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Non-Trivial Transport Interface in a
Hybrid Topological Material With
Hexagonal Lattice Arrangement

Lianlian Du, Yahong Liu*, Meize Li, Huiling Ren, Kun Song * and Xiaopeng Zhao

School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, China

In this paper, a hybrid topological material with hexagonal lattice arrangement is proposed,
consisting of six metal cylindrical resonators and a dielectric slab. As a unit cell, the six
metal cylindrical resonators satisfying the Cg symmetry are selected, and the cylindrical
resonators are inserted in the dielectric slab. It is demonstrated that a double Dirac cone is
created at the r point in the proposed topological material. Since the topological effects of
the proposed system can be invoked merely by varying the geometric parameters of the
unit cell, two band gaps with different topological characteristics can be easily achieved. It
is further demonstrated that the topologically protected edge states can be obtained by
connecting the two types of lattices with different topological characteristics. Finally, we
implement a sharp bend waveguide by using these two types of the topological lattices. It
is demonstrated that electromagnetic waves can propagate robustly along the sharp bend
interface.
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INTRODUCTION

Topological insulator is a kind of new phase of matter state about electron conductivity proposed by
condensed-matter physicists. It soon becomes a hot topic in condensed matter physics and quantum
materials [1, 2]. Topological insulator is realized firstly by electrons. The interior of a topological
insulator is insulated, but there is always a conductive edge state on its boundary or surface. The edge
state of the topological insulators is stable, and the motion direction of conducting electrons with
different spins is opposite. Therefore, the transmission can be controlled by the spin of the electron,
rather than transmitted by electric charge as traditional materials, and this process does not involve
dissipation.

Recently, topological insulators have been extended to further areas of photonics [3-7],
mechanics [8-13] and acoustics [14-21]. Topological insulators are different from conventional
insulators in that the spin-orbit coupling effect of topological insulators is relatively significant.
Based on the spin-orbit coupling effect, some researchers proposed a new topological crystalline
insulators state [22-27]. For instance, Yang et al. proposed a chiral hyperbolic photonic
metamaterial with broken inversion symmetry [26]. Ma et al. proposed a photonic
topological insulator with complete topological band gap, which can emulate spin-orbit
interaction through bianisotropy [27]. The quantum spin Hall effect is one of the most
unique effects of topological insulators [28-31]. Wu et al. presented quantum spin Hall
effect in photonic crystals [30]. Yang et al. investigated the pseudo-spin edge states for
flexural waves in a honeycomb perforated phononic plate, which behaves an elastic analogue
of the quantum spin Hall effect [31].
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FIGURE 1 | (A) Hexagonal arrangement of the metal cylindrical resonators. The red dotted box indicates six cylindrical resonators. @4 and @ are lattice vectors

and a is the lattice length of unit cell. The blue dotted box represents the irreducible unit cell in the hexagonal arrangement. The lattice length of the irreducible unit cell is
a/~/3. According to the zone-folding technique, we choose a larger unit cell consisting of six resonators (red dotted box). The below panel is the corresponding Brillouin
zones. (B) Detailed view of a hybrid unit cell consisting of six metal cylindrical resonators and a dielectric slab. The six metal cylindrical resonators are inserted into

the dielectric slab. (C) Dispersion diagram of the proposed structure with R = a/3. It shows that a double Dirac cone is created at the T point.

Besides the quantum spin Hall effect, topological edge state
has also set off a research boom. Tzuhsuan et al. proposed a
photonic structure consisting of metal rods arranged as a
hexagonal array lattice, and demonstrated scattering-free edge
states [32]. Huo et al. proposed two-dimensional solid phononic
crystal  structures, which simultaneously supported the
topologically protected edge states for out-of-plane and in-
plane bulk elastic waves [33]. Besides metal-based topological
materials, dielectric-based topological materials have also been
investigated in recent years. Xu et al. proposed a triangle photonic
crystal by using core-shell dielectric materials, and demonstrated
a helical edge states [34]. Xie et al. proposed a second-order
topological insulator in dielectric photonic crystals and visualized
one-dimensional topological edge states [35]. The topologically
protected edge state has excellent characteristics of robustness,
back-scattering suppression and defect immunity [36-40], which
have potential applications for manufacturing new computer

chips and other components in the future. In addition,
topological insulators can also have been widely applied to the
fields of transport in photonic crystals [41], phonon crystals [42]
and even circuits composed of classical electronic
components [43].

Different from the dielectric-based topological materials or
metal-based topological materials presented in the previous
references, in this paper, we propose a hybrid topological
model consisting of metal and dielectric materials. It provides
a new method to realize the topological edge state. The hybrid
topological material consists of six metal cylindrical resonators
and a dielectric slab. The six cylindrical resonators are inserted
into the dielectric slab. The zone-folding technique [44] (using a
larger unit cell instead of an irreducible one in a hexagonal crystal
lattice) is applied to this present system, so that the double Dirac
cone can be generated easily at the T point. We demonstrate that
the topologically non-trivial and trivial band gaps can be opened
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FIGURE 2 | Band structure for different R. The band gap is opened at the T point as R varies. (A) As R = 0.91a/3 (R <a/3), band gap is topologically trivial. d-type
modes are at the higher frequency and p-type modes are at the lower frequency, which the electric field distributions are shown in the upper and lower illustrations of the
band structure diagram, respectively. (B) As R = 1.06a/3(R >a/3), the band gap is topologically non-trivial. The p-type modes and d-type modes are reversed.

near the double Dirac cone by varying the parameter R.
Therefore, the topologically protected edge states can be
realized easily by combining two types of lattices with
different topological characteristics in the proposed system.
Finally, we construct a directional sharp bend waveguide,
which shows the robustness propagation of electromagnetic
waves is observed in the sharp bend waveguide interface.

THEORETICAL MODEL AND BAND
STRUCTURE OF THE HYBRID
TOPOLOGICAL MATERIAL

A hexagonal arrangement of the metal cylindrical resonators is
shown in Figure 1A. The six cylindrical resonators are inserted
into a dielectric slab as presented in Figure 1B. We choose
rhombus-shaped unit cell, where the relevant parameters are
shown as follows: the lattice length of unit cell is a, and the
distance between the center of each resonator to the center of
rhombus-shaped unit cell is R. Each rhombus-shaped unit cell
includes six cylindrical resonators in a hexagonal arrangement,
showing the C4 symmetry.

Numerical simulations are performed by using a commercial
simulation software High Frequency Structure Simulation
Software (HFSS) based on three-dimensional finite element
numerical analysis. The metal cylindrical resonators are
defined as PEC, and the dielectric slab is Teflon with the
relative permittivity of 2.1 and the thickness of hy = 2.5mm.
The size of the unit cell is a=17+3mm, and R = a/3. The
diameter and the height of the cylindrical resonator are both
6 mm (i.e., d; = h, = 6mm). The periodic boundary conditions
are introduced in the direction of the two lattice vectors. Based on
the zone-folding technique, as shown in Figure 1A, we select a

unit cell composed of six resonators instead of two resonators.
Figure 1C presents the band structure, which shows a double
Dirac cone is created at the T point (f; = 5.55GHz).

As shown in Figure 2, it is demonstrated that the band
structure can be changed by varying the parameters R. The
band inversion can be realized by different values of R. When
R is shrunk (Figure 2A) or expanded (Figure 2B), it can be seen
that a complete band gap appears, and simultaneously, the double
Dirac cone becomes two double-degenerate modes. The
emergence of band gap is due to the change in translational
periodicity of the resonators. Keeping the Cs symmetry, these
double-degenerate modes are located above and below the Dirac
frequency, respectively. Analogy to electronic orbital shapes, as
R = 0.914a/3, the lower frequency modes are p-type (p; and p, as
shown in the bottom of Figure 2A), and the higher frequency
modes are d-type (d; and d,, upper in Figure 2A). However, as
R =1.06a/3, the topological characteristic of the band gap is
completely different from the case of R = 0.91a/3. As shown in
Figure 2B, the degenerate modes are flipped, p-type modes are at
the higher frequency and d-type are at the lower frequency. That
is to say, band inversion is realized as R varies.

We use the method proposed by Takahiro Fukui et al. [45] to
calculate the spin Chern number of the proposed topological
material. As R =0.91a/3, the spin Chern number is zero,
indicating topologically trivial. In contrast, as R = 1.06a/3, the
bands have non-zero spin Chern number, which shows the
topologically non-trivial. The change of spin Chern number
indicates the topological phase transition. Combined
Figure 1C and Figure 2, it can be seen that there is a band
gap near the Dirac frequency. As R is shrunk, the double Dirac cone
is opened and a complete band gap occurs. In contrast, as R is
expanded, the double Dirac cone can also be opened and a band
inversion occurs with the topological phase transition. These results
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FIGURE 3 | (A) Multi-cell configuration consists of two parts with 10
topologically non-trivial lattices on the left and 10 topologically trivial lattices on
the right. (B) Band structure of the multi-cell configuration, where the blue and
red lines represent the edge states. It can be seen that there are two
different pseudo-spin modes at the interface. Red indicates clockwise and
blue is anticlockwise. (C) Electric field distributions of the multi-cell
configuration. The direction of pseudo-spin modes corresponding to A and B
in Figure 3B. The color represents the electric field intensity, and the arrows
represent the direction of the time-averaged energy flux.

indicate the proposed topological material can possess the
characteristics from topologically trivial to topologically non-trivial.

TOPOLOGICAL EDGE STATES

In this section, we combine topologically non-trivial (R = 1.06a/3)
and topologically trivial (R = 0.91a/3) lattices to form multi-cell
configurations, and study wave guiding characteristics. As shown in
Figure 3A, the multi-cell configuration consists of two parts, with 10
topologically non-trivial lattices on the left and 10 topologically
trivial lattices on the right. In the simulations, the periodic boundary
conditions are introduced in the direction of the two lattice vectors.
The band structure of the multi-cell configuration is shown in
Figure 3B, where the blue and red lines represent edge states. It
can be seen that there are two points A and B corresponding to the
same eigen-frequency (5.57 GHz). Figure 3C presents the electric
field distribution of the points A and B, which shows the
electromagnetic wave is well confined at the interface between

Non-Trivial Transport Interface

the topologically non-trivial and trivial lattices both for A and B.
However, for the point A, the clockwise pseudo-spin mode is realized
at the interface, and anticlockwise pseudo-spin mode is observed for
the point B. The direction of the two pseudo-spin modes at the
interface is opposite.

As shown in Figure 3B, there are two different pseudo-spin
modes at the interface of topologically non-trivial and trivial
lattices at the same frequency. As shown in Figure 3C, opposite
spins of these modes can be verified. In general, each frequency of
the topological band gap corresponds to two edge states, and the
pseudo-spin directions of the two edge states are different.
Electromagnetic waves with a certain pseudo-spin direction
can only propagate in a fixed direction, which is consistent
with the characteristics of the quantum Hall effect.

SHARP BEND WAVEGUIDES

Since the proposed structure can support topological edge states,
it is expected that new devices can be implemented by using this
unique property. We construct a sharp bend interface by using
two types of lattices (R = 1.06a/3 and R = 0.91a/3), which can
operate as a directional waveguide. As shown in Figure 4A, we
combine topologically non-trivial and topologically trivial lattices
to form a two-dimensional sharp bend structure. The upper part
of the red line is the topologically non-trivial lattices, and the
lower part of the red line is the topologically trivial lattices. In this
case, the interface of the two lattices has sharp angles.

In the simulation, the excitation source (denoted by a yellow
star in Figure 4B) is set at the left side of the junction of the
topologically non-trivial and trivial lattices. Radiation boundary
conditions are introduced around the two-dimensional sharp
bend structure. Simulation results show that the electromagnetic
waves can propagate along the sharp bend interface in the frequency
range of 5.54-5.8 GHz without obvious backscattering. Figure 4B
presents the electric field distribution of the structure at 5.7 GHz,
which shows electromagnetic waves can propagate along the sharp
angles interface without back-scattering. The interface of the non-
trivial transport operates like a waveguide.

In order to further verify the robustness of electromagnetic
wave propagation along the sharp bend interface, as shown in
Figure 5, two types of defects are introduced. For the defect 1 as
presented in Figure 5A, six metal cylindrical resonators are
removed from the topologically trivial lattices. The simulated
electric field distribution shows there is no back-scattering and
electromagnetic waves can transmit completely in this sharp bend
interface. For the defect 2 as presented in Figure 5B, we remove
the four resonators in the same topologically trivial lattices. As
expected, the similar result is observed. Therefore, it can be seen
that this non-trivial edge state transmission is robust.

CONCLUSION

To conclude, we present a design scheme for a topological
material, consisting of six metal cylindrical resonators and a
dielectric slab. The topological properties of the system are
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indicates the excitation source, and the color indicates the electric field intensity.

FIGURE 4 | (A) Two-dimensional sharp bend structure consists of topologically non-trivial and trivial lattices. The upper part of the red line is the topologically non-
trivial lattices, and the lower part of the red line is the topologically trivial lattices. (B) Electric field distribution of the sharp bend structure at 5.7 GHz. The yellow star

Defect 1

FIGURE 5 | Two types of the defects and the corresponding electric field distributions at 5.7 GHz. (A) Defect 1, and (B) Defect 2.

Defect 2

studied numerically. Different topologically band gaps are
achieved by via changing the geometric parameter R. It is
demonstrated that the multi-cell configuration composed of
two types of lattices with distinct topologies can generate
topologically protected edge states. Moreover, the topologically
protected edge states can be used to design a sharp bend
waveguide, and it exhibits great robustness with immunity to
imperfections. It can be expected that this edge state of back-
scattering suppression can have potential applications in optical
transport and photonic integrated circuits.
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