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Metamaterial is a kind of material/structure that is artificially designed and has exceptional
electromagnetic properties and/or other physical properties, not found in nature. A class of
electromagnetic metamaterial with only one or a few layers of periodic or aperiodic
arranged cell structures in the direction of electromagnetic waves propagation can be
referred to as a metasurface. Metasurface can be considered as a two-dimensional
representation of metamaterial and can realize the controlling of the amplitude, phase, and
polarization state/direction of the incident electromagnetic wave. According to the novel
electromagnetic characteristics of metasurface and its big advantages, a series of new
planar devices and systems based on metasurface can be developed. The goal of this
review article is firstly to provide introductions for basic metasurface, its significance
properties, and application principles. Meanwhile, the main research progresses of regular
metasurfaces and the newly developed reconfigurable metasurfaces are analyzed,
focusing on the types of amplitude modulation, phase modulation, polarization
modulation, and multidimensional modulation. Finally, the research significances of
metasurface development trend and important engineering practical applications are
analyzed in the end.
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INTRODUCTION

Metamaterial is a kind of synthetic structural material with singular electromagnetic, acoustic, or
mechanical characteristics [1–6]. One can select the appropriate substrate types according to
different application requirements and design subwavelength-scale structure (meta-atom) with
different shapes, sizes, and rotation directions. According to the subwavelength period or
nonperiodic array arrangements, the designed metamaterial can control independently/
coherently the amplitude, phase, polarization state/direction, and other parameters of the
incident electromagnetic/acoustic wave as needed. In correspondence to this, novel planar
functional devices and systems working in different frequency bands such as low frequency,
high frequency, microwave, THz, and visible light can be developed [7–16]. Therefore,
metamaterials have important application prospects in the fields of science and engineering such
as acoustics/mechanics, electromagnetics, optics, and thermodynamics. A class of electromagnetic
metamaterial consisting of only one layer or a few layers of periodic or aperiodic elements in the
direction of electromagnetic wave propagation is also called electromagnetic metasurface [17–21].
The electromagnetic metasurface has subwavelength thickness in the direction of electromagnetic
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wave propagation, small size, and light weight, but it can realize
the similar electromagnetic wave characteristic controlling
abilities as the classical three-dimensional electromagnetic
metamaterial. In recent years, therefore, the research on
metasurface has become one of the hotspots in the academic
and industry areas [22–35].

Based on the Huygens’ principle, each subwavelength
structure unit of the electromagnetic metasurface will generate
a spherical wave packet at the metasurface-air interface under the
action of incident electromagnetic waves. The spherical wave
packets generated by all metasurface units form a new
electromagnetic wave-fronts [36]. Therefore, each metasurface
unit can be reversely designed according to the required
electromagnetic wave-fronts. And accordingly the
electromagnetic wave-fronts can be controlled by adjusting the
shape, size, and direction of the metasurface unit [36–40].
Different from conventional large-scale planar optical
components or microwave phased array antennas, the
metasurface can control and adjust the characteristics of near-
field electromagnetic wave in the subwavelength range. It is
possible to develop several new high-performance thin-film,
ultraminiature planar electromagnetic or optical devices
including spatial filters [41, 42], focusing lens [43, 44], beam
polarization deflection/converters [45, 46], special beam shaping
devices [47, 48], and holographic imaging plates [49, 50].
Therefore, it is of great scientific value to explore and develop
a new mechanism, new method, and process technology of
artificially synthesized electromagnetic metasurface in the
advanced electromagnetic community. In the past decade,
many good review articles have been published to summarize
the developments of metasurfaces [40, 51–60]. However, those
review articles only focused on some parts of the research aspects,
like the fundamentals and the specific applications. Most
importantly, only a few review articles summarized the
research developments of the basic metasurfaces and the
tunable/reconfigurable metasurfaces. In this review, therefore,
we would like to summarize the recently developed different
kinds of electromagnetic metasurfaces and reconfigurable
electromagnetic metasurfaces and devise some new research
directions.

Research Progress on Basic Metasurfaces
The main technical realization ways of synthetizing metasurface
can be divided into plasmonic-like structure based on metallic
materials [36, 37], full dielectric photonic structure based on high
refractive index materials [33, 38–40], and other novel structures
based on novel thin film materials, semiconductor materials,
quantum dots, etc. [33, 36–40, 61, 62]. Most of the reported
metasurfaces are used to realize the manipulations of the
amplitude, phase, and polarization together with other
parameters of the incident electromagnetic waves.

Metasurface for Amplitude Modulation
The metasurface that realizes the amplitude control of
electromagnetic waves is mainly used to reflect, absorb, or
transmit the incident electromagnetic wave energy. In recent
years, a large number of related results have been reported, such

as the broadband metasurface absorber [12–15, 63], metasurface
space filter [64, 65], metasurface color printing [66], graphene
metasurface anomalous refraction plate [67], dielectric
metasurface for selective diffraction [68], and metasurface for
near-field plasmonic beam engineering [69], as concluded in
Figure 1.

Specifically, the representative broadband metasurface
absorber shown in Figure 1A is fabricated on a flexible
substrate by using the nanoscale metal particles arranged in a
nonperiodic manner so that the entire metasurface can be
conformally mounted on a nonplanar carrier [63]. When the
metal particles resonate, the equivalent impedance of the entire
metasurface is matched with the free-space wave impedance. The
high dielectric loss and magnetic loss generated by the resonance
absorb the incident electromagnetic wave energy and the square
metal particles have polarization insensitive ability. Thereby the
entire metasurface absorber can achieve high-performance
absorptions in the near-infrared band and wide angle of
incidence. The structure in Figure 1B consists of a layer of
dielectric metasurface and two layers of distributed Bragg
reflectors which can be integrated into various planar optical
components [64]. The upper and lower distributed Bragg
reflectors form a typical Fabry–Pérot resonator. The
metasurface of the middle layer realizes the control of the
resonance frequency and constitutes a high-performance (high
frequency-selectivity) space electromagnetic wave signal filter.
The metasurface in Figure 1C consists of a metal plasmonic cell
that reproduces the color pattern captured by the camera [66].
Each metal unit resonates with different electromagnetic wave
reflection coefficients in the visible frequency region so the
human eye can observe different colors. Based on this
characteristic, the original color pattern can be reproduced by
designing the corresponding metal unit and array, according to
the color information of each pixel in the previously taken color
photograph.

Moreover, as can be seen in Figure 1D, an active metasurface
can be formed by integrating graphene into a U-shaped aperture
size via a single layer configuration [67]. The hybrid graphene
metasurface composed of the artificially constructed two-
dimensional metal hole array at the subwavelength scale and
the naturally occurring graphene constitutes an electrically
steerable amplitude anomalous refraction. Based on the
Pancharatnam–Berry phase and the suitable spatially linear
phase differences, the amplitude modulation for circularly
polarized terahertz wave with anomalous refraction can also
be achieved by the effective modulation of the gate voltage.
Advanced applications for the dynamic control of
electromagnetic waves by electrically tunable graphene
metasurfaces such as amplitude tunable active focusing lenses
are proposed [67]. More research progress for the dynamic
controllable metasurfaces will be discussed in details in the next
section. In Figure 1E, a complex amplitude modulation based
on the ultrathin dielectric metasurface is used to create a new
method for independently selecting diffraction orders based on
the adjustment of the geometric parameters of the custom
nanostructures [68]. Figure 1F also shows a near-field
plasma beam engineering of metasurface using nanoaperture
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arrays to effectively control the complex amplitude of the
surface plasmon polaritons in the near-field region [69]. In
such a design, each individual nanoaperture is determined pixel
by pixel. As a result, the amplitude can be determined by the
different lengths of the nanoaperture and the complex
amplitude modulation of the surface plasmon polaritons is
realized.

Those metasurfaces mentioned above are designed according
to the specific application requirements. Each metasurface unit is
arranged in a periodic or aperiodic manner to realize the control
of the amplitude of the electromagnetic wave. However, when
such metasurfaces are designed and developed, their
electromagnetic wave amplitude control characteristics are
fixed and cannot be changed.

Metasurface for Phase Modulation
On the other hand, the phase response characteristics of
metasurface are also closely related to the size, shape, rotation
mode, and the substrate material type of the metasurface unit.
Therefore, each metasurface unit can be reversely optimized as
well as designed according to the specific phase distribution
requirements to achieve the phase control of the
electromagnetic wave. As early as 2011, N. Yu et al. used eight
metasurface elements of different shapes to effectively achieve
phase manipulation in the range of 0-2π based on the principle as
shown in Figure 2A [70]. And a metasurface having flat focusing
function and vortex electromagnetic wave generating function

based on the phase manipulation has been developed as can be
seen in Figure 2B [36, 70, 71].

The phase-modulated metasurface initially reported controls
only the crosspolarization component of the incident
electromagnetic wave, but most of the common polarization
components of the incident electromagnetic wave are not
effectively utilized. As a consequence, its electromagnetic wave
conversion efficiency is extremely low [62, 72]. To solve this
problem, researchers have proposed several kinds of new
structures such as Pancharatnam-Berry (P-B) phase
metasurface, reflective-type metasurface, Huygens’ metasurface,
double-layer and multilayer metasurface to realize high-efficient
electromagnetic wave manipulation.

P-B phase metasurface. The P-B phase metasurface is a type
of structure that can continuously control the phase of
electromagnetic waves by changing the rotation angle of the
metasurface unit. In 2015, X. Ding et al. designed the P-B
phase metasurface structure as shown in the first subplot in
Figure 2C, and a high-performance flat-focus lens has been
developed which achieves nearly 25% electromagnetic wave
control efficiency [73]. The same year D. Wen et al. designed
a high-efficient holographic imaging plate based on another P-B
phase metasurface structure [74], as shown in the second subplot
of Figure 2C. Moreover, based on the geometric P-B phase, the
intracavity laser mode is controlled topologically to achieve a high
modulus purity of ∼95% [75]. Following the transmissive
ultrathin P-B metasurfaces, the photonic spin Hall (PHSE)

FIGURE 1 | Amplitude-modulated metasurface design and its typical applications. (A) Broadband absorber [63], (B) spatial filter [64], (C) color printing [66],
(D) graphene metasurfaces [67], (E) selective diffraction with a dielectric metasurface [68], and (F) a single nanoaperture in one period [69].
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effect can be observed and the efficiency is close to 100%. At the
same time, the microwave metasurface with a three-layer
structure (total thickness still much smaller than the operating
wavelength) is designed (the maximum PSHE efficiency can
reach up to 91%), stimulating other P-B metadevices with
high efficiency and high performance [76].

Reflective-type metasurface. Moreover, the magnetic
resonance characteristics can be formed between the
metasurface unit and the metal back-plate in the reflective-
type metasurface structures so that the control efficiency of
incident electromagnetic waves can be greatly improved. Based
on the previously reported P-B phase, a reflective-type P-B phase
metasurface with different phases is used combined with different
predesigned coding sequences to control the terahertz wave. The
coded P-B phase metasurface provides the ability to reduce
broadband radar cross section and proposes a flexible way to
manipulate reflected terahertz waves [77] as shown in the first
subplot of Figure 2D. In 2015, G. Zheng et al. designed an

I-shaped reflective-type metasurface holographic imaging plate as
can be seen in the second subplot of Figure 2D, which realized
phase control of incident electromagnetic waves with its control
efficiency reaching up to 80% [78].

Huygens’ metasurface. Based on the Huygens’ principle, the
Huygens’ metasurface which can produce both electric and
magnetic resonance was designed to control the electric and
magnetic field components of the incident electromagnetic
wave. As a result, it has a nearly nonreflecting and completely
matching transmission characteristics to maximize the control
efficiency of the electromagnetic wave. In 2013, within this frame,
C. Pfeiffer et al. designed and developed a Huygens’ metasurface
with electromagnetic wave control efficiency up to 86% in
microwave frequency band [79], as shown in the last
subpicture of Figure 2D. They also realized the transmission
direction control of electromagnetic beam and the Gauss-Bessel
beam conversion. Subsequently, C. Pfeiffer et al. further
developed a Huygens’ metasurface in the near infrared band

FIGURE 2 | Phase-modulated metasurface design and its typical applications. (A) Basic metasurface [70], (B) metasurface with focusing and vortex
electromagnetic wave generation [36, 70, 71], and (C),(D),(E) several examples of high efficiency metasurface design [73, 74, 77–79, 81, 82].

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5934114

Zahra et al. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


[80]. In 2016, L. Wang et al. designed a grayscale metahologram
as can be seen in the first subpicture of Figure 2E, based on the
Huygens’ principle. They realized phase control and its control
efficiency is up to 99% [81]. In 2018, following the developments
of Huygens’ metasurface with complete phase shift coverage, Z.
Wang et al. proposed a novel Huygens’ metasurface hologram at
microwave frequency, with detailed studies for the
electromagnetic field distribution at the control interface and
the energy distribution between the modulation focal points and
microwave imaging. This proposed Huygens’ metasurface
extends the approach of holographic microwave applications
[82] as shown in the last subpicture of Figure 2E.

In recent years, researchers have also proposed double-layer
and multilayer metasurface designs, for further improving the
efficiency of controlling the phase of electromagnetic waves. A
variety of flat functional devices are reported, e.g., in [83, 84].

As can be seen above, a variety of novel planar devices with
beam focusing, transmission direction control, vortex
electromagnetic wave generation, holographic imaging, and
other functions have been developed using phase-modulated
metasurfaces. It is the most well-developed metasurface
research areas in recent years. However, the phase-modulated
metasurfaces and the realized electromagnetic wave control
characteristics based on the planar functional devices have also
been defined to be incapable of real-time dynamic tuning.

Metasurface for Polarization Modulation
By designing an asymmetric metasurface unit, the phase
difference of the transmitted or reflected electromagnetic
waves in the orthogonal direction can be realized. As a result,
the control of the polarization direction of the electromagnetic
wave and the conversion between various polarization states of
the electromagnetic wave were achieved [62, 72]. For example, in
2014, C. Wu et al. developed an all-dielectric metasurface as
shown in Figure 3A which has Fano’s asymmetric resonance
characteristics. It can convert linear polarization wave into
circular polarization wave radiation [85]. In the same year, C.
Pfeiffer et al. developed a multilayer metasurface unit structure as
can be seen in Figure 3B which can realize the asymmetric
transmission of circularly polarized waves and achieve the
reversal of polarization states [86]. In 2016, C. Pfeiffer et al.
continued to develop a multilayer metasurface structure as shown
in Figure 3E which can realize the control of the polarization
direction of linear polarization waves [87]. In 2017, based on this
type of metasurface, J. Mueller et al. designed a holographic
metasurface that exhibits different response characteristics for
different polarized electromagnetic wave excitations [88] as
directed in Figure 3C. In the same year, based on the
anisotropic metasurfaces, X. Huang et al. achieved the
polarization of circularly polarized waves with high conversion
efficiency over a wide frequency range [89]. In 2018, W. Yang

FIGURE 3 | Polarization-modulated metasurface design and its typical applications. (A) All-dielectric metasurface [85], (B),(E) multilayer metasurface [86, 87],
(C) holographic metasurfaces that depend on polarization [88], and (D) topology of metasurface antenna [90].
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et al. proposed a low-profile broadband double-circularly
polarized metasurface antenna and thus it can be extended to
construct a 2 × 2 dual circularly polarized antenna array [90] as
shown in Figure 3D. The working state of the above-reported
metasurface, however, also fails to achieve on-demand real-time
dynamic tuning.

Metasurface for Multidimensional
Modulation
All the above-mentioned metasurfaces are only able to control
one single degree of freedom, e.g., amplitude, phase, or
polarization of incident electromagnetic waves. In order to
achieve more precise control of electromagnetic waves for
high-performance holographic imaging and special beam
generation, it is necessary to simultaneously control the
amplitude and phase (or phase and polarization) of incident
electromagnetic waves. For examples, in 2014, L. Liu et al.
proposed a combination of amplitude-modulated metasurface
units with phase-modulated metasurface units to achieve
simultaneous control of amplitude and phase of
electromagnetic wave and also developed a broadband
metasurface in the THz band [91]. Subsequently, Z. Li et al.
designed and developed the nondiffracting beam radiation
metasurface in the near-infrared frequency band [92, 93]
based on I-shaped metasurface units and C-shaped
metasurface units for simultaneous control of electromagnetic
wave amplitude and phase. In 2018, G. Lee et al. proposed a new
metasurface consisting of X-shaped meta-atoms to achieve full
complex amplitude and phase modulation in the broadband
visible wavelength region. It was almost comparable to an
ideal 3D hologram, and the beam shaping, 3D bioimaging,
optical computing, and optical chips can be developed based
on such kind of metasurface [94].

Furthermore, in 2015, J. Li et al. proposed a metasurface unit
with different rectangular channels which can control
simultaneously the polarization and phase of electromagnetic
waves so that the circularly polarized incident electromagnetic
waves can be converted to linearly polarized waves after passing
through such metasurfaces and can deflect the transmission
direction of the linear polarized wave [95]. In the same year,
A. Arbabi et al. proposed an elliptical all-dielectric metasurface
unit structure by designing the ellipticity and with different
rotation angles of the metasurface unit. Moreover, they
adopted the honeycomb periodic arrangement to realize
precise control of the phase and polarization of
electromagnetic waves. Based on this metasurface
configuration, a variety of high-performance planar functional
devices with electromagnetic wave utilization efficiency of up to
97% have been developed, which can realize polarization
separation and focusing, polarization transformation and
focusing, holographic imaging, and vortex electromagnetic
wave generation functions [61].

In 2018, Y. Zhou et al. used lattice design and different
arrangements to achieve multifunction reconfigurable
metasurface based on amplitude, phase, and polarization
modulation fully reflecting the control ability of

electromagnetic wave [96]. At the same time, H. Xu et al.
developed a multilayer C-shaped chiral metasurface structure,
which was able to control the amplitude, phase, and polarization
parameters of electromagnetic waves independently, and
proposed several functional flat structures, such as dual focus
prisms, airy beams, and multibeam shaping [97]. However, these
metasurfaces with multidimensional parameters control ability
still cannot achieve real-time dynamic control of incident
electromagnetic waves.

Research Progress on Reconfigurable
Metasurfaces
The above-reported metasurfaces can control the amplitude,
phase, polarization, and other parameters of the
electromagnetic wave as needed, and, therefore, it can develop
various planar functional devices with novel functions at different
frequency regions. However, when those metasurfaces are
designed and fabricated, their specific electromagnetic wave
characteristic control abilities are limited and cannot be
changed, as concluded in previous section. In recent years, in
order to achieve higher degree-of-freedom electromagnetic wave
control and utilization, active tunable/reconfigurable/
programmable metasurfaces, nonlinear metasurface concepts
and design techniques have been proposed [62, 98–103]. As
mentioned in the beginning of this review, the electromagnetic
response characteristics of the metasurfaces are closely related to
the size, shape, rotation direction, and substrate material type of
the metasurface unit. As a consequence, the electromagnetic
response characteristics of the metasurface can be dynamically
controlled by additionally adjusting the metasurface unit
structure and the substrate material properties. In turn, the
modulations of electromagnetic waves are controlled in real
time, that means achieving active tunable, reconfigurable,
programmable, and other versatile metasurfaces and versatile
optoelectronic devices and systems based on such metasurfaces.
The active tunable/reconfigurable metasurface structures that
have been reported in recent years include electronic control,
light control, temperature control, mechanical control, and power
control, which will be discussed in detail in following parts.

Electrically Reconfigurable Metasurfaces
For the tunable metasurfaces loaded by diodes [104], transistors
[105], MEMS [106–108], graphene [109], and liquid crystals [110,
111], etc., the electromagnetic response characteristics can be
dynamically controlled by adjusting the applied bias voltage on
the materials/components in those metasurfaces. For examples,
in 2017, K. Chen et al. achieved the electromagnetic response
characteristic tuning by biasing voltage on each cell in the
reconfigurable metasurface array loaded by the independent/
joint control diodes. Furthermore, the on-demand controlling
of the metasurface to the incident electromagnetic wave front was
realized and the adjustable focal length was developed [104] as
shown in Figure 4A. In 2018, O. Yurduseven et al. utilized a PIN
diode to dynamically tune the “ON” and “OFF” transition states
of a slot-type subwavelength metamaterial unit. The waveguide
mode was converted to free-space radiation using a binary
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adjustment to form a target radiation pattern. Then a dynamically
reconfigurable holographic metasurface aperture that allows for
electron beam steering purposes was designed. And a synthetic
K-band Mills-Cross monochrome microwave camera can be set
up to achieve high fidelity images [112], seen in Figure 4B. In
2018, X. Gao et al. proposed an active metasurface composed of a
butterfly-shaped unit cells embedded with the voltage-controlled
varactor diodes. The reconfigurable polarization converter was
dynamically converted from linear to linear, linear to elliptical,
and linear to circular by adjusting the bias voltage of the varactor
[113]. In 2019, L. Chen et al. proposed a reconfigurable
metasurface using the voltage control of the PIN diode and
the control of the salinity of the water matrix so that the
metasurface can flexibly control the amplitude and deflection
angle of the scattered beam. In turn, the X-stage wave front of the

reconfigurable water-based metasurface was controlled [114], as
shown in Figure 4C. Moreover, in 2017, A. Li et al. developed a
broadband absorbing material with adjustable switch control and
absorbing power by loading transistors in the absorbing
metasurface unit and adjusting the bias voltage applied to each
transistor [105], as shown in Figure 4D.

Moreover, in 2018, X. Zhao et al first designed aMEMS-loaded
reconfigurable metasurface as can be seen in Figure 4E by
controlling the resonant characteristics of the metasurface unit
through adjusting the magnitude of the bias voltage, thereby,
achieving the control of the polarization state of the incident
electromagnetic wave [106]. E. Arbabi et al. prepared a
metasurface lens on the MEMS cantilever and controlled the
position of the transmitted electromagnetic wave focus by
adjusting the bias voltage [107], and, at the same time,

FIGURE 4 | A variety of electrically reconfigurable metasurface designs. (A) Loaded with diodes for focal length control [104], (B) loaded with PIN diodes for
microwave camera [112], (C) loaded with PIN diodes and water for X-stage wave front control [114], (D) loaded with transistor switchable absorbing control [105],
(E) loaded with MEMS for polarization control [106], (F) loaded with graphene for different functions switching [109], (G) loaded with liquid crystal for reconfigurable
multiband spin-selective light absorption [110, 111], (H) loaded with ITO for focus control [125], and (I) loaded with magnetic dipole for reconfigurable wave front
manipulation [126].
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M. Manjappa et al. realized a simple logic signal processing in the
THz band based on the MEMS-loaded dual SRR metasurface
structure [108].

In addition, S. R. Biswas et al. theoretically proved that when
the graphene material was loaded into the reflective metasurface,
by changing the bias voltage of the graphene, the on-demand
switching between the beam orientation/focus and
electromagnetic cloak can be realized [109], seen in Figure 4F.
As a result, the tunable frequency and/or amplitude modulation
can be achieved [115, 116]. After that, many high-performance
graphene-based tunable/reconfigurable metasurfaces are
reported with different kinds of functions, including the
tunable polarization switching/converting and beam steering
[117, 118], broadband and tunable perfect absorber [119–122],
and even programmable metasurface [123, 124] which will be
discussed later. Moreover, A. Komar et al. and D. Xiao et al. have
proposed the designs for integrating liquid crystals into
metasurface arrays. By adjusting the bias voltage applied to the
liquid crystals, the controlling of the metasurface resonance
frequency as well as the on-demand selective absorption of
electromagnetic waves of different polarizations was achieved
[110, 111], as shown in Figure 4G. A. Howes et al. loaded the ITO
material layer in the metasurface array and realized the
electromagnetic wave transmittance controlling by adjusting
the bias voltage on the ITO material. Finally they realized the
reconfigurable focus beam [125], seen Figure 4H. In 2018, O.
Tsilipakos et al. used a magnetic dipole with a ring dipole

resonator in the metasurface unit made of an elliptical
dielectric rod. When the rod dielectric constant is changed,
the effect of accurately matching the two resonances can be
achieved, realizing the manipulation of constructing a tunable
gradient metasurface and reconfiguring its wave front [126], seen
in Figure 4I.

This type of reconfigurable metasurface is voltage controlled
and has the characteristics of simple tuning abilities. However, it
is difficult to achieve on-demand independent control of each
single metasurface unit for material-loaded metasurfaces
discussed above. Therefore, there are no reports of
metasurface applications with better functional performance.
Fortunately, in view of the engineering feasibility of
electronically controlled reconfigurable metasurface loaded by
diodes, the researchers further proposed the idea of coding and
reprogrammable metasurface designs. Quite recently,
researchers from Southeast University in China have
systematically studied the working principle as well as design
method of digital coding metasurface and reprogrammable
metasurface [99], as shown in Figure 5A. For example, in
2018, L. Zhang et al. proposed the concept of space-time
modulated digital coding metasurface to achieve the
simultaneous manipulation of electromagnetic wave
frequency domain and space; thereby, harmonic beam
control was achieved [127], as shown in Figure 5B. The
design principle of the space-time digital coded metasurface
can be applied to various aspects such as wireless

FIGURE 5 | Coding and programmable metasurface structure and its application. (A) Basic programmable metasurface [99], (B) space-time modulated digital
coding metasurface [127], (C) reconfigurable holographic imaging metasurface [128], and (D),(E) smart metasurface [129, 130].
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communication and holographic imaging. Other functional
devices such as reconfigurable holographic imaging
metasurfaces with transformable multibeam radiation have
also been developed [128] as shown in Figure 5C. Based on
the breakthroughs obtained by the T. Cui’s research group, the
smart metasurface imager and recognizer empowered by a
network of artificial neural network (ANNs) for the adaptive
control data flow and the smart metasurface that has self-
adaptive reprogrammable functions without human
participation have been designed [129, 130], as shown in
Figures 5D and 5E.

Optically Reconfigurable Metasurface
In recent years, researchers have also proposed to load
photosensitive materials as well as devices into metasurface
structures to achieve optically reconfigurable metasurface by
adjusting the intensity of light sources. For examples, in 2016,
Q. Wang et al. used a phase change material (chalcogenide GST)
as the metasurface substrate material to realize a light-controlled
dual-focus reconfigurable metasurface structure [131], seen in
Figure 6A. In 2018, L. Cong et al. used a layer of silicon ring
between a conventional C-shaped metasurface unit and a
sapphire substrate, as shown in Figure 6B. By changing the
intensity of the pump light, fast switching of the polarization state
of the incident electromagnetic wave and rapid separation of the
copolarized/cross-polarized wave were achieved [132]. In the
same year, H. Cai et al. designed an ultrafast tunable
metasurface consisting of an array of ion-implant combined
with annealed silicon disk using optical pump terahertz probe

spectroscopy to perform ultrafast and efficient all-optical tuning
of silicon-based metasurfaces, seen in Figure 6C, in turn,
achieving ultra-fast effective all-optical modulation of THz
waves [133].

In 2018, K. Fan et al. overcame the static geometric tuning
characteristics of traditional dielectric metasurfaces, by
controlling the resonant eigenmodes through optical
excitation. The optically tunable characteristics of the dynamic
dielectric Huygens’ metasurface were proposed and verified,
which has great significance for the application of metasurface
reconfigurability, as shown in Figure 6D [134]. In addition, the T.
Cui’s group from Southeast University integrated the photodiode
into the metasurface array to develop the light-controlled
reconfigurable metasurface structure by digitally encoding the
LED illumination state, as shown in Figure 6F [135]. However,
the use of additional light sources to control the electromagnetic
response characteristics of metasurface unit to achieve
reconfigurable function increases the complexity as well as
cost of the system to some extent.

Thermally Reconfigurable Metasurface
It is well known that some of the substrate materials described
above such as silicon, liquid crystal, and phase change material
GST are sensitive to bias voltage, light intensity, and also the
background temperature. Based on the temperature sensitivity
of these materials, researchers have proposed thermally
reconfigurable metasurfaces in recent years. As can be seen
in Figures 7A and 7B, the Y. Kivshar’s Group of the Australian
National University has used silicon and liquid crystal as the

FIGURE 6 | Optically reconfigurable metasurface. (A) Loaded with phase change material [131], (B) loaded with additional silicon ring layer [132], (C) loaded with
ion-implanted silicon layer [133], (D) loaded with specific dielectric materials [134], and (E) loaded with photodiodes [135].
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substrate material of the metasurface. By adjusting the
temperature around the metasurface, it can realize the
dynamic control of the reflection/transmission of incident
electromagnetic waves and dynamic control of the
transmission direction of incident electromagnetic waves
[136, 137]. W. Dong et al. achieved the adjustment of the
transmitted electromagnetic wave operating band by using
the temperature-sensitive phase-change material GST loaded
into metasurface [138]. In 2018, H. Cai et al. proposed a
vanadium dioxide-based hybrid metasurface and the hybrid
metasurface can realize the control of transmission of
terahertz waves by heating, or optical pumping [139]. In the
same year, J. Tian et al. used a phase change material such as
Ge2Sb2Te5 (GST) to switch the material phase state between a
crystal and an amorphous crystal by changing the temperature
to switch the response of the meta-atom between an electric and
a magnetic dipole. The phase shift generated by the multistage
resonance realizes wave front manipulation. It will contribute to
the development of future optical communication networks
[140]. At the same time, X. Chen et al. used shape memory
alloy as the metasurface substrate material and changed the
shape of the memory alloy by adjusting the ambient
temperature to develop a transmissive metasurface structure
with tunable working frequency band [141]. The thermally
reconfigurable metasurface provides a solution to a certain
extent, but the prepared metasurface was greatly affected by

the environmental temperature changings. Aside from that, its
practicability and operability are limited.

Mechanically Reconfigurable Metasurface
When the metasurface array was prepared on the elastic/flexible
substrate material, the shape of the elastic/flexible substrate
material can be mechanically adjusted. As a result, the
electromagnetic response of the metasurface unit could also be
changed, to achieve a mechanically reconfigurable metasurface.
In 2018, J. Reeves et al. designed a metasurface as directed in
Figure 8A. The C-shapedmetasurface unit was prepared on a soft
polymer scaffold by additional stretching/compression soft
polymerization. The object holder can control the spacing of
two C-shaped units in the metasurface unit to realize the
mechanical reconfigurable metasurface structure [142]. X. Liu
et al. also proposed a noncoplanar metasurface structure as
shown in Figure 8B. The two-layer metasurface array was
fabricated on a PDMS flexible substrate. The mechanically
reconfigurable metasurface was achieved by stretching the
PDMS flexible material to change the coupling characteristics
between the two metasurface arrays [143].

In addition, Z. Wang et al. prepared a C-shaped metasurface
unit on a foldable dielectric substrate as can be seen in Figure 8C.
Different chiral responses to incident electromagnetic waves were
achieved by changing the folding mode of the dielectric substrate
[144]. L. Chen et al. changed the distance of the reflective surface

FIGURE 7 | Thermally reconfigurable metasurface. (A) Loaded with silicon [136], (B) loaded with liquid crystal [137], and (C) loaded with phase change
material [140].

FIGURE 8 | Mechanical reconfigurable metasurface [132–134].
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of the metasurface metal reflective surface from the metasurface
layer by mechanical means to realize the reconfigurable function
of the reflected beam [145]. The mechanical reconfigurable
metasurface provides a feasible solution for real-time dynamic
control of electromagnetic waves. However, its mechanical
control system is complex and it is difficult to achieve precise
control with the high-performance metasurface applications.

Power Reconfigurable Metasurface
In addition, researchers have proposed the design idea of nonlinear
metasurface to achieve the generation of higher harmonics and
manipulation of its characteristics [100]. In 2014, J. Lee et al.
developed an asymmetric cross-shaped unit and a metasurface
array using the principle of electron complementary band
transition in a semiconductor heterostructure. As a result, a
second-order nonlinear harmonic output with high conversion
efficiency was achieved [146] as shown in Figure 9A. In 2017,
based on the relationship between electromagnetic response
characteristics of the nonlinear metasurface and the incident
electromagnetic wave intensity, L. Nicholls et al. designed a
metasurface that can quickly adjust the polarization direction of
the electromagnetic wave as shown in Figure 9B. The nonlinear
metasurface was able to realize the polarization deflection of
electromagnetic waves of up to 60° under the excitation of
electromagnetic waves with different intensities [147]. In 2018,
Y. Xu et al. used chalcogenide glass to prepare a full-dielectric
metasurface as can be seen in Figure 9C. Based on the high
nonlinearity of chalcogenide glass, the switching control of the
vortex electromagnetic wave state was achieved by adjusting the
incident electromagnetic wave intensity [148]. In 2018, L. Wang
et al. proposed a nonlinear all-dielectric metasurface which
generates a third harmonic signal and efficiently controls the
nonlinear wave front of any complex parameter wave generated
by it. Its control efficiency can reach up to 92% [149]. The
nonlinear metasurface energy can realize the reconfigurable
property of the electromagnetic wave self-control ability simply
by adjusting the incident electromagnetic wave intensity. However,
in the reported nonlinear metasurface, it is difficult to effectively
control each single metasurface unit, so a more versatile
reconfigurable metasurface structure is hard to be realized.

In recent years, optomechanical nonlinear metasurfaces
[149–151] have received wide attention as a new class of
nonlinear metasurfaces. The metal/nonmetal resonant unit in
the optomechanical metasurface is prepared on the elastic
material matrix or the resonant unit itself is suspended to
form an elastic structure. Under the excitation of the incident
electromagnetic wave, the field-structure interaction will generate
optical gradient force, electromagnetic induction force, and/or
thermal expansion force. The optomechanical metasurface can
control the self-polarization state of incident electromagnetic
waves by adjusting the intensity of incident electromagnetic
waves [150, 151]. The nonlinear characteristics of
optomechanical metasurfaces are derived from the mutual
coupling effect of incident electromagnetic wave energy and
metasurface unit structure potential energy.

DISCUSSION AND PERSPECTIVE

As can be seen above, the researches on electromagnetic
metasurface have made remarkable progress in mechanism
discovery, analytical theory breakthrough, application innovation,
etc. In recent years, a variety of metasurface implementation
methods have been proposed to design metasurfaces with
various electromagnetic wave response characteristics to achieve
the electromagnetic wave amplitude, phase, polarization direction/
state, orbital angular momentum, and spin angular momentum
control. Based on the metasurfaces breakthrough, a variety of novel
planar function devices and systems with microwave, THz, and
optical frequency bands have been developed. For the various
metasurfaces, especially the active tunable/reconfigurable/
programmable ones, some of them already realized to
independently control each metasurface unit.

In the near future, the metasurface can be further widely
developed, with more efficient [24, 31, 76, 97, 118], wider
operating bandwidth [12, 42, 118, 119] and easier fabrication
and lower cost [152, 153]. Most importantly, metasurface can be
designed based the cutting-edge techniques, including the
artificial intelligent, to achieve the intelligent metasurface and
smart metasurface, which are proposed in the past two years

FIGURE 9 | Nonlinear metasurface and power reconfigurable metasurface [136–138].
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[129, 130, 154–157]. This should be the most exciting research
area in the metasurface research community.

CONCLUSION

This review firstly discussed the previously well-developed
electromagnetic metasurfaces, in terms of the different kinds
of modulations, including the magnitude, phase, and/or
polarization modulations. Then, based on the analysis of the
aforementioned metasurfaces which cannot realize the dynamic
control, the active/tunable/reconfigurable metasurfaces based on
various materials/components loadings are analyzed, in terms of
the different kinds of control methods, including the electrically,
optically, thermally, mechanically, and power reconfigurable/
control techniques. In the end, the cutting-edge metasurface
design idea based on mechanical learning, deep learning, is
pointed out. This review concluded the main research
directions in the past several years and it has important value
for the metasurface research community.
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