(())ve this by induction argument. If
0<#; (¢ 19) <1, the result has been obtained in Liu et al. [4].
Assume that this is true for n - 1<z, (¢, 79) <n. Now we check
that it still holds whenever n<y,,, (¢, 79) <n+ 1.

Let 7,1 (¢ 10) = 8(¢,70) + 1, where 0<8(¢,79) <1. Then n -
1<n—1+06(1)<n Define n,(¢,7) =n—1+08(7). Then.
n—1<n, (&) <n.

By the induction hypothesis, one obtains

where h,_; (v) = f (1)

n—1

C D' 1+5((‘rg)f(T ) —

k+1-n—¢ k)
0 o T0+ n-8({,10) h( 1(0)

k:ork+2 n—=35(¢, 70)]
; 0 _ n6(10
+r[1—”—5((,fo)]j (Fo sy 7 i (9

Substituting f' (r) for f (z) in the preceding equation, one has

n-1
D 1+8((10)f (T ) _
k=0

C

k+1-n— 8((10) (k) 0
I‘k+2—n—6((‘ro)]T 1(0)

1
T =n-0(C )]

where z,_; (7) = f' (z) - nil [F %D (20) (z = )" /K1),

Obviously, we have: =0

(1) T (2) = 201 (2),

(2) hy(20) = u(20) = hy (x0) = =+ = h{" () = 0

Hence,

h (1) = (10— )", (T),
where u, () € C[0, T] and D (0) = z®, (0).
Integrating by parts, we have
j (to =) "Mz, (9)ds = (10— 97" W, ()"

0
k)

— (n+6((, 1)) x J (1o —5)" "0 (5)ds.

0

So
. hy, () . 1-8(3,m0)
lim ——————— = lim (79 —s)" **"™u, (1) =0,
soTp (TO _ S)n+5((,10) 510 0 U
v{ € [0, L],
and

70
J (10— 902 ()ds,
0

The Maximum Principle for VOFDEs

e L)
I'(1-n-3(( 1)) jo (o =3) Zn-1 ()ds
7", (0) n+0((, 1)
T(1-n-08({10) T(1-n-08(( 1))

J " (10 — 50O (9)ds

0

7" (0) 1
F(l—n—é((To)) I(-n-6(, 1))

| o sy e, 9

0

Thus,

n-1

c 1
Dn—l+5((,‘ro) (1) = — Tk+1—n—5((,ﬂ))

oro S (70) gor(k+2—n—5((,fo)) 0

—n-08({,70)
(k+1) 7y _ O h, (0)
I P (T

1 o - n=8(8To)-1
+—F( o) IO (19— ) h, (s)ds

S 1 k-n-38((,70) 1, (k)
=- 7] “h,” (0
k;l“(k+1—n—6(( 0)'° ©

~ Ta"i‘s((ﬂo)hn (0)
I(1-n-38({ 1))

1

o _ - 8(GTo)-1
+—F( T F jo (19— ) h, (s)ds

_ N 1 b))
- ZF(k+1—n—<’)‘((10))° b, (0)

70

1 _ = 0(Gro)-1
+F(—n—8((,ro))£(10 s) h, (s)ds

n-1 1
- _ Tk-nm (¢:70) h(k) (0)

r(k +1- Mt (( TO))

k=0

70

! j (10 — ) E 1 (5)ds,

" r( ~ Nun1 (C> TO)

Hence Dn T(]l+6(( -ro)f ( ) _ D(Y)lt(t?(( ro)f( ) _ DV/ et (6 m)f (TO)-

This complete the proof.

Remark 1. If #,({,7) == in 07 (n—1<a<n) and 7y is an
extreme point, then Theorem 1 coincides with Al-Refai and
Baleanu [2]’s result. Thus, our result generalizes AL-Refai and
Baleanu’s original idea.

Theorem 2.

Let f € C"[0,T].
satisfies

Suppose that the VO function gz, (¢, 7)
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n—1<n,({,1)<n, Y1) € Q.

For any arbitrary point 7o € (0, T), one gets

(1) For any nonnegative f(") (r) with 7 € [0, 79], then

n-1 1

71, ((70) _ k=1, ({,70) 1. (k)
P2 D ey O

(2) For any non-positive f(”) () with 7 € [0, 7], then

= 1 _
DﬂnT((To) )< — Tk nn((,ro)h(k) 0
0,79 f( 0) kzz:or(k_l_l_rln({’ro))() n—l( )
n-1
where h,_; () = f (x) - kz (f® (20) (x = 0)*/K).
=0

Proor. Employing the Taylor series expansion, we know that
there is some 7y with <9, (r) < g such that

n-1 r(k _ " B .,
hyer (7) = f (1) - zf”(fo)(r 7o) fH(Sﬂ(Tr),)!(T )

k=0

So, we have

m, =

1 o
)j(m—9”“m4m4@¢
0

r( - I’In (() TO)
_ 1 0 _ 1, (§,10)— lf )(9 (T))(T TO)
RETAED) J, @9 i

_(_—1)” 0 AN (o L (G10)—1 £ (n)
e ] MRS

(3)
Note that n — 1<y, (¢, 79) <n, and

(-1, m){ >0

if nis even,
otherwise.

Therefore, we get ((=1)"/r (=1, (¢, 7))) >0, and
my = { 20, iff"(r)20,
<0,

otherwise.
Theorem 3. Let f € C"[0,T], and |f™(z)|<M, for all
7 € [0, T]. If the VO function 5, (¢, ) satisfies
n—1<n,({,1)<n, Y1) €Qr,
then for any arbitrary point 7y € (0, T), the following equation
holds:

TI(; ’ln((‘fu)h k) (0) +m,,

1, ($:70) = 5 !
DOTo f (7o) = Z}F(kﬂ—ﬂn(f’fo))

where iy 1 (1) = f (1) = 3 (F®) (r0) (5 — r0)* /K1), and
k=0

Mtn 1, ({,70)
n'(n -1,({ 1) |F

’1n ((’ TO))|.

The Maximum Principle for VOFDEs

ProoF. According to Eq. 3, one has

70

" :¢J
" "!r(—ﬂn(C)To)) 0

As a result,

(1o — )" EOTIFO (9 (5))ds.

M
n'|F( M, (() TO))

Mtg_v” (¢570)
nt(n=n, (7o) (-

To
il < [ o —gymemag
0

77,4 (C) TO))l'

Theorem 4. Given a VO function « : [0,L] x [0, T] — R, with
1<a(,7)<2 for all (§r) €Qr. If feC*[0,T] attains its
maximum at 7y € (0, T), then it holds that

«({,70) -
I2-a(l )) o
T(l, —a({,70)

Te-alr)y O

Moreover, if f' (0)>0 , then D"‘((’°)f(ro)<0 V¢ e [0,L].
ProoF. Let ¢ (1) := f (v) f(ro) € C?[0, T). Obviously, we have

DR (1) < “EWIf(0) = f (10)]

(1) ¢(T)S0,T€ [0,T];

(2) ¢(w0) = ¢'(z0) = 0 and ¢" (9) <0;
3) ¢(r) = (0 - 2)?-v(:) where veC[0,T] and v(:)<0,
Vr e [0, T]

It can be easily verified that
“DEI(r) = DS (0¥ () € Q

By Theorem 1, we obtain

- T(l) a({.10)
DOTO ¢(10) = m¢ (0)
(X(( TO) (Tn)¢(0)

r@2-a(, To)) fo
N (a(g10) = 1) - a((, 70)
I'(2-a({,70))

j (70 — 961 (5)ds
0

Since for all 7€ [0,7],¢(s)<0 and ¢(z) = (TO—T)ZV(T), it

follows that M := max, ¢ [0,V (7) <O0.
Hence,

J " (-9 s

J )17y (6)ds

MJ (1o —5)"” «(Gr0) g

-1 70
=M (1 _3)2*0‘((,10)
2-a((1y) " 0
g*“((ﬁfu)
M- <o,V e 0Ll
2- (X((, TO)
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Therefore
1-a({,70)
Dy (1) = Taat? ©
0((( To) ﬂx((m)(p(o)

IQ2-a, To)) o

06((, TO) - 1) 3 0‘(() TO) JTO (T

_ o malro)
T2 -alm) 0=9) v(s)ds

e a((t) =1 _ym
T2- a(c,ro»"’ O+ rGa o)) oo
Callt) =1 e 5 oo
“Te-all, o» n O = f el - ra ey O

Consequently, D’”(“‘))f (19)<0 for all ¢e€ [0,L] whenever

f)=o0,

4. THE MAXIMUM PRINCIPLE

In this section, we will display and show the maximum principle
for one-dimensional multi-term space-time higher VOFDEs.

For convenience, the symbol Qg, is used to denote the
operator given by

=m0 Rl D)+ n( D) Rw (1)
+e(l,)w((, 7).

Qﬁ,yw (() T)

It is easy to see that Q, is a space VO operator on {.
Theorem 5. Suppose w(¢,7) € C*2 (Qr) and

Por,le,...,zx,. (CDO,I)W((> T) + Qﬁ,yW(C’ T) =0,

If (0w/0()|;—o =0 but (0w/0¢)|,-; <0 whenever 0<r< T, then

V((, T) € QT-

max w({,7) <max{ max w({,7),0¢,
(&) eQr ({,1)€0Qr

Proor. We prove this by contradiction. Assume that there exits
((0, To) € Qr such that

w((0,10)>max{ max W((,T),O]» =M=0.
(¢r)€dnr
Let w* (¢, 1) =w(51) + (/2) ((T =2)/T)* for all (<) € Qr,

where € = w(¢,19) — M > 0.
Precisely, we have

@ @ et
D”‘ W (1) = D”‘ OWw(1) + = ———————
(8 (&) TZ TG aln)
B . . )
DEEIW (1) = DECOW({( D)t g o i=1,2,...,n,

Tz r(3-w (1)
and

c 7). % c \T
{ R){’((’ )W (c,‘[’) = R)(/(( )W(é,‘[),

C 7). C ,T
RE({’ )W ({,T) = R[g(( )W(C,T).

The Maximum Principle for VOFDEs

This implies that

2

c,r)+§(T;’) WG+

W* ((’ T) = W( (() T) € ﬁT;

Thus,

w ({oT0) >W((pTo) =M +eze+w((,t) 2w ({,1) +§,
(¢, 1) € 0Q)y.

This means w" fails to reach the maximum value on the boundary
dar. Assume that w* obtains the maximum value at (¢, 1) € Q7.
It follows that

w (1) 2w (o To) >e+ M2e>0.

Trivially, one has

Pa,al,“,,an (CDO,T)W* (C: T) = Pa Q15

e

(CDO,T)W ((: T)

€ 2 «; (1)

& i“
T rGoaln) & TG- a,(c )

i=1

@)
and

QW' (L1n11) = p(L 1) REG™ W ({1, 11)

+q(C0m) R (8 1) + e ()W (47)

= p (L) R (1) + q (G 1) R ((,7)
+e(C, )W ((,11) = Qpyw((1,11) = e((r, )W ((1,11)

+e((1>T1)W*(Cl)TI Qﬁyw((b‘rl)-"e(Cl)Tl) ( tl) .
()

Note that g (¢1,71) =0 and p (¢, 71) > 0, which follow by applying
Theorem four in this paper along with Theorems 3.2 and 3.3 in
Liu et al. [4]. By virtue of Eqs 4 and 5, we have

Pot,oq,...,ot,1 (CDO,T)W(CI’ Tl) + Qﬁ,yw((li Tl)

2

, T-1
= Pa,oq ..... oy (CD(),T)M’a< (Cl) Tl) - e((b Tl)g(T‘r)

€ [ T?*"‘(Q,Tl)

a (G )T ’”]

- +
T2 [FG-al,m) & TG-a(l,n)
T%“x((lx‘rl)

N &
+ Qﬁ,yw (CD TI)S _E [m

2-a; ({1,71)

a; (¢, 1) - 11 1/T -1\
+Z TG-alnn) ]Jre((l’“)e[l_i( T )]<O'

i=1

This is a contradiction to our assumption that
Pot,al,“,,ot,l (CDO,T)W(C) T) + Qﬂ,yw((> T) > 0) V(() T) € QT'

This completes the proof.
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If we substitute —w for w in Theorem 5, the minimum
principle is obtained as follows.
Theorem 6. Suppose w((, 1) € C>2(Qr), and

Pogy,ar (‘Do )W ($,7) + Qpuw((,7) <0, V({,7) € Qr. (6)

If (0w/0¢)|;=o <0 and (0w/0¢)|-; =0, for all r € [0, T], then

min w({,7)>min{ min w({1),0},
(LW (¢med0r

where dar is the boundary of Qf.

5. APPLICATIONS

In this section, we discuss multi-term space-time higer VOFDEs
in the one-dimensional case:

Peatran GDIW (G, 1) + Quw (§1) = f (5 0), ($1) € Qr, (7)
with the initial conditions

w((,0) =0((),{ € [0,L]. ®)

The boundary conditions are taken into consideration as below:

W(O, T) = kl (T)>
w(L, 1) = ky (1),

T€[0,T],
7€ [0,T]. ©
By Theorems 5 and 6, we can get the following theorems.

Theorem 7. Suppose f(({,7)>0, (1) € Qr;0({) <0, €
[0,L]; k1 () <0,k (r) <0,7 € [0, T]. If w((, 7)€ Cc?? (Qr) is a
solution of the problem Eqs 7-9 with (0w/9()|,-¢>0 and
(0w/0¢)|,= <0 for all 7 € [0, T], then w({,7) <0, ({,7) € Qr .

Theorem 8. Suppose f ({,7) <0, (¢,7) € Qr;0({) =0,¢ € [0, L];
ki (1)20,ky (1) 20,7 € [0, T]. If w(¢, r) € C*?(Qr) is a solution of
the problem Eqs 7-9 with (0w/0¢)|.-g <0 and (0w/0¢)|,-; =0 for
all - € [0, T], then w(¢,7) 20, (¢, 7) € Q7.

Remark 2. If f (¢, r) = 0, then, according to Theorem 7 and 8,
we know that the diffusion problem Eqs 7-9 with zero initial and
boundary conditions permits only zero solution in C%? (Qr).

Consider the next nonlinear diffusion equation

Peor CDor)W(87) = =[m (D) RECw (¢, 7)
(D) Rl D) + e Dw (7)) (10)
+F({,,w), ({,1) € Qp.

Theorem 9. Assume that the partial derivative 0,F =
0,,F({,,w) exists and satisfies 0,,F (¢, 7, w) —e({,7)<0 for all
(&, w) € r x R.If (0W/0¢)|,—9 = 0 and (0w/0¢)|,-; = 0 for all
v € [0, T], then the problem Eqs 8-10 has at most one solution
w=w(t1), (1) € Qr in C*2(Qr).

PRrOOE. Suppose that wy, w, € C>% (Qr) are two solutions of the
problem Eqs 8-10. Let w = w; — w,. Then

Pucyronsy (CDor)w((,7) = = [m (& D) RECIw (1)
+ 107 R (1) + e TIw ()] + F ({7, w)
—F((, T, w).

The Maximum Principle for VOFDEs

Since the homogeneous initial and boundary conditions are
fulfilled by w, one has

W((> T) =0, ((, T) € 807.

Owing to the existence of d,,F = 0,,F (¢, 7, w), it holds that

F(l,t,w) - F({,7,wy) = g—i (W) (w1 ({, 1) = w2 (. 7))

for all (¢, r) € O, where w* = (1 — @)w; + gw, for some 0<p< 1.
Consequently,

Proran (D)W (1) = =[m (1) RECDw((, )+
(00 Rl D] + b w D), ()
W(() T) = 0) (() T) € aQT)

where h(¢,7) = (OF/0w) (W*) —e((,7) <0 for all (1) € Q7.
By Theorem 7, w (¢, 7) <0 holds for all (¢, ) € Q7. Conversely,
w(¢,7) =0 is also true by using Theorem 8. So, w(¢,7) =0, ie.,

wi($,7) =w (8,7), V(7)€ Qr.

This completes the proof.

6. CONCLUSIONS

This paper serves as a survey on the maximum principle and the
estimates of time higher VOFDEs. The proposed maximum
principle contributes to verify some important properties of
solutions, including the uniqueness and the continuous
dependance with initial-boundary value conditions being taken
account. In the future, we will put attention to the solutions for
problem Eq. 1 in more general forms, and investigate the
numerical solutions with their applications.
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