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Under high-stress conditions, rock burst disasters can significantly impact underground civil
engineering construction. For underground metal mines, rock burst evaluations and
prevention during mining have become major research topics, and the prediction and
prevention of rock burst must be based on the study of rocks and rock burst tendencies. To
further prevent the risk of geological disasters and provide timely warnings, a finite-interval
cloud model based on the CRITIC algorithm is proposed in this paper to address the
uncertainty of rock burst evaluation, the complexity under multi-factor interactions, and the
correlations between factors, and it then realizes a preliminary qualitative judgment of rock
burst disasters. This paper selects the uniaxial compressive strength σc (I1), ratio of the
uniaxial compressive strength to the tensile strength σc/σt (brittleness coefficient, I2), elastic
deformation energy index Wet (I3), ratio of the maximum tangential stress to the uniaxial
compressive strength σθ /σc (stress coefficient, I4) of the rock, depth of the roadwayH (I5), and
integrity coefficient of the rockmassKv (I6) as indicators for rock burst propensity predictions.
TheCRITIC algorithm is used to consider the relationships between the evaluation indicators,
and it is combinedwith an improved cloudmodel to verify 20 groups of learning samples. The
calculation results obtained by the prediction method are basically consistent with the actual
situation. The validity of the model is tested, and then the model is applied to the
Dongguashan Copper Mine in Tongling, Anhui Province, China, for rock burst evaluation.
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INTRODUCTION

Rock burst is due to the impact of ground pressure onhard and brittle rockmasses in high earth-stress states
during the excavation of underground tunnels. Elastic strain energy is suddenly and rapidly released due to
the stress concentration around the opening, and the dynamic instability of the energy leads to the sudden
release of energy into the free space, thus destroying the equilibrium. This energy release is an earthquake
induced by mining or tunnel excavation [1, 2]. As early as 1738, there were related reports of rock burst
disasters [3]. Rock burst disasters are sudden and extremely destructive and will not only cause over-
excavation, initiate support failure, and delay construction but may also cause earthquakes or destroy the
entire tunnel or pit, thus causing casualties and serious economic losses. At the same time, rock burst
disasters are often accompanied by the exfoliation and ejection of surrounding rock, the formation of a
considerable amount of dust and the creation of air shock waves. Thus, these disasters can easily cause
numerous casualties and determining a method of correctly predicting the risk of rock burst in
underground engineering and geotechnical engineering practice has become a problem thatmust be solved.

Compared with other engineering fields, the occurrence of rock burst in underground metal
mines is unique and mainly reflected in the following aspects: 1) Rock burst evaluation is an
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important basis for determining the risk level and safety of mines;
2) In other metal mine production research fields, such as
underground caverns, rock slopes and dam foundation
stability, rock burst is a relatively important criterion; 3)
Reasonable rock burst evaluations can provide effective
theoretical criteria for process selection, disaster prevention
and control during construction, which provides strong
theoretical support for mining safety protection measures,
such as safety support and safety shielding implementation;
and 4) Underground engineering rock burst evaluations
provide data for underground engineering surveys, designs
and safe construction and represent an important research
topic in rock mechanics and geotechnical engineering.

In recent decades, many scholars have performed a number of
analyses and research based on the formation mechanism of rock
burst and proposed many well-known theoretical criteria, such as
the Russenes criterion, the Hoek criterion, the energy criterion,
and the stress criterion. In recent years, rock burst criteria based
on engineering experience have emerged. The above
discrimination methods are based on the study of rock burst
mechanisms and have been combined with qualitative or
quantitative analysis methods to determine the rock burst
tendency and hazard level. In general, current rock burst
evaluation methods can be classified into three categories:
theoretical analysis methods, field measurement methods and
statistical evaluation methods. The specific contents and
differences are as follows.

Theoretical Analysis
Theoretical analysis can be used in the process of rock burst
evaluation. This method is inexpensive and can better simulate
the influence of various on-site factors. The theoretical analysis
method is based on different theories of rock burst mechanism,
and the resulting criteria are used to form different prediction
methods, including the following methods. 1) Rock burst
tendency judgment method [4–6]: This method is mainly used
in the engineering geological exploration stage after drilling rock
samples on site and for conducting rock mechanics tests, and one
indicator or a set of indicators (elastic deformation index, impact
energy index, dynamic damage time, etc.) are used to analyze the
possibility of rock burst. 2) Strength theory method [7, 8]:
Strength theory suggests that rock burst may occur when the
tensile stress or compressive strength of rock reaches a certain
ratio, and the prediction criteria used in this method include the
Norwegian Russenes criterion [9], elastic energy reserve criterion,
brittleness coefficient criterion, and tangential stress criterion. 3)
Energy release rate (ERR) index method [10–12]: The ERR value
is the ratio of the energy release caused by the excavated ore to the
volume of the mined rock, and it comprehensively reflects the
influence of the geometry, depth, original rock stress field and
rock mechanical properties of the excavation on rock burst. 4)
Numerical prediction methods [13, 14]: These methods include
the finite element method and finite difference method.

On-Site Measurement Method
The on-site measurement method uses the necessary instruments
to determine whether a rock explosion occurs by investigating

and analyzing the mining site or testing the rock mass [15]. This
approach mainly includes the following methods. 1) Drill cutting
method [16]: This method is mainly used for drilling and
sampling analysis of surrounding rock through the collection
of dynamic response information, such as popping sounds,
friction sounds and stuck drilling phenomena and auxiliary
judgements. 2) Acoustic emission method [17]: This method is
the most direct monitoring method for rock burst detection and
most direct forecasting method, and the occurrence of rock burst
is determined according to the shape and frequency spectrum of
the acoustic emission signals emitted at different stages of rock
deformation. 3) Electromagnetic radiation method [18–20]: This
method can predict the possibility and development of rock burst.
4) Microgravity method: this method can predict rock burst early
and over a wider prediction range, although its costs are higher
than those of other methods.

Statistical Forecasting Methods
Uncertainty is the main feature of most engineering problems,
mainly the randomness and ambiguity discussed in probability
theory and fuzzy mathematics. Because of the randomness and
complexity of the rock mass structure of underground mines, the
severity, timing, form, and location of rock burst are uncertain.
To resolve the uncertainty of the rock burst problem, domestic
and foreign scholars have performed many studies on rock burst
tendency predictions and proposed a variety of rock burst grading
prediction methods [21–27]. For example, Zhou et al. [28]
selected seven data parameters and 132 rock burst databases
and combined multiple data models to carry out rock burst
tendency prediction work. Xu [29] considered the basic theory
of the ideal point method and selected several factors for the
evaluation prediction index to construct a coupled ideal point
prediction analysis model. Lu et al. [30] used the basic principles
of Analytic Hierarchy Process and the entropy weight method to
select prediction indexes from three aspects, namely, lithology
conditions, stress conditions and surrounding rock conditions, to
calculate the critical rock burst risk and the closeness of actual
mine data. Wen et al. [31] proposed a rock burst propensity
prediction model based on a support vector machine (SVM) with
mixed particle swarm optimization (PSO) based on combination
weighting, constructed a combination weighting criterion and
established a H-PSO-SVM rock burst tendency prediction model
based on the concept of the harmonic mean. Zhang et al. [32]
established the rock burst cloud model with the distance index
and uncertainty metric. Faradonbeh and Taheri [33, 34] used data
mining technology to study rock burst tendencies and
innovatively proposed the use of field experiments and data
analysis methods to conduct research on the predicting deep
rock mass and explosion tendencies, and they verified the
feasibility of the method. However, some uncertainty analysis
methods still have shortcomings. For example, when the AHP
method is used to analyze the index weight and usually only
measures the relative importance of the index, and it also presents
subjectivity; the extension model takes a long time to analyze
large-scale training samples and is dependent on the selection of
the kernel function; the coupled neural network algorithm is
complicated to calculate, the obtained samples are not
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representative, and the fitting speed is difficult to control; and the
distance discrimination weighting model is strongly dependent
on the sample data.

Due to the complexity of rock burst, the above methods also
have some limitations: 1) Many risk evaluation factors are derived
from subjective experience, which may not make sense in theory;
2) The evaluation criteria standard is generally vague, and
traditional evaluation models cannot handle the problem of
index classification near the threshold; 3) When different
evaluation indicators belong to different grades, the method of
defining the actual evaluation indicators of the sample is also
somewhat ambiguous; 4) The measured value of the evaluation
factors will have some errors, which will lead to the unreasonable
classification of factor levels near the threshold; and 5) The
traditional method of determining the importance of the risk
level factors of the object relies too much on subjective
experience. When the production system is complex and there
are many influencing factors, many redundant factors will
interfere, thereby reducing the reliability of the evaluation
results. The entropy weight method [35] determines the
variability of the evaluation index based on the sample data to
calculate the amount of information included in the index,
thereby assigning the weight according to the amount of
information included in the index, although it does not
consider the correlation between the indicators. Therefore, it is
necessary to introduce a relatively perfect rock burst
evaluation model.

In this paper, based on the uncertainty of rock burst evaluations,
the complexity under multi-factor interactions, and the
correlations between factors, a cloud model of finite intervals
based on the CRITIC algorithm is proposed. When using the
traditional normal cloud model to address the parameter
distribution of the single interval boundary, the deviation
between the actual situation and the model distribution will not
be considered. The calculation result obtained in this case often
differs from the actual engineering, and this difference affects the
accuracy of the prediction result. When classifying rock burst
grades, the determination of index weights is the key to object
evaluation. Although the traditional method of objective weights is
based on objective data, the results may be poorly interpreted. This
paper uses the improved CRITIC method-normal cloud model for
rock burst propensity prediction to determine the weight of the
index. The model is applied to the rock burst examples of
underground engineering worldwide, the validity of the model is
tested, and themodel is finally applied to the Dongguashan Copper
Mine in Tongling, Anhui Province, for rock burst evaluation.

THEORETICAL BASIS

Identification Framework and BPA
For a fuzzy evaluation problem, the answers can be composed of a
set, and the internal elements of the set are mutually exclusive.
Under certain conditions, the answer to the question can be the
only element in the set. For this reason, Shafer [36] refers to this
mutually exclusive set Θ as the recognition framework according
to the set theory:

Θ � {A1,A2 . . .Am} (1)

whereAm indicates the evaluation level of the evaluation question
and Θ indicates the evaluation standard in the evaluation
question.

The evidence set is the basis for judging whether the
identification framework of a problem Θ is a subset, which is
equivalent to the index factor in the evaluation and is recorded as
follows:

Φ � {E1, E2 . . . Ek} (2)

where En represents the index factor in the evaluation question,
which is usually used to express the sample and judge its
subordinate level. In the recognition framework Θ, the basic
probability distribution function f is a mapping of the set 2Θ to [0,
1] and satisfies the following:

∑
A∈Θ

f (A) � 1 (3)

where A denotes any subset of the recognition frame Θ, which is
denoted as A ∈Θ; and f (A) is the basic probability distribution
function of A, which indicates the degree of evidence support for
A. In the evaluation question, f (A) indicates the degree of
membership, which is characterized by the fact that the
measured values of the indicators of the evaluation factors
belong to the degree of membership of different evaluation levels.

Definition of the Cloud Model
The essence of the membership function concept, which is the
most basic of fuzzy mathematics, did not have good theoretical
support before the cloud model was produced. In particular, it is
basically impossible to use accurate membership functions to
define fuzzy thinking activities. For this reason, Li Deyi et al.
proposed the concept of a cloud model [37, 38]. From the
perspective of membership degree, they analyzed the data
randomness and ambiguity problems in engineering practice.
Randomness means that there is a certain basic definition,
although the events may not occur. The characteristic of this
problem is randomness. In the evaluation model, the concept and
distribution of each evaluation factor index are deterministic but
for different evaluation subjects; however, the specific data
distribution is uncertain. Therefore, the mine risk assessment
problem shows randomness; moreover, the basic concept of
ambiguity can be characterized as the uncertainty contained in
the event that has occurred but is difficult to accurately define.
The method has been applied in many fields [39–48] and
achieved good evaluation results.

The “cloud” is a two-way cognitive model between a
qualitative concept and its quantitative representation
expressed by linguistic values to reflect the uncertainty of
random and ambiguous concepts in natural language. The
relevant definitions are as follows [39].

There is an exact numerical representation of the quantitative
set U � {x}, where U is the domain (1D, 2D or multidimensional),
the Ak inter-cell is the fuzzy interval in the domain U, K is the
number of grade intervals in the domain segmentation, and C is
the qualitative concept of Ak. An arbitrary element x is observed
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inAk, and each corresponding x ∈Ak has a stable random number
in the mapping μ: x→ μA(x), which is randomly implemented in
the qualitative concept CμA(x) is called the degree of certainty of x
for concept C and can also be called the membership degree. The
distribution of μA(x) on the domain U is called the cloud model,
μA(x) ∈ (0, 1):

μ : U→ (Ckl
min,C

kr
max),Ak4U ,∀x ∈ Ak, x→ μA(x) (4)

The distribution of μA(x) on each fuzzy set Ak is called a cloud,
and each point [x, μ(x)] is called a cloud drop, where Ckl

min
represents the smallest value in the smallest fuzzy level
interval that is segmented, which is usually 0; and Ckr

max
indicates the maximum corresponding maximum value of the
segmented fuzzy level interval. For the one-sided interval
(Ckr

min,+∞), the expected value of the k-1 interval may be
taken as Ekr−1

x , and then the expected value of the interval may
be obtained. Alternatively, we can determine the default
boundary parameters by considering the upper and lower
limits of the data. When the rock burst risk is positively
correlated with the evaluation index, kl and kr represent the
minimum and maximum fuzzy level intervals, respectively;
otherwise, they represent the maximum and minimum fuzzy
level intervals, respectively. The traditional normal cloudmodel is
shown in Figure 1, in which the abscissa X (x1, x2, . . . xn)
represents the value corresponding to the qualitative concept
in the domain at this time, the width of the domain represents the
value of a certain fuzzy level interval Ak, while the ordinate
represents the degree of certainty μ (xi) (x1i, x2i,. . .xni), which
ranges from 0 to 1 and is a measure of the language value. Each
point in the figure corresponds to one cloud drop, which is a
specific implementation of the quantified language value.

Digital Characteristics of the Cloud
Usually, the support of the cloud model concept is mainly
expressed by three numerical eigenvalues [49]: expectation Ex,
entropy En, and super entropy He. The specific meaning of the
expression is shown in Figure 2, where three lines are selected in
the cloud drop graph and Ex is expected to represent the central
value of the data parameter in the Universe. In the geometric
sense, a random value corresponding to the highest point of the
graph is selected. The location of the cloud drop distributions
suggests that Ex3 > Ex2 > Ex1. Entropy En indicates the range of
values of the cloud drop expressed in the qualitative domain of
the Universe, thus reflecting the ambiguity and randomness of the
basic concept, which also determines the cloud drop. The greater
the confusion is, the greater the width of a cloud map, the larger
the value range of the cloud droplet, the more blurred the
qualitative concept, and the greater the dispersion of the cloud
droplet; thus, En2 > En1 � En3. The super entropy He, which is the
entropy of entropy and indicates the uncertainty of entropy, is the
thickness of the cloud in the cloud drop diagram. The larger the
super entropy is, the thicker the cloud, which is characterized as
He1 � He2 > He3 in the cloud drop diagram.

In the cloud model, each cloud drop satisfies x ∼ N(Ex, E′2
n ),

where E′
n ∼ N(En,H2

e ); then, the degree of certainty of x to C is as
follows:

μ(x) � exp⎡⎢⎣−(x − Ex)2
2 p E′2

n

⎤⎥⎦ (5)

The boundary value Ck is a transition value of two levels, and
the membership degrees belonging to the two fuzzy intervals are
equal:

exp⎡⎣ − (Ck
max − Ck

min)2
8E2

n

⎤⎦ � 0.5 (6)

For the rock burst hazard grading interval, there are fuzzy edge
intervals of magnitude AKr � (0,CKl

max) and AKl � (CKr
min,+∞),

and the index variables at this time no longer obey the traditional
cloudmodel distribution. Therefore, μA(x) should be transformed
into a uniform distribution with a degree of certainty of 1 on the
edge blur intervals Akr and Akl, and it is usually described by a
half-lift trapezoidal cloud and a half-fall trapezoidal cloud. The
calculation equations of the cloud characteristic parameters are as
follows:

Ek
x �

Ck
max + Ck

min

2

Ek
n �

Ck
max − Ck

min

2.355
(7)

Hk
e � λEk

n

where Ck is the half-length of the k-level; Ck
max and Ck

min are the
upper and lower bounds of the level interval, respectively; and λ is
the empirical value, which can be appropriately adjusted according
to the fuzzy value of the index variable and is temporarily set to 0.01
in this article. It should be clear that the empirical value λ cannot
affect the final result. A change of its value will only affect the value
of He, and it does not affect the upper and lower thresholds of the
fuzzy interval as shown in Figure 2 and is mainly used to
characterize the thickness of the “cloud.”

FIGURE 1 | Traditional normal cloud model.
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Forward Cloud Generator
Cloud generators, including forward cloud generators and
reverse cloud generators, are an important medium to
transform qualitative concepts into quantitative data. This
paper uses a forward cloud generator as a means of
qualitative and quantitative conversion. According to the
cloud characteristic parameter N (Ex, En, He), a cloud drop
map is generated in the blur interval Ak by the forward cloud
generator. For each cloud drop P [xi, μA(x)] (i � 1, 2,. . ., n), n is
the number of cloud droplets to be generated in the fuzzy
interval Ak and N � n1+ n2 + nk represents the total number
of clouds generated in the entire Universe U (N � 5,000 in this
paper). When the indicator is in the mean interval of the non-
edge level cloud, the degree of certainty of x to C is μ(x) � exp
[−(x − Ex)

2/2En,2]. When the indicator is in the edge level
interval, x no longer has a normal distribution but has a
uniform distribution with a degree of certainty of 1.
Combining these two distributions, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μA(x) � 1 x ∈ (0, Ek1

x )∪ (Ekn
x ,Ckn

max)
μA(x) � exp⎡⎣−(x − Ex)2

2En′2
⎤⎦ x ∈ otherrval

(8)

The generated edge interval is a uniformly distributed cloud
model as shown in Figure 3, where curve one and curve three
represent a finite-interval cloudmodel and indicate hazard levels one
and three, respectively, and the left and right edges of the two curves
obey a uniform distribution with a degree of certainty of one.

The positive normal cloud model is applied to rock burst
evaluation based on the following four reasons:

(1) Rock burst risk assessment is a problem of uncertainty, and
the cloud model expresses and reflects the uncertainty of
concepts in the process of human cognition through the three
characteristic parameters of N (Ex, En, He);

(2) The cloud model with the edge obeys the normal
distribution, and its main body still obeys the normal

distribution, which has certain universality and
extensiveness;

(3) In the natural sciences, the characteristic curves of many
qualitative concepts approximately obey a normal distribution;

(4) The cloud model can convert qualitative concepts and
quantitative values, and the rock burst risk assessment
selected in this article is also a research process from
qualitative to quantitative.

CLOUD MODEL BASED ON THE CRITIC
ALGORITHM FOR ROCK BURST
EVALUATION
To use the CRITIC algorithm-based cloud model for rock burst
evaluation, the appropriate evaluation index system and its

FIGURE 2 | Cloud model feature parameter representation.

FIGURE 3 | Finite-interval cloud model cloud drop diagram.
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corresponding evaluation criteria must be selected and the index
weights are then calculated by the CRITIC algorithm; then, the
corresponding evaluation index criteria are used to calculate the
cloud characteristic parameters of each level. The cloud model is
generated using the cloud generator, and the degree of certainty
corresponding to each index is calculated according to the
measured data of the sample. Finally, the comprehensive
weight value is calculated, and the rock burst risk level is
determined according to the principle of maximum
membership degree. The evaluation flow chart is shown in
Figure 4.

Selection of Rock Burst Evaluation
Classification Indicators and Intensity
Grading Standards
The mechanism of rock burst is complicated, and there are many
influencing factors. The selection of indicators is a key step in the
prediction process. The impact of rock burst is two-fold: internal
and external. In a high-stress environment, excavation of a cavern
will lead to stress redistribution and stress concentration in the
surrounding rock mass. The environment in which the rock mass
is located undergoes a certain change, which is the external factor
of rock burst. The mechanical properties of the rock mass itself
are internal factors, and hard rock and brittle rock are prone to
rock burst. Therefore, it is necessary not only to carry out
mechanical experiments on the rock but also to obtain the
rock burst tendency index and consider external conditions in

rock burst evaluation. Based on related research on rock burst
[50, 51], the theory of rock burst tendency, and intrinsic rock
burst conditions, lithological factors, energy factors and
geological factors, this paper selects the uniaxial compressive
strength σc (I1), ratio of the uniaxial compressive strength to the
tensile strength σc/σt (brittleness coefficient, I2), elastic
deformation energy index Wet (I3), ratio of the maximum
tangential stress to the uniaxial compressive strength σθ/σc
(stress coefficient, I4) of the rock, depth of the roadway H (I5),
and integrity coefficient of the rock mass Kv (I6) as indicators for
rock burst propensity prediction. According to the characteristics
of rock burst occurrence during underground mining of metal
mines, the selection of evaluation indicators should be scientific,
independent and representative. The main factors should be
included in the evaluation as much as possible. The stronger
the independence of the indicators, the more accurate the
prediction results will be.

According to the relevant research and classification criteria, the
rock burst intensity can be divided into four grades. Grade I (no
rock burst) is mainly manifested as a lack of rock wall tearing, rock
fragmentation, sound emission phenomenon, etc., and there is no
need to take any safety measures. Grade II (weak rock burst) is
characterized by a loose rock wall surface and block spalling occurs,
and safety and safety monitoring measures are required. Grade III
(moderate rock burst) is characterized by block spalling of the rock
in the diverticulum and roadway wall accompanied by occasional
projectiles that often emit sharp ejecting sounds and may cause
casualties and property losses; thus, it is necessary to implement

FIGURE 4 | Flow chart of rock burst tendency prediction and evaluation.
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monitoring measures to perform isolation and protection work.
Grade IV (violent rock burst) is characterized by large rock mass
spalling, rapidly deformed surrounding rock, and a large number
of blast pits; this type of rock burst is prone to causing numerous
casualties and injuries, and relevant safety protection measures
must be taken. The specific classification criteria are shown in
Table 1 [52–54]. Multiple studies at home and abroad indicate that
the classification standards for rock burst tendencies are different.
The classification standards selected in this article indicate a trend
and only show the uncertainty of the rock burst problem.

Rock Burst Propensity Prediction CRITIC
Algorithm
The so-called weight refers to the importance of the risk
indicators that affect the problem in the evaluation process.
The methods of determining weight mainly include subjective
weighting methods and objective weighting methods. According
to the engineering characteristics of the rock burst problem, this
paper adopts the CRITIC objective weighting algorithm to
determine the index weight. The CRITIC method was
proposed by Diakoulaki et al. [55] in 1995, and it focuses on
using the information and correlation of risk indicators to
determine risk weights. The improved CRITIC algorithm is
based on the original calculation steps, adding the concept of
coefficient of variation (Formula 12), thereby reducing the
shortcomings of using standard deviation to measure the
variability of indicators [56], the main steps are as follows:

STEP 1: Using the initial data, establish a matrix of predicted
sample indicator values:

X � (xij)m×n (9)

where xij is the original value corresponding to the jth indicator of
the ith evaluation object.

STEP 2: According to the Z-score method, standardize the
index values in matrix X of the above formula:

xpij �
xij − xj

sj
(i � 1, 2, . . . , m; j � 1, 2, . . . , n) (10)

According to the algorithm, the two parameters in the above
formula are defined as follows:

xj � 1
m
∑m

i�1xij, sj �
�����������������
1

m − 1
∑m

i�1(xij − xj)2√
(11)

where xj is the average of the jth indicator and sj is the standard
deviation of the jth indicator.

STEP 3: Find the coefficient of variation in the indicator:

]j � sj
xj
(j � 1, 2, . . . , n) (12)

where vj is the coefficient of variation in the jth indicator.
STEP 4: Use STEP 2 to obtain the normalized matrix X* and

use the statistical concept to calculate the correlation coefficient:

r � ∑n
i�1(xi − x)(yi − y)�����������������������∑n

i�1(xi − x)2 ·∑n
i�1(yi − y)2√ (13)

Obtain the Correlation Coefficient Matrix

R � (rkl)n×n (k � 1, 2, . . . , n；l � 1, 2, . . . ) (14)

where rkl is the correlation coefficient between the kth indicator
and the 1st indicator.

STEP 5: Identify the degree of independence—quantization
coefficient—of each indicator:

ηj � ∑n

k�1(1 − rkj)(j � 1, 2, 3, . . . n) (15)

STEP 6: Calculate the total volume of information for each
indicator:

Dj � vj∑n

k�1(1 − rkj), j � 1, 2, 3 . . . n (16)

STEP 7: Determine the weight of each evaluation index:

ωj � Dj∑n
j�1Dj

(j � 1, 2, 3, . . . , n) (17)

According to the cloud model theory and the improved CRITIC
algorithm, the coupling process is as follows.

(1) With reference to the rock burst risk level classification
standard and cloud model concept, determine the number
and interval of the divided states.

(2) According to the numerical characteristics of the cloud
model (Eq. 7) and the grading standard of the rock burst
intensity level, the numerical eigenvalues of different hazard
levels of different evaluation factors can be obtained. The
specific values are shown in Table 2. When the edge interval
is treated as (Ck, +∞), the expected value of the k-1 interval
can be assumed, and then the expected value of the entire
interval can be obtained.

TABLE 1 | Rock burst classification criteria.

Rock burst
grade

σc/Mpa σc/σt Wet σθ/σc H/m Kv

Ⅰ (no rock burst) (0, 80) (40, +∞) (0, 2) (0, 0.3) (0, 50) (0, 0.55)
Ⅱ (weak rock burst) (80, 120) (26.7, 40) (2, 3.5) (0.3, 0.5) (50, 200) (0.55, 0.65)
Ⅲ (moderate rock burst) (120, 180) (14.5, 26.7) (3.5, 5) (0.5, 0.7) (200, 700) (0.65, 0.75)
Ⅳ (violent rock burst) (180, +∞) (0, 14.5) (5, +∞) (0.7, +∞) (700, +∞) (0.75, 1]
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(3) Based on the evaluation criteria in this table and the
characteristics of the cloud model, the MATLAB simulator
is used to generate a cloud drop graph of each evaluation
index by a forward cloud generator, and then the specific
generation graph can be determined as shown in Figure 5.
Let drop (x1i, x2i,. . .xni, μi) be a cloud drop, which is a specific
implementation of the number of linguistic values
represented by the cloud, where X (x1i, x2i,. . .xni) is the
value of the qualitative concept in this field and μ(xi) is
the degree to which the x value (the measured value of the
sample) belongs to different levels.

(4) Use the improved CRITIC weighting algorithm (Eqs 9–17)
to calculate the importance of a single evaluation factor,
i.e., the weight value.

(5) Combine the weights determined by the improved CRITIC
algorithm with the cloud model feature parameters to obtain
the final degree of certainty.

(6) After the expansion and calculation of the above steps, we
can obtain the uncertainty in the different evaluation
indicators x subordinate to a certain cloud μ (x) and then
utilize the CRITIC algorithm to calculate the weight of
different evaluation indicators. Then, the final
comprehensive determination formula is as follows:

μk � ∑m

i�1ω(Ei) • μk,j (18)

where k is the degree of determination of the measured value of
the jth indicator of the μk,j sample; and ω(Ej) represents the
weight of the jth evaluation index of the sample.
(7) According to the final comprehensive determination and the

principle of maximummembership, the membership level of
the sample is determined:

L � max(μ1, μ2, . . . μk) (19)

ROCK BURST EVALUATION ANALYSIS OF
LEARNING SAMPLES

To verify the rationality and effectiveness of the rock burst
propensity prediction model used in this paper, referring to 20
sets of typical rockburst example data in literature [50]. The
details of the measured index values and actual rock burst grades
are listed in Table 3.

Indicator Weight Determination
In this paper, the CRITIC method is used to calculate the index
weight and the information volume of the indicator and the
correlation between the indicators are comprehensively
considered. According to the steps outlined in Formulas 10

TABLE 2 | Characteristic parameters of the rock burst cloud model.

Rock burst

grade

Model feature Evaluation factor

I1 I2 I3 I4 I5 I6

Ⅰ Ex 40 46.65 1 0.15 25 0.275

En 33.97 5.65 0.64 0.13 21.23 0.23

He 0.34 0.057 0.0064 0.0013 0.21 0.0023

Ⅱ Ex 100 33.35 2.75 0.4 125 0.6

En 16.98 5.65 0.64 0.085 63.69 0.042

He 0.17 0.057 0.0064 0.00085 0.64 0.00042

Ⅲ Ex 150 20.6 4.25 0.6 450 0.7

En 25.48 5.18 0.64 0.085 212.31 0.042

He 0.25 0.052 0.0064 0.00085 2.12 0.00042

Ⅳ Ex 210 7.25 5.75 0.8 950 0.875

En 25.48 6.16 0.64 0.085 212.31 0.11

He 0.25 0.062 0.0064 0.00085 2.12 0.0011

FIGURE 5 | Rock burst evaluation index cloud drop diagram.
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and 11, the Z-score method is used to standardize the index
values in Table 3 and then the mean and variance of each index
are calculated. The coefficient of variation in each index is
obtained by using Eq. 12. These results are shown in Table 4.

According to the basic concept of the Pearson correlation
coefficient, the correlation coefficients of the standardized
calculated indexes are obtained by referring to Formula 13 as
shown in Table 5.

The coefficient of independence of each index is obtained by
using Eq. 15, and the coefficient of variation and the coefficient of
independence of each index are multiplied by Eq. 16. Finally,
using Eq. 17, we can obtain the weight values of each prediction
index I1 (σc), I2 (σc/σt), I3 (Wet), I4 (σθ/σc), I5 (H), and I6 (Kv):
0.022, 0.142, 0.135, 0.340, 0.019, and 0.342, respectively.

Prediction Results and Analysis
According to the cloud model characteristic parameters
obtained from the table, by substituting them into Formula
8, the degree of certainty of the selected test samples are
calculated to categorize their hazard levels, and the
corresponding weights are calculated according to Formula
18. According to the principle of maximum membership
degree, the degrees of membership of the samples to be
tested are shown in Table 6.

In order to further verify the accuracy of the calculation
method proposed in this manuscript, we selected the
calculation of F1 score for discussion and analysis. F1 Score is
an indicator used in statistics to measure the accuracy of a binary
classification model. It takes into account the accuracy and recall
of the classification model. F1 score can be regarded as a weighted
average of model accuracy and recall. Its maximum value is 1 and
its minimum value is 0. The F1 score analysis includes the
following four basic concepts, namely Tue Positive (TP:

prediction is positive, actual is positive); False Positive (FP:
prediction is positive, actual is negative); False Negative (FN:
prediction is negative, actually positive); True Negative (TN:
predicted negative, actual negative). The so-called positive
means that the predicted result is correct; the negative concept
means that the predicted result is wrong. Therefore, for the
rockburst grading of level 1, the TP value is 3, and similarly
corresponding to the 2, 3, and 4 levels, the TP values are 6, 6, and 3
respectively. In terms of FP value and FN value, the situation is
shown in Table 8:

The calculation formula for the precision rate P and the recall
rate R are:

Precision P � TP
TP + FP

(20)

Recall R � TP
TP + FN

(21)

The formula for calculating F1 score is:

F1 � 2 •
Precision •Recall
Precision + Recall

(22)

The calculation shows that the p value, R value, and F1 score
are all 0.9, which also verifies that the model is reasonable and
feasible in the exploration of rockburst tendency classification.

The calculation results of the proposed rock burst cloud model
based on the CRITIC algorithm are consistent with the actual
data, indicating that the proposed model is reasonable and
effective for rock burst grading. The generation of sample
error is due to the gray features of the rock burst problem
itself, causing its prediction to have some ambiguity, and the
factors affecting the rock burst tendency are multi-faceted and
include other external environmental factors, such as the
installation of artificial support and the humidity of the
internal environment, all of which complicate the accuracy of
rock burst tendency.

In the CRITIC method, the correlation between the
information volume and the indicator index is
comprehensively considered and the reliability of the weight
calculation result is improved. As a cognitive model that
realizes the qualitative concept and the bidirectional
transformation of quantitative data, the cloud model can
transform the ambiguity and randomness of the rock burst
evaluation process into quantitative data of certainty, which
accurately reflects the uncertainty of rock burst grading. This
approach is superior to other methods.

Since rock burst tendency is a qualitative concept, the
classification of its hazard level will be affected and controlled
by many uncertain factors. Although the application of the cloud
model has certain predictability for the occurrence of rock burst,
the finite-interval cloud model cannot completely eliminate the
gray features of its existence by transforming its ambiguity and
randomness into certainty. The current cloud model used for
evaluation does not reflect the characteristics of rock burst
affected by multiple factors and does not reflect the correlation
of factors in the process. The form of the actual distribution of the
rock burst tendency evaluation index will have an impact on the

TABLE 3 | Measured rock burst index values and actual rock burst grades.

Sample
number

Evaluation factor Actual rock
burst
grades

I1 I2 I3 I4 I5 I6

1 148.52 22.3 3.23 0.66 166 0.88 Ⅲ
2 162.33 13.2 5.23 0.72 317 0.71 Ⅳ
3 116.78 29.73 3.52 0.37 177 0.68 Ⅱ
4 109.33 32.77 2.97 0.42 148 0.71 Ⅱ
5 98.56 42.73 2.17 0.28 171 0.49 Ⅰ
6 156.73 20.13 3.82 0.49 289 0.91 Ⅲ
7 100.32 28.77 3.02 0.38 182 0.70 Ⅱ
8 142.20 27.52 4.30 0.72 308 0.73 Ⅲ
9 160.32 16.55 5.72 0.69 265 0.90 Ⅳ
10 97.60 15.50 3.20 0.42 162 0.62 Ⅱ
11 100.20 30.12 4.50 0.58 274 0.64 Ⅱ
12 106.32 36.42 1.75 0.22 289 0.46 Ⅰ
13 125.77 10.36 5.75 0.65 277 0.92 Ⅲ
14 146.75 19.35 4.50 0.62 318 0.88 Ⅲ
15 107.75 31.20 3.15 0.57 276 0.58 Ⅱ
16 160.75 12.36 5.41 0.65 294 0.91 Ⅳ
17 146.72 18.75 4.20 0.59 342 0.84 Ⅲ
18 162.70 29.70 3.82 0.73 278 0.70 Ⅲ
19 95.50 42.30 2.75 0.37 215 0.36 Ⅰ
20 105.70 37.35 3.08 0.37 155 0.66 Ⅱ
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evaluation results. The cloud model generated by the
combination of uniform and normal distributions reflects the
actual situation more reasonably, the parameter method must be
further improved to generate more accurate results. In addition,
the selection of the evaluation index should also be performed
according to the actual project conditions and cannot be rushed.
Because of the location of the rock burst, the external
environment and human factors will affect the occurrence of
rock burst.

ENGINEERING APPLICATION

The Dongguashan copper deposit is located in the Shizishan
orefield of Tongling City, Anhui Province, on the polymetallic
metallogenic belt along the Yangtze River. The surface is a hilly
area with a ground elevation of 15–182 m. The ore body is
inclined to 35° and dips to the northwest and southeast with the
surrounding rock. The inclination angle is generally
approximately 20°, and the maximum inclination angle is
30–35°. The ore body is mainly composed of copper-bearing
skarns, copper-bearing pyrite, copper-bearing pyrrhotite and
copper-bearing serpentinite. The direct surrounding rock of the
ore body is the Carboniferous Lower Gorilla Formation of
quartz diorite, which is dominated by horny siltstone.
Dongguashan Copper Mine is the main mine of Tongling
Nonferrous Metals Group Holdings Co., Ltd. The deposit is a
layer-controlled skarn-type deeply buried deposit, with a burial
depth of more than 700 m. Therefore, the original rock stress
and ore strength of the mining area are relatively high. In the

process of mining, the prediction and prevention of rock burst
has become a major issue and must be based on the study of rock
burst tendency. Because the Dongguashan Copper Mine has a
deep burial depth, a high initial rock stress, a favourable ore
body structure and hard rock properties, rock burst is possible in
this mine according to the experience of deep mine mining
outside of China. Under the action of high stress, a destructive
rock burst event with rock ejection as the main feature occurred
during the construction of the tunnel during the construction
and production of the Winter Melon Mountain Mine.
Therefore, rock burst tendency predictions have become a
focus of mine earthquake prevention and disaster reduction
and important technical mean. In this paper, the physico-
mechanical properties of the core of seven kinds of typical
ore from the ore-bearing rock mass and the surrounding
rock of the upper and lower layers are selected as the
criterion for the 730 m middle section of the Dongguashan
copper deposit (the geological map of this section is shown in

TABLE 4 | Sample-normalized index values and CRITIC algorithm index parameters.

Sample number Sample standardization

1 1.857 −0.699 −0.295 0.186 −5.055 0.196
2 3.080 −2.489 0.731 0.269 4.589 −0.005
3 −0.953 0.762 −0.146 −0.214 −4.353 −0.040
4 −1.613 1.360 −0.428 −0.145 −6.205 −0.005
5 −2.566 3.319 −0.838 −0.338 −4.736 −0.265
6 2.584 −1.126 0.008 −0.048 2.801 0.232
7 −2.410 0.573 −0.402 −0.200 −4.033 −0.017
8 1.298 0.327 0.254 0.269 4.014 0.019
9 2.902 −1.830 0.982 0.228 1.268 0.220
10 −2.651 −2.037 −0.310 −0.145 −5.311 −0.111
11 −2.421 0.839 0.357 0.076 1.843 −0.088
12 −1.879 2.078 −1.053 −0.421 2.801 −0.301
13 −0.157 −3.047 0.997 0.173 2.034 0.244
14 1.701 −1.279 0.357 0.131 4.653 0.196
15 −1.753 1.051 −0.336 0.062 1.970 −0.159
16 2.940 −2.654 0.823 0.173 3.120 0.232
17 1.698 −1.397 0.203 0.090 6.186 0.149
18 3.113 0.756 0.008 0.283 2.098 −0.017
19 −2.837 3.234 −0.541 −0.214 −1.926 −0.419
20 −1.934 2.261 −0.371 −0.214 −5.758 −0.064
Mean value of the sample

127.54 25.86 3.80 0.53 245.15 0.71
Sample variance

11.29 5.08 1.95 0.72 15.66 0.84
Coefficient of variation

0.09 0.20 0.51 1.38 0.06 1.18

TABLE 5 | Normalized index Pearson correlation coefficients.

Forecast
indicator

Pearson correlation coefficient

I1 I2 I3 I4 I5 I6

I1 1 −0.6473 0.6616 0.7770 0.5956 0.7381

I2 −0.6473 1 −0.8017 −0.6612 −0.4469 −0.8009
I3 0.6616 −0.8017 1 0.8066 0.5542 0.7315

I4 0.7770 −0.6612 0.8066 1 0.5719 0.6564

I5 0.5956 −0.4469 0.5542 0.5719 1 0.3291

I6 0.7381 −0.8009 0.7315 0.6564 0.3291 1
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Figure 6). The core data of wells zk504 and zk504 are shown in
Table 8 [57].

In this paper, six rock burst propensity prediction indexes are
selected: the uniaxial compressive strength σc (I1), ratio of the
uniaxial compressive strength to the tensile strength σc/σt
(brittleness coefficient, I2), elastic deformation energy index
Wet (I3), and ratio of the maximum tangential stress to the
uniaxial compressive strength σθ/σc (stress coefficient, I4) of the
rock, depth of the roadway H (I5), and integrity coefficient of the
rock mass Kv (I6). A comparison of σc/σt and Wet is easy to
obtain, and σθ/σc is determined by the formula of the maximum
shear stress around the circular roadway:

σθ � ξ(3 − λ)py (23)

where ξ is the laneway shape correction coefficient and λ is the
side stress coefficient, which is equal to the ratio of the horizontal
stress px to the vertical stress py.

The rock mass integrity coefficient Kv is the square of the
longitudinal wave velocity of the rock mass. The longitudinal
wave velocity Vp of the rock is easy to determine (as shown in
Formula 23). Therefore, the value of Kv is determined according
to Vp. The higher the elastic wave velocity is, the better the rock
integrity. The rock sample test data of the Dongguashan Copper
Mine are shown in Table 8 [58].

Kv � (Vpm

Vpr
)2

(24)

where Kv is the rock mass integrity coefficient, and Vpm is the
longitudinal wave velocity of rock mass, and Vpr is the
longitudinal wave velocity of indoor rock (block).

For the roadway height, since the height span is not very large,
this paper takes the average measured height; based on these data,
the value of the prediction index can be calculated. The
calculation results are shown in Table 9.

Referring to the calculation method of the learning sample, the
calculation and analysis of the actual engineering data can be
comprehensively determined. The prediction results shown in
Table 10 show that the rock burst tendencies of the diorite and
siltstone are the strongest while those of the garnet skarn are the

TABLE 6 | Rock burst propensity prediction results.

Sample number Comprehensive certainty Prediction results in
this paper

Actual grade

μ1 μ2 μ3 μ4

1 0.011 0.134 0.442 0.414 Ⅲ Ⅲ
2 0.049 0.010 0.442 0.499 Ⅳ Ⅳ
3 0.126 0.469 0.347 0.058 Ⅱ Ⅱ
4 0.084 0.508 0.321 0.087 Ⅱ Ⅱ
5 0.647 0.339 0.013 0.001 Ⅰ Ⅰ
6 0.018 0.230 0.418 0.334 Ⅲ Ⅲ
7 0.109 0.479 0.336 0.076 Ⅱ Ⅱ
8 0.043 0.084 0.545 0.329 Ⅲ Ⅲ
9 0.008 0.004 0.335 0.652 Ⅳ Ⅳ
10 0.126 0.628 0.181 0.065 Ⅱ Ⅱ
11 0.088 0.335 0.521 0.056 Ⅲa Ⅱ
12 0.726 0.250 0.023 0.000 Ⅰ Ⅰ
13 0.008 0.012 0.339 0.641 Ⅳa Ⅲ
14 0.011 0.021 0.582 0.387 Ⅲ Ⅲ
15 0.128 0.523 0.334 0.016 Ⅱ Ⅱ
16 0.008 0.005 0.380 0.607 Ⅳ Ⅳ
17 0.017 0.041 0.597 0.346 Ⅲ Ⅲ
18 0.053 0.142 0.517 0.288 Ⅲ Ⅲ
19 0.490 0.482 0.028 0.000 Ⅰ∼Ⅱ Ⅰ
20 0.168 0.576 0.215 0.041 Ⅱ Ⅱ

aIndicates misjudgement.

TABLE 7 | Analysis of prediction results (TP, FP, FN values of different rockburst
prediction grades).

Ⅰ Ⅱ Ⅲ Ⅳ Total

TP 3 6 6 3 18
FP 0 0 1 1 2
FN 0 1 1 0 2

TABLE 8 | Rock sample test data of seven typical ore rocks from Donggua
Mountain.

Rock type Sampling
depth

Stress
level

(px, py)

σc σt Vp Wet

Skarn 631–637 (30.0,
25.4)

132.2 16.4 6,430 3.97

Diorite 720–735 (32.9,
28.0)

304.2 20.9 6,108 10.57

Garnet skarn 761–764 (33.9,
29.0)

128.6 13 7,025 5.76

Qixia formation
marble

792–798 (34.9,
29.9)

78.3 6.8 4,709 3.11

Siltstone 837–849 (36.4,
31.2)

171.3 22.6 5,804 7.27

Quartz
sandstone

850–853 (36.6,
31.5)

237.2 17.66 5,735 6.38
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next strongest. The skarn grade is between III and IV, while the
quartz sandstone and skarn are of grade III. The grade III
predictions are the most certain, but the degree of
membership for IV is not small. Finally, the Qixia Formation
is predicted to be III (moderate rock burst).

Through the analysis of loading and unloading tests and the
sum of the brittleness coefficient, impact energy index and

elastic deformation energy index, the rock burst tendency of
each rock sample type is ranked from the largest to the
smallest: siltstone, quartz sandstone, garnet skarn, skarn,
and Qixia group marble. The prediction results of this
paper are basically consistent with this strong-to-weak
ranking.

CONCLUSION

(1) To further evaluate the rock burst tendency and provide
corresponding engineering technical guidance, this article
selects the membership function cloud model that considers
randomness and ambiguity and comprehensively accounts
for the complexity of multi-factors and the correlation
between factors in the rock burst evaluation problem. The
CRITIC weighting algorithm is selected for the
comprehensive evaluation, the rationality of the evaluation
method is verified by selecting 20 groups of underground
engineering rock burst example data, and the method is
finally applied to the Dongguashan copper mine. The
explosion tendency evaluation obtained good results.

(2) Although the edge of the cloud model with uniform
distribution reduces the actual error to a certain extent,
deviations may occur between the actual production
situation and the analysis result, such as the
calculation of some parameters for Dongguashan.
Therefore, the risk assessment result can only be used
as a reference and the actual situation needs to be
analyzed in detail. Capturing the risk factors that affect
the occurrence of the disaster by the theoretical analysis
process is indeed difficult because regardless of the

FIGURE 6 | Geological map of the 730 m middle section of the Dongguashan Copper Mine.

TABLE 9 | Rock burst tendency prediction value for the Dongguashan Copper
Mine.

Rock type Evaluation index

σc σc /σt Wet σθ /σc H Kv

Skarn 132.2 8.06 3.97 0.55 634 0.75
Diorite 304.2 14.56 10.57 0.37 727.5 0.71
Garnet skarn 128.6 9.89 5.76 0.61 762.5 0.82
Qixia formation marble 78.3 11.51 3.11 0.82 795 0.55
Siltstone 171.3 7.58 7.27 0.53 843 0.68
Quartz sandstone 237.2 13.43 6.38 0.44 851.5 0.67

TABLE 10 | Rock burst tendency prediction results for the Dongguashan Copper
Mine.

Rock type Comprehensive certainty Prediction results in
this paper

μ1 μ2 μ3 μ4

Skarn 0.040 0.090 0.564 0.306 III
Diorite 0.128 0.306 0.178 0.389 IV
Garnet skarn 0.021 0.021 0.375 0.583 III∼IV
Qixia formation marble 0.178 0.290 0.457 0.075 III
Siltstone 0.073 0.152 0.233 0.541 IV
Quartz sandstone 0.094 0.335 0.343 0.228 III
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influencing factor selected for modeling, analysis and
calculation, other objective factors may be ignored.
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