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Characterizing the dynamics of heavy symmetric tops is essential in several fields of
theoretical and applied physics. Accordingly, a series of approaches have been developed
to describe their motion. In this paper, we present a derivation based on elementary
geometric considerations carried out in the laboratory frame. Our framework enabled the
simple derivation of the equation of motion for small nutations. The introduced formalism is
also employed to determine the alteration of the dynamics of heavy, symmetric, spinning
tops in a rotating force field, that is compared to the precession characteristics of a
quantum magnetic dipole in rotating magnetic field.
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INTRODUCTION

Mainstream methods for determining the equation of motion of heavy symmetric tops can be
classified according to the theoretical approaches used, and the reference frames applied. The
framework can employ the toolkits of the more elementary Newtonian, or those of the analytical
mechanics. The coordinate systems used include mixed ones (like certain triplets of Euler-angles), or
rotating frames attached to the body (like the principal axes used when solving the Euler equations).
Euler angles offer a natural parametrization of the rigid body attitude simply revealing the first
integrals (constants of motion) within the framework of the Lagrangian formalism.

First, we recapitulate the most well known solutions developed up to this time. The majority of
them [1–9] use the Euler-angles (φ precession angle, ψ spinning angle, ϑ nutation angle) to deduce
the Euler-Lagrange equations.

The Euler angles φ and ψ (Figure 1) are cyclic coordinates with corresponding conserved
conjugate momenta. These are the vector projections of the total angular momentum to the vertical
axis, Lz ≡ pφ, and onto the symmetry axis, namely Ln ≡ pψ . Finally, the Euler-Lagrange equation for
the nutation angle, ϑ, is a second-order differential equation reducible to a first order equation by
applying the conservation of the energy, E. The equation of motion for ϑ is uniquely determined by
the three conserved quantities, Ln, Lz and E and is analogous to that of a particle in an effective
potential. The time evolution of the other two angles, namely φ and ψ can be obtained as the direct
integration of expressions in ϑ. This approach confers all three degrees of freedom distinct roles and
different dynamics. Nutation, however, stands out of the triplet since it does not have an associated
conserved quantity and unidirectionally modulates the other two degrees of freedom.

A series of methods to solve the problem of spinning tops avoid using analytical mechanics.
Wittenburg [10] uses the Newton-Euler equation expressed in a precessing coordinate system. The
textbook of Morin [11] also presents an elementary deduction, using Euler angles and a mixed
system, where the Newton-Euler equation is also transformed to the precessing frame. In Ref. [12] it
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is shown that the three Euler-equations can be replaced by just as
many conservation laws. Euler equations in rotating frame have
also been applied to solve the problem [14].

As an alternative to the above more formal descriptions,
pure precession has been intuitively explained by the so-
called “square wheel model” where the spinning top is
replaced by an ideal fluid flowing on a square-formed tube.
This approach allows the explanation of the “hovering” of the
top by forces acting on it, instead of the less intuitive
conservation laws [15].

Here we present an alternative based on simple yet rigorous
geometric considerations while employing only the elementary
methods of Newtonian mechanics. The approach naturally leads
to the separation of nutation from the other rotational degrees of
freedom and makes possible the usage of a compact matrix
formalism in the latter two dimensional subspace.

GEOMETRIC PRELIMINARIES

The spinning heavy top has two special directions that play an
essential role in the relationships describing the dynamics of its
vectorial quantities. One is the symmetry axis n, while the other one
is the direction of the gravitational field z (see Figure 1). These two
unit vectors, spanning a plane, and the direction orthogonal to this
plane, namely enu ≡ n × z/|n × z|, serve as a natural basis for
investigating our three dimensional model. The spontaneous
emergence of this basis is the reason behind the incontestable
usefulness of Euler angles ψ, φ and ϑ for specifying the
orientation of a spinning, symmetric rigid body. The rates of
change of the these angles are denoted by _ψ ≡ ωs, _φ ≡ ωp and
_ϑ ≡ ωnu. Using the above basis, any vector a can be decomposed as

a � asn + apz + anuenu � as + ap + anu, (1)

where the three terms are vector projections of a parallel to the
respective basis vectors (see Figure 2). Since the chosen basis is
not orthogonal, the scalar projections an � a · n, az � a · z and
anu � a · enu also claim a role in the description. Alternatively, one
can project a to one of the basis vectors and to the corresponding
orthogonal plane:

a � an + a⊥,
an � nan � (n+n)a,

a⊥ � (a − an) � (I − n+n)a.
(2)

The dynamics of the top is such that these three directions are
associated with qualitatively different phenomena (spin,
precession and nutation). The nutation stands out of the
trio as will become apparent also from this study. Therefore
we shall introduce a formalism that manifestly separates the
description into aspects confined to the rotating (n, z) plane
and aspects involving the direction perpendicular to it. Due to
the linear connection between different decompositions and
between kinematic and dynamic quantities such as angular
velocity and angular momentum a matrix formalism will be
useful.

Figure 2 reveals a number of geometric relations including

an � as + cosϑap,
az � ap + cosϑas,

(3)

that can be expressed compactly as

an,z � Ĝas,p, (4)

where

an,z � ( an
az

), as,p � ( as
ap

),

FIGURE 1 | Precessing and nutating heavy top. Angles φ (precession
angle), ϑ (nutation angle) and ψ (spinning angle) parametrizing its attitude, the
angular momentum, L, and angular velocity, ω. FIGURE 2 | Decomposition of a vector a in the non-orthogonal basis n,

z, n × z. For the definition of an, as and ap and az , see Eq. 1 and the
corresponding text.
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Ĝ ≡ ( 1 u
u 1

), Ĝ
− 1 � 1

s2
( 1 −u
−u 1

),
with

u � cosϑ, s � �����
1 − u2

√ � sinϑ,

and

(az − an)2 � sin2ϑ(as + ap)2, (5)

that will be applied in Time Evolution of the Spin and Precession
Angles. The proof for Eq. 5 is shown in Proof of Eq. (5) of the
Supplementary Material. Note that the connections between
an, az , as and ap are solely determined by ϑ.

RELATIONSHIPS BETWEEN THE
COMPONENTS OF L AND ω
The components of the angular momentum along the symmetry
axis n and the orthogonal ones to this are referred to as Ln � Cωn,
L⊥ � Aω⊥, where C and A are the corresponding principal
moments of inertia.

Therefore,

L � Ln + L⊥ � [Cn+n + A(I − n+n)]ω
� Aω + (C − A)n(n · ω) � Aω + (C − A)ωnn.

(6)

The above linear interdependence between L, ω and n reveals their
coplanarity.Note that for asymmetric tops this property does not hold.

Using the notation introduced in Geometric Preliminaries, Eq.
6 can be rewritten as

Ln,z � CD̂ωn,z , Lnu � Aωnu, (7)

where

D̂ ≡ ( 1 0
(1 − α)u α

), α � A/C.

READING CONSERVED QUANTITIES
Ln, ωn, AND Lz
Let us to consider the Newton-Euler equation

_L � wz × n, (8)

where w is the magnitude of the torque of the homogeneous
gravitational field pointing into the −z direction. Due to Eq. 8
we have n · _L � 0. All points of the top are engaged in a
rotation defined by ω. This is also true for the symmetry
axis n, that is,

_n � ω × n, (9)

revealing that _n is orthogonal to the plane spanned by ω and n.
Due to the co-planarity of L,ω and n we have _n · L � 0. Therefore

_Ln � d
dt

(L · n) � 0,

thus Ln is conserved. Equation 7 entails that ωn is conserved
as well.

A similar but more straightforward consideration yields
Lz � z . L = const. as _z � 0. Note that since no dissipation is
present, the energy of the system is also conserved.

TIME EVOLUTION OF THE SPIN AND
PRECESSION ANGLES

Due to the conservation of the angular momentum components
Ln and Lz it is worth connecting them directly with the
kinematically relevant spin and precession angular velocities.
Combining Eqs 4 and 7 results in

Ln,z � CT̂ωs,p, T̂ � D̂Ĝ � ( 1 u
u αs2 + u2

).
This enables the expression of the two angular velocities as

ωs,p � 1
C
T̂

− 1
Ln,z , T̂

− 1 � 1
αs2

( αs2 + u2 −u
−u 1

). (10)

This formula has a pivotal importance: it connects the kinematic
quantities of interest to the conserved dynamic quantities.

Note that ωs and ωp solely depend on conserved components
of angular momenta and the time-dependent polar angle ϑ(t)
therefore become themselves constants of motion if ωnu ≡ _ϑ � 0,
phenomenon called pure precession.

TIME EVOLUTION OF THE NUTATION
ANGLE

The above results were obtained without making explicit
reference to the conservation of energy. For moving beyond
pure precession and describing nutation we have to quantify
the migration of the energy between kinetic and potential
components during nutation.

By expressing the angular frequency ω from the linear Eq. 6
the rotational energy of the top can be written as

T ≡
1
2
L · ω � 1

2A
L2 + 1

2
(1 − C

A
)ωnLn, (11)

while the potential energy reads

V(ϑ) � wcosϑ. (12)

Exploiting the orthogonality of enu to the (n, z) plane combined
with property Eq. 5 we get

L2 � (Ls + Lp)2 + L2
nu �

(Ln − Lz)2
sin2ϑ

+ L2
nu. (13)

The dynamics ruling the nutation angle can be regarded as a one-
dimensional motion in an effective potential, motion completely
determined by the conservation of the effective energy. Having L2

and V obtained, enables us to provide the formula for these
effective energies
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Eeff � Teff( _ϑ) + Veff(ϑ), (14)

where the reuse of Eqs 7, 11 and 13 gives

Teff( _ϑ) � 1
2A

L2
nu �

A
2
_ϑ
2
,

Veff(ϑ) � 1
2A

(Ln − Lz)2
sin2ϑ

+ V(ϑ),

Eeff � E − 1
2
(1
C
− 1
A
)L2

n.

For convenience Eq. 14 can be rewritten in terms of u ≡ cosϑ and
_u � − �����

1 − u2
√

_ϑ as

A
2
_u2 + Unu(u) � ϵ, (15)

where

Unu(u) � ]u + κ

2
u2 − cu3.

Here the Greek letters denote the following

] � w − LnLz

A
, (16)

κ � 2E − L2n(1C − 1
A
),

c � w,

ϵ � E − L2
n

2C
− L2

z

2A
.

The above relationships reveal that the equation of motion for the
nutation angle, ϑ, can be solved decoupled from the other two
angles, namely the φ precession and ψ spinning angle.

Full solution of the problem requires to resolve the time evolution
of Euler angles. Equation 15 rules ϑ(t), while ψ(t) and φ(t) can be
determined by integrating ωs, repectively ωp in Eq. 10.

SMALL NUTATIONS

In order to describe small nutations, we consider the minimum
point u0 of the one-dimensional potential Unu(u):

dUnu

du
(u0) � ] + κu0 − 3cu2

0 � 0, (17)

d2Unu

du2
(u0) � κ − 6cu0 � AΩ2

nu > 0 .

providing

u0 � κ − ��������
κ2 + 12]c

√
6c

,

Ωnu �
��������
κ2 + 12]c

A

√
,

where Ωnu represents the angular frequency of small, nearly
harmonic oscillations in the polar angle during nutation.

We intend to investigate small deviations from pure
precession. In the presence of nutation, the conservation of
quantities such as ωs, ωp or L2 does not hold any more.

In the low amplitude oscillation limit,
Δu(t) � u(t) − u0 � δ · cos(Ωnut), δ≪ 1 and _u(t) �
−Ωnuδsin(Ωnut) � −Ωnu

�����������
δ2 − [Δu(t)]2

√
is an oscillation with

the same frequency but π/2 phase delay.
Let us to denote generically by f (u) the physical quantities

modulated by the nutation angle. Since the temporal alteration
of f can be written as Δf [u(t)] ≈ f ′(u0)Δu(t), the physical
quantities modulated by u will oscillate with the same
frequency. Moreover, f will oscillate with an amplitude f ′(u0)δ
around the mean value, f (u0), that is the pure precession value
at u0.

The deviation of the angular frequency components can be
obtained from Eq. 10

Δωs,p � ΔudT̂
− 1

du

∣∣∣∣∣∣∣∣∣u0Ln,z

C
,

where we made use of the conserved character of Ln,z and assume
the time dependence of u as implicit. By definition the nutation
component of the angular frequency is

ωnu � _θ � − _u�����
1 − u2

√ .

For any vectorial quantity, A, with rate of change _A its nutation
motion, Δ _A, can be described as that of a time dependent
geometric vector viewed from the purely precessing reference
frame rotating with ωp(u0)z. The transformation to the rotating
(precessing) reference frame is given by

Δ _A � _A − ωp(u0)z × A. (18)

The nutation of the symmetry axis, _n, can be captured by
combining Eq. 18 with Eqs 1 and 9. In the laboratory frame
its rate of change can be written as

_n � (ωpz + ωnuenu) × n.

According to Eq. 18

_nnu � (Δωpz + ωnuenu) × n � −sΔωpenu + ωnue⊥.

The two orthogonal terms are proportional to Δu and _u,
respectively, indicating a rotational movement about the
(purely) precessing symmetry axis. From Eqs 11 and 12 we
can see that

1
2A

L2 � E − 1
2
(1 − C

A
)ωnLn + wu. (19)

Apart from u all other quantities are either parameters or
constants of motion revealing that during small nutations
the square of the total angular momentum oscillates
with amplitude 2Awδ and frequency Ωnu about its pure
precession value.

PURE PRECESSION

By setting _u � 0 Eqs 15 and 17 take the form
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]u + κ

2
u2 − cu3 � ϵ,

] + κu − 3cu2 � 0,

yielding

κ � 3cu − ]
u
, 2ϵ � u(] + cu2). (20)

By eliminating the energy, E, from the definitions of κ and ϵ in Eq.
16, we have

κ − 2ϵ � L2n + L2
z

A
.

Combining the above with Eq. 20 we get

L2n + L2
z − 2LnLzχ � Lu

n,zQ̂ Ln,z � −αs
4

u
Cw,

where χ � 1
2
(u + 1

u
), s2 � 1 − u2, and

Q̂ � ( 1 −χ
−χ 1

).
Therefore

ωu
s,pT̂

u
Q̂T̂ωs,p � −αs

4

u
w
C
,

wherein

T̂
u
Q̂T̂ � αs4

u

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 −1
2

−1
2

u(α − 1)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

resulting in

ω2
pcosϑ(A − C) − ωpωsC + w � 0,

the well-known relationship between precession and spin angular
velocities for a given value of the nutation angle ϑ.

PURE PRECESSION IN A ROTATING
FORCE FIELD

Spins driven by rotating magnetic fields have been extensively
studied due to their importance in resonance spectroscopy. Here
we will study the effect of a horizontally rotating homogeneous
field on a classical gyroscope. This force can be implemented, for
example, by electrostatic interactions. In this case, the motion of a
heavy spinning top without dissipation generally becomes erratic.
Therefore we will limit our investigation to the situation when the
precession is in synchrony with the driving field, meaning, that
the rotating component of the field stays in the same vertical
plane as the symmetry axis. In these special circumstances, the
equations connecting kinematic and dynamic quantities such as
Eqs 10 and 11 are not affected by the particularities of the field.
However, the conservation laws derived in Reading Conserved
Quantities Ln, !n, and LZ depend on the geometric relationship
between the field and the symmetry axis of the top. If kept in the

(n, z) plane the rotating field component will only change the
magnitude of the torque in Eq. 8 and not its direction. However,
the potential energy in Eq. 12 will modify as

~V(ϑ) � V(ϑ) + b sin ϑ, (21)

where b quantifies the effect of the horizontally rotating field
component leading to the one dimensional effective potential

~Unu(u) � Unu(u) + b(1 − u2)3/2. (22)

Since the exhaustive investigation of the properties of the above
function is beyond the scope of this paper we only remark that
the main features of the dynamics are not affected by the
additional term from above. For a simple yet quantitative
conclusion we further confine our study to the limit of weak
driving fields and view ~Unu as the perturbation of Unu. The
stable solution of the perturbed nutation angle ~u0 can be
obtained from

d~Unu

du
(~u0) � dUnu

du
(~u0) − 3b~u0

�����
1 − ~u2

0

√
� 0. (23)

The first order Taylor expansion around u0 gives

~u0 − u0 � b
u0

�����
1 − u2

0

√
AΩ2

nu

. (24)

The above expansion procedure applied on the second derivative
of ~Unu yields

d2 ~Unu

du2
(~u0) − d2Unu

du2
(u0) � O(b), (25)

ensuring the stability of the perturbed solution. Note that the
conclusions on the existence and stability of the stationary
solution can be extended well beyond the perturbative range
of the driving field component.

PRECESSING SPIN IN A ROTATING
MAGNETIC FIELD

In a broader context precession is a term applicable to any axis
with one of its points fixed and performing a circular motion
along the surface of a cone. Outside the realm of inertial
macroscopic motion [16] we encounter it in quantum
mechanics of magnetic dipoles and it is the basis of nuclear
magnetic resonance (NMR) [17] and ESR [18]. Atomic
systems in strong fields obey dynamics where inertia has
little or no role. However, the nature of the coupling
between the angular momentum and the magnetic field
produces a motion that is similar to the precession of a
rigid body.

Let us consider a magnetic field that has a constant
vertical and a rotating horizontal component, namely
B � [b sin(ωt), b cos(ωt), B]. Note that the horizontal
component here rotates counterclockwise with respect to the
third axis. The equation of motion for the quantum mechanical
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expectation value, S, of the angular momentum coupled through
the gyromagnetic factor c to this field reads

_S � cS × B. (26)

Note that if no horizontal rotating component is present S
precesses with the Larmor frequency ωL � cB (See Spin in
Magnetic Field in the Supplementary Material). In this
special case the attitude of S is arbitrary, i.e., determined by
the initial condition. In the presence of dissipation the angle will
relax to zero, i.e., parallel to the constant magnetic field.

In the general case, when the rotating component of the
magnetic field is present, the stationary (particular) solution of
Eq. 26 will be a precession motion with the same ω frequency as
the driving field and the angle φ enclosed with the vertical is

cotφ � ωL − ω

ωl
, ωl ≡ cb. (27)

Note that transients are disregarded. During this deduction the
laboratory reference frame was used.

Though both refer to angular momenta, Eqs 8 and 26 are far
from being equivalent. The cross product in Eq. 26 conserves the
magnitude of the angular momentum. Therefore the magnitude
oscillations described by Eq. 19 are not present in the case
of spins.

DISCUSSION

The dynamics of a heavy symmetric top is determined by the
constants of motion Ln, Lz and E. An essential output of our
approach is expressed in Eq. 10. This relationships represents
the inversion in the (n, z) subspace of the linear Eq. 6 such
that the angular velocities are expressed in terms of Ln and Lz .
The momentum pϑ � Lnu associated with the third coordinate,
ϑ, is not conserved. Nutation “remains alone” in a first order
differential equation describing a one dimensional non-
harmonic oscillator (see Eq. 15). This periodic conversion
of the energy from potential to kinetic and back will modulate
the spin and precession angular velocities through Eq. 10.

In the case of small nutations the only effective geometric
parameter is the nutation angle ϑ characterizing the attitude of the
top. The magnitude of the angular momentum harmonically
oscillates around its value encountered in pure precession.

We also examine the case of the classical symmetric
spinning rigid body and the quantum mechanical spin
(without inertia) precessing in an external field having a
rotating component. While the main features of the spin
dynamics can be provided analytically, the case of a heavy
spinning top driven by a rotating field seems to be more
complex. For the case without dissipation, the dynamics of
the system will be unpredictable, except the case when the
precession frequency is in synchrony with the driving - the
case discussed in first-order approximation in this paper.

Our paper employing matrix formalism combined with
geometry provides another example that the problem of
spinning top can be addressed by a multitude of approaches,
each emphasizing a different facet of the phenomenon.
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