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The Peregrine soliton is an exact, rational, and localized solution of the nonlinear

Schrödinger equation and is commonly employed as a model for rogue waves in physical

sciences. If the transverse variable is allowed to be complex by analytic continuation while

the propagation variable remains real, the poles of the Peregrine soliton travel down and

up the imaginary axis in the complex plane. At the turning point of the pole trajectory,

the real part of the complex variable coincides with the location of maximum height of

the rogue wave in physical space. This feature is conjectured to hold for at least a few

other members of the hierarchy of Schrödinger equations. In particular, evolution systems

with coherent coupling or quintic (fifth-order) nonlinearity will be studied. Analytical and

numerical results confirm the validity of this conjecture for the first- and second-order

rogue waves.

Keywords: quintic nonlinearity, coherent coupling, pole trajectories, rogue waves, nonlinear Schrödinger

equations

1. INTRODUCTION

The Peregrine soliton is an exact, rational solution of the nonlinear Schrödinger equation (NLSE)
[1]. The NLSE is widely used to model wave packet dynamics in various disciplines in physical
science, e.g., fluid mechanics and optics [2, 3]. Arising from this algebraically localized nature,
the Peregrine soliton is frequently employed in engineering applications to describe rogue waves,
unexpectedly large displacements from equilibrium configurations or a tranquil background [4–6].

The Peregrine soliton is non-singular if the NLSE is in the focusing regime, where second-order
dispersion and cubic nonlinearity are of the same sign. Analytically, the properties of the Peregrine
soliton have been studied intensively, e.g.,

(a) an amplitude three times the plane wave background,
(b) a wave profile with a central maximum and two minima on the sides, and
(c) the modulation instability of the background plane wave and the energy cascade phenomena

being closely related.

Experimentally, the occurrence of rogue waves is realized through wave channels in hydrodynamics
and fiber laser setting in optics [7]. Our goal is to provide still another perspective, namely,
utilizing the dynamics of pole trajectories in the complex plane to elucidate the properties of rogue
waves [8–10].
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Employing the concept of poles and singularities in the
complex plane had actually been initiated in the field of nonlinear
waves earlier. Specifically, the elastic collisions of solitons for
the Korteweg–de Vries equation (KdV) had been investigated
through this technique [11, 12]. More precisely, the time
coordinate of KdV is permitted to be complex by analytic
continuation. The trajectories of the poles of the exact two-soliton
solution are then traced in the complex plane.

The objective now is to apply this concept to the NLSE,

iAt + Axx + σ |A|2 A = 0, (1)

and the higher-order members of this hierarchy, where A is
a slowly varying, complex-valued envelope of the wave packet
and σ is a real parameter. The variables t and x will represent
slow time (spatial coordinate) and group velocity frame (retarded
time) in the setting of fluid mechanics (optics), respectively. We
shall adopt the terminology of fluid mechanics in the present
work. Mathematically, time t of Equation (1) is often termed
the propagation variable, while space x can be labeled as the
transverse variable.

A preliminary attempt to look into the properties of poles for
rational solutions of NLSE was started earlier in the literature
[13], where the distribution of poles in the complex plane was
tabulated at a specific time (or, more precisely, at t = 0). Here
a full effort is invested to study the trajectories of poles as
time evolves.

The sequence of presentation of results can now be explained.
A conjecture on pole trajectories for the nonlinear Schrödinger
equation (Equation 1) is first explained (Section 2). A correlation
on the locations of maximum height of a rogue wave in the
physical space and the real parts of the poles in the complex plane
is proposed. How this conjecture can also be verified for the more
complicated case of coherently coupled Schrödinger equations is
then elucidated (Section 3). We then illustrate the same scenario
for a Schrödinger equation with quintic nonlinearity (Section
4). Finally, we discuss physical insights and draw conclusions
(Section 5).

2. THE PEREGRINE SOLITON

Analytically, the Peregrine soliton of Equation (1) is given by

A = α exp
(

iσα2t
)







1−
2
(

1+ 2iσα2t
)

σα2
(

x2 + 2σα2t2 + 1
2σα2

)







(2)

and thus non-singular solution occurs only for σ > 0. The free
parameter α measures the amplitude of the background plane
wave. The maximum height is three times the background plane
wave and occurs at x = t = 0. If the variable x in Equation
(2) is allowed to be complex by analytic continuation, poles will
occur at

x = ±
[

2σα2t2 + 1/
(

2σα2
)]1/2

i.

As time t evolves from “negative infinity” to “positive infinity,”
the pole in the upper half plane moves down the imaginary axis

of the complex x plane for negative t, changes direction at the
“turning point” at t = 0, and travels up the imaginary axis again
for positive t. The maximum height of the rogue wave (Peregrine
soliton) in the physical space occurs at the location x = 0, which
is the real part of the turning point in the pole trajectories in the
complex x plane.

Hence, we can formulate a conjecture:

Conjecture
The spatial locations of the points of maximum heights of a rogue
wave in physical space will coincide, or closely correlate, with the
real parts of the poles of the rogue wave solutions in the complex
plane at points where the pole trajectories reverse directions.

For the Peregrine soliton of the nonlinear Schrödinger
equation, this conjecture holds trivially from consideration of
Equations (2) and (3). The challenge now is to test this conjecture
for more complicated higher members of nonlinear Schrödinger
hierarchy. In this work, we select systems with coherent coupling
and quintic (fifth-order) nonlinearity as test cases.

As second- and higher-order rogue waves typically have four
ormore trajectories for poles in the complex plane, not all turning
points will correspond to the maximum heights of rogue waves.
The precise necessary and sufficient conditions for this matching
still require intensive research efforts in the future.

3. SYSTEM OF SCHRÖDINGER
EQUATIONS WITH COHERENT COUPLING

3.1. Verification of the Conjecture
In systems with multiple waveguides, e.g., optical fibers with
birefringence [3], phase-sensitive or coherent coupling can occur.
More precisely, for fibers with strong birefringence, the phase-
sensitive portion of the four-wave process oscillates rapidly and
can be eliminated on averaging. On the other hand, in the regime
of weak birefringence, coherent coupling cannot be ignored and
forms a critical component of the dynamics. More precisely,
the Schrödinger equations with coherent coupling (∗ = complex
conjugate; A, B= slowly varying envelopes) are:

i
∂A

∂t
+

∂2A

∂x2
+ 2(|A|2 + 2|B|2)A− 2B2A∗ = 0 ,

i
∂B

∂t
+

∂2B

∂x2
+ 2(|B|2 + 2|A|2)B− 2A2B∗ = 0 . (3)

Terms of the forms |A|2A, |B|2A, B2A∗ will measure the physical
effects of self-phase modulation, cross-phase modulation, and
coherent coupling, respectively. Partial derivatives of t and x will
indicate the rates of change with respect to the propagation and
transverse variables, respectively. We shall still refer to them as
“time” and “spatial coordinate,” slightly bending their meaning
from the original optical context. The algebraically localized,
exact rogue wave solutions are given in the literature earlier
as [14]

A =
N1 exp(2it)

D00
,

B =
N2 exp(2it)

D00

(4)
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FIGURE 1 | Wave profile of the intensity of the wave envelope in physical

space, |A|2 (Equation 4 through Equation 7), vs. spatial coordinate x and time t,

b = 1.5. The rogue wave has one single maximum. The profile for |B|2 is similar.

where (b= a free parameter)

N1 = 8(−1+ b)(5− 2b+ 2b2 + 20it − 40t2

+6x+ 4bx+ 10x2) , (5)

D00 = 25− 20b+ 24b2 − 8b3 + 4b4 + 144t2

+352bt2 − 96b2t2 + 1600t4 + 60x+ 16bx

+8b2x+ 16b3x+ 480t2x+ 320bt2x

+136x2 + 8bx2 + 56b2x2 + 800t2x2 + 120x3

+80bx3 + 100x4 , (6)

N2 = −25+ 4b2 − 8b3 + 4b4 − 72it − 176ibt

+48ib2t − 256t2 + 352bt2 − 96b2t2

−1600it3 + 1600t4 − 24bx+ 8b2x+ 16b3x

−240itx− 160ibtx+ 480t2x

+320bt2x+ 36x2 + 8bx2 + 56b2x2 − 400itx2

+800t2x2 + 120x3 + 80bx3 + 100x4 . (7)

We can now describe how the conjecture in Section 2 can be
verified in the present case:

3.1.1. Physical Space
The wave profile will depend critically on parameter b, which
creates a one-dimensional degree of freedom for the system. For
a typical value, say b = 1.500, the wave intensities, |A|2 and |B|2,
will exhibit one single maximum in a three-dimensional plot of
intensity vs. space (x) and time (t) (Figure 1). This feature is
also vividly highlighted in a planar contour plot (Figure 2). Of
particular relevance to the present study is that this maximum
occurs in physical space at the location x =−0.600.

3.1.2. Complex Plane
If we now consider the transverse variable x in Equation (3)
as complex by analytic continuation, singularities or poles will
occur when the denominator D00 of Equation (4) vanishes. The

FIGURE 2 | Planar plot of the wave intensity |A|2 in physical space vs. the

spatial coordinate x for one particular instant in time t, Equation (4) through

Equation (7), b = 1.5. The maximum height occurs at the spatial location of

x = −0.600.

FIGURE 3 | The trajectories of poles in the complex x plane, i.e., zeros of the

denominator D00 of Equation (4) to Equation (6): imaginary part of the poles vs.

time t. At the turning points of the curves, the real part of the pole is −0.600,

which is the spatial location of the point of maximum height in physical space.

numerical values can be readily found by Newton’s or other
standard methods. As D00 is a polynomial of degree four in x
for any given t, there will be four poles. For the present case of
b = 1.500, a plot of the imaginary parts of the poles vs. time
t is illustrated in Figure 3. At the “turning point,” where the
movement of the poles (with respect to time) changes direction,
the real part is again−0.600.

Other than an apparently fortunate coincidence, this rather
amazing match also touches a deeper theoretical question. In
principle, the locations of maximum intensities (|A|2, |B|2) can
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FIGURE 4 | Wave intensities |A|2 (top) and |B|2 (bottom) vs. space x and time

t, clearly illustrating the “double peak” structure.

be determined by calculus using the expressions of Equation
(4) through Equation (7). However, the present conjecture does
propose another route. More precisely, we only need to select
a portion of the complete analytical solution, namely, D00 in
the present case, and determine the location of the poles in
the complex plane by extending the transverse variable by
analytic continuation. On the other hand, not all points involving
a change of direction of pole trajectories will automatically
correspond to peaks of rogue waves. The precise necessary and
sufficient conditions are still not clear. On a broader question,
whether this association between maximum heights in the
physical space and pole trajectories in the complex plane will
hold generally for all “soliton equations” remains open. Further
investigative efforts are required.

3.2. Rogue Waves With “Double Peaks”
3.2.1. Physical Space
While the rogue wave of the nonlinear Schrödinger equation
always displays one single maximum for all input parameters,
the present case of coherent coupling may exhibit two peaks as
we increase parameter b. As an illustrative example, we select
b = 3.040. The rogue wave for |A|2 possesses two maxima
(Figure 4). The intensity first rises to a peak, subsides slightly,
and then grows to another peak before decaying into the
background again. Similarly, the rogue wave for |B|2 also first

FIGURE 5 | (A) Planar contour plot of the wave intensities |A|2, illustrating the

“double peak” structure. (B) Planar contour plot of the wave intensities |B|2,

illustrating the “double peak” structure.

rises to a peak, drops to a deeper “valley,” and gains strength
to attain another peak before disappearing into the background
(Figure 4). Numerically, this maximum height occurs at the
spatial location of x = −0.908. This whole feature can also be
illustrated through planar contour plots (Figure 5).

3.2.2. Complex Plane
If we now allow variable x to be complex by analytic continuation,
the poles arise from the zeros of D00 (Equation 6). For any given
time t, D00 is a fourth-order polynomial, and hence there will
be four pole trajectories (Figure 6). If we trace the imaginary
part of the poles as a function of time, the real parts of the
poles at the turning points of these trajectories attain the value
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FIGURE 6 | Pole trajectories in the complex plane by allowing the variable x to

be complex by analytic continuation. Poles occur at the zeros of D00 of

Equation (6). The real parts of the poles at the turning points of the trajectories

coincide with the locations of maximum heights of the rogue wave in

physical space.

of −0.908, identical to the spatial locations of maximum heights
in physical space.

To ensure that the phenomenon just displayed is not a
fortunate coincidence, we test other values of b (Table 1). The
remarkable correlations between the real parts of the poles
and the locations of maximum heights in physical space are
again confirmed.

From these data, we can propose an empirical, linear relation
connecting the real part of the poles and parameter b (Figure 7).

4. A SCHRÖDINGER EQUATION WITH
QUINTIC NON-LINEARITY

To establish further support for the conjecture outlined in
Section 2, we consider a Schrödinger equation with quintic
(fifth-order) nonlinearity (u = complex valued, slowly varying
wave envelope):

i
∂u

∂t
=

∂2u

∂x2
± ia|u|2

∂u

∂x
± iβu2

∂u∗

∂x
+ c|u|4u± d|u|2u . (8)

The parameters a, β , and d can be arbitrary, but c must be
given by

c =
β(2β − a)

4
(9a)

The first- and second-order rogue waves, denoted by u1 and u2,
respectively, can be established by Darboux transformation. One
special case has been given earlier in the literature as [15]

a = d = −1, β = 1, (9b)

TABLE 1 | Correlating the real parts of the poles in the complex x plane and

locations of maximum heights in physical space.

Value of
parameter b

Maximum of |A|
in physical

space

Turning points of trajectories
of imaginary parts in the

complex x plane

0.760 −0.452 −0.452

1.520 −0.604 −0.604

3.040 −0.908 −0.908

6.080 −1.516 −1.516

12.160 −2.732 −2.732

24.320 −5.164 −5.164

u1 =ρ21
(40t2 + 4t(4x+ 5i)+ 8x2 − 4ix− 3) exp(−7it/4)

40t2 + 4t(4x− 3i)+ 8x2 − 4ix+ 1
, (10)

u2 =ρ22[(64000t
6 + 19200t5(4x+ 5i)

+192t4(360x2 + 300ix− 133)

+128t3(272x3 + 300ix2 − 282x+ 375i)

+72t2(192x4 + 64ix3 − 336x2

+144ix− 175)+ 12t(256x5 + 64ix4 + 64x3

−288ix2 − 468x− 123i)

+512x6 − 768ix5 − 960x4 + 384ix3 − 792x2

+180ix+ 45) exp(−7it/4)]/(64000t6

+19200t5(4x− 3i)+ 192t4(360x2

−340ix+ 127)+ 128t3(272x3

−372ix2 − 306x− 99i)+ 24t2(576x4

−832ix3 − 816x2 + 336ix

+483)+ 12t(256x5 − 448ix4 − 192x3

−96ix2 + 108x− 75i)

+512x6 − 768ix5 − 192x4 − 384ix3

+360x2 − 108ix+ 9) . (11)

The parameters ρ1 and ρ2 can be obtained from the derivations
outlined in earlier references [15]. They may also be readily
determined by examining the far field condition [|x|, |t| →

∞] of Equations (10) and (11), i.e., they are the roots of the
algebraic equation:

7/4 = c(ρn)
8 ± d(ρn)

4, n = 1, 2.

As we are concentrating on the location of the maximum height
of rogue waves and the correlation with pole trajectories, we shall
just consider a “normalized” height of the rogue wave un/(ρn)

2

(Figures 8, 9).
The first-order rogue wave displays one single maximum and

two “valleys,” resembling the properties of the well-known Peregrine
soliton (Figure 8). The second-order rogue wave exhibits three peaks,
one large peak in the center of the three-dimensional plot and two
smaller peaks at the sides (Figure 9). These two smaller peaks are
symmetrically placed and have the same amplitude but are smaller
than that of the central maximum.

The locations of the points of maximum height in the physical
space are again strongly correlated with the real parts of the poles in
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FIGURE 7 | An empirical linear relation between the real parts of the poles at

the turning points and parameter b.

FIGURE 8 | The amplitude of the normalized first-order rogue wave of the

complex valued wave envelope u governed by a nonlinear Schrödinger

equation with quintic nonlinearity, Equation (8). The profile resembles a

classical Peregrine soliton.

the complex plane. Thematching is exact for the first-order rogue wave
and the central maximum for the second-order rogue wave. For the
smaller peaks on the sides, the correlation is correct up to two decimal
places (Table 2).

While this matching alone cannot predict the occurrence of
rogue waves, as we need the information on the time t, nevertheless
this surprising link might constitute a predictive feature on
the extraordinary analytical structures these evolution equations
might possess.

5. DISCUSSIONS AND CONCLUSIONS

The Peregrine soliton is an exact, algebraically localized solution of
the nonlinear Schrödinger equation and is commonly employed as a
model for rogue waves. Higher-order rational solutions also exist for
this general hierarchy of evolution equations. Naturally, the algebra

FIGURE 9 | The amplitude of the normalized second-order rogue wave of the

complex valued wave envelope u governed by a nonlinear Schrödinger

equation with quintic nonlinearity, Equation (8). There is a central maximum

with two smaller peaks on the sides.

TABLE 2 | Correlating the real parts of the poles in the complex plane and

locations of maximum heights in physical space.

(A) First-order rogue wave

Physical space: maximum height

occurs at x = 0

Complex plane (by regarding x as complex):

Poles are located at i/4 – t ± {[4(t – i/8)2

+ 1/4]1/2}i As time t evolves, the turning point

of the trajectory occurs at t = 0

(B) Second-order rogue wave

Physical space:

(1) Central maximum occurring

at x = 0 at time t = 0

(2) Two smaller maxima occurring

at the sides, i.e., x = ± 0.4514

at time t = ± 0.2075

Complex plane (by regarding x as complex):

Poles of u2 = zeros of the denominator of

Equation (7):

(1) At t = 0,

pole is located at 0–0.687i

(2) At t = ± 0.2075, pole is located at 0.4526

– 0.3285i

becomes increasingly complicated as the order increases. Schemes
to locate the maxima in physical space thus become a practical
necessity in addition to being of theoretical interest as the families of
Schrödinger equations are widely applicable to physical sciences, e.g.,
fluid mechanics, optics, and plasma.

We proposed a conjecture (Section 2) which will hopefully provide
an important step in this direction [8–10]. If the transverse variable of
the Schrödinger equation is allowed to be complex, the real parts of the
pole trajectories at the turning points will be identical to or will closely
correlate with the locations of maximum heights of the rogue wave in
physical space. Concurrently, this conjecture highlights deeper issues
which might reveal the analytic structures of exact solutions of the
family of nonlinear Schrödinger systems, as a portion of the analytic
solution appears to be sufficient to give a reasonable prediction on the
maximum amplitude of the wave profile.

To substantiate our earlier works [8, 10], we study further examples
of Schrödinger equations here, namely, those with coherent coupling
[14, 16] and quintic (fifth-order) nonlinearities [15]. The conjecture
is again verified for the first and second-order rogue waves of
these models.
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Many challenges remain ahead. It would be fruitful to
investigate other evolution systems which admit unexpectedly
large displacements, e.g., rogue waves on a periodic background
[17–19] and rogue waves for discrete equations [20, 21].
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