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It has been shown analytically that Peregrine solitons emerge locally from a universal
mechanism in the so-called semiclassical limit of the one-dimensional focusing nonlinear
Schrödinger equation. Experimentally, this limit corresponds to the strongly nonlinear
regime where the dispersion is much weaker than nonlinearity at initial time.We review here
evidences of this phenomenon obtained on different experimental platforms. In particular,
the spontaneous emergence of coherent structures exhibiting locally the Peregrine soliton
behavior has been demonstrated in optical fiber experiments involving either single pulse or
partially coherent waves. We also review theoretical and numerical results showing the link
between this phenomenon and the emergence of heavy-tailed statistics (rogue waves).
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1 INTRODUCTION

Recent mathematical works have recently triggered new research by unifying two old concepts,
namely, the Peregrine soliton (PS) and the pulse compression in focusing nonlinear media [1]. The
latter has been in particular widely investigated in optical fiber experiments for obvious application
purposes [2], while the former has been extensively studied as a remarkable localized solution of the
one-dimensional focusing nonlinear Schrödinger equation (1-D NLSE) [3]

iψz +
1
2
ψtt + |ψ|2ψ � 0, (1)

for a complex wave field ψ(t, z).
The universal NLSE (1) describes at leading order nonlinear waves in various physical systems

and is integrable [4]. Its exact solutions called solitons on finite background (SFBs) such as
Akhmediev breathers, Kuznetsov–Ma, and Peregrine solitons have been derived several decades
ago [3, 5–8]. First studied in the context of modulation instability, SFBs have been the subject of a
renewed interest in the 2000s because these localized solutions are considered as possible prototypes
of rogue waves [9–12]. The PS solution is given by

ψPS(t, z) � [1 − 4(1 + 2iz)
1 + 4t2 + 4z2

]eiz , (2)
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and it exhibits the remarkable property to be localized both in
space and in time [3]. It has been experimentally generated by
using specifically designed initial conditions in optical fibers [13],
plasmas [14], and water tank [15].

In a completely different context, pulse compression has been
widely studied in the last 4 decades both experimentaly in optical
fiber experiments and theoretically by using numerical
simulations of the NLSE [2, 16–19]. The goal of these studies
was to provide the shortest possible pulse with the highest peak
power at the output of the fiber. It is very important to note that
these studies have been focused on the so-called higher-order
solitons, also named “N-solitons” which means that the initial
pulse is “made” of several solitons in the framework of the inverse
scattering transform (IST) [20]. As a consequence, it is often
considered that the pulse compression arises from the
propagation of bound-state multi-soliton solutions [17].

Mathematics has provided in the 2010s a different perspective on
pulse compression in focusing regime of the NLSE [1]. It has been
rigorously demonstrated that in the semiclassical (zero dispersion)
limit of the NLSE, a sufficiently smooth pulse undergoes a gradient
catastrophe, that is, the divergence of the derivatives of the field that
is regularized by the generation of a coherent structure locally
(asymptotically) described by the PS solution.

Very importantly, this theorem provides a local interpretation of
the mechanism underlying the pulse compression and links this
phenomenon with the famous PS. Note that the result is somehow
surprising because the pulse compression is obviously achieved with
zero boundary conditions, while the PS is a solution of the NLSE
with nonzero boundary conditions. Moreover, this mechanism is
universal because it is independent of the soliton content and of the
exact shape of the initial pulse. As a consequence, while the exact PS
is often seen as the interaction between a plane wave and a soliton
[21], the local emergence of the PS arising in the pulse compression
does not require the existence of the soliton.

This short review aims at presenting the main mathematical
and experimental results related to the local emergence of the PS
in the process of pulse compression. We also show the important
consequences of this phenomenon on the statistical properties of
nonlinear random waves in focusing NLSE systems [22–24].

2 MATHEMATICAL RESULTS:
REGULARIZATION OF THE GRADIENT
CATASTROPHE IN THE SEMICLASSICAL
FOCUSING NLSE

Semiclassical limit is a powerful tool to study large space–time,
z, t, behavior of the NLSE (1). It is achieved by introducing a small
parameter 0< ε≪ 1 and rescaling ξ � εz, τ � εt, ψ(z, t)→ ψ(ξ, τ; ε)
so that focusing NLSE (1) assumes the form

iεψξ +
1
2
ε2ψττ + |ψ|2ψ � 0. (3)

In the following, we assume that the amplitude of ψ at ξ � 0 is
O(1).

Physically, the nondimensional dispersion parameter ε is
determined by the ratio of the nonlinear medium’s internal
coherence length (the soliton width/duration) and the typical
scale of initial data. Therefore, the study of small-dispersion
dynamics in (3) is equivalent to the study of the evolution of
large-scale data in the original NLSE (1). Importantly, the limit as
ε→ 0 in Eq. 3 enables analysis of solutions to (1) for both large
and O(1) t, z-scales using the same equation.

It is convenient to introduce a Wentzel–Kramers–Brillouin
(WKB)-type representation for ψ(τ, ξ) (the Madelung transform):

ψ � �
ρ

√
ei

ϕ
ε , ϕτ � u (4)

to convert the semiclassical NLSE (3) into a system:

ρξ + (ρu)τ � 0,

uξ + uuτ − ρτ − ε2(ρττ
4ρ

− ρ2τ
8ρ2

)
τ

� 0,
(5)

for the wave field intensity (power) ρ(τ, ξ) � |ψ|2 and the “chirp”
u(τ, ξ). Note that the system (5) is strictly equivalent to the NLSE.

The dispersionless limit is obtained from (5) by setting ε � 0. In
this limit, the system (5) is of elliptic type so that its solutions,
when exist, have finite life span due to the development of infinite
τ- and ξ-derivatives of ρ and u at some critical point τ � τc, ξ � ξc,
which is often referred to as a point of gradient catastrophe [25].
In the vicinity of the gradient catastrophe point, the contribution
of the dispersive term O(ε2) in (5) becomes significant so that at
ξ > ξc, the emerging regularized dynamics exhibit large-amplitude,
ε-scaled oscillations of the intensity signifying the singular nature
of the semiclassical ε→ 0 limit. The results reported in this review
have been obtained mathematically and realized experimentally
for small but nonzero values of ε [1]. Below, we summarize the
history of the mathematical ideas underlying these results.

The semiclassical limit of the NLSE is most efficiently studied
in the framework of the IST method [20]. At the heart of this
theory is a linear differential [Zakharov–Shabat (ZS)] operator
whose spectrum is determined by the NLSE wave field ψ(τ, ξ)
playing the role of the scattering potential. Generally, the IST
spectrum has two components: discrete and continuous. The
discrete component is related to a soliton “content” of ψ(τ, ξ),
while the continuous component corresponds to dispersive wave
radiation as ξ→∞. The potentials ψ(τ, ξ) having pure continuous
spectrum are called solitonless. The IST spectrum is invariant with
respect to the NLSE evolution and so can be evaluated at ξ � 0.

The study of the semiclassical limit of integrable equations was
initiated by Lax and Levermore [26] in the framework of the
Korteweg–de Vries (KdV) equation for which the associated
scattering operator is self-adjoint. The attempts to extend the
Lax–Levermore theory to the focusing NLSE ran into
complications due to non–self-adjoint nature of the ZS
operator for (3). The first numerical studies [27–29] revealed
an τ, ξ-region of the initial evolution of smooth modulated plane
wave followed by the emergence of a region filled with rapid
nonlinear oscillations exhibiting complex spatiotemporal
behavior (see Figure 1A). The development of the steepest
descent method of Deift–Zhou for matrix Riemann–Hilbert
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problems (RHPs) (see, e.g., [30]) in 1990s led to rigorous
mathematical studies of the semiclassical NLSE limit in Ref. 31
(pure discrete spectrum, i.e., solitons only) and in Ref. 32 (both
purely radiative (solitonless) cases and radiation with solitons)
revealed the detailed micro- and macroscopic structures of the
emerging oscillations. In particular, in Ref. 32, the NLSE (Eq. 3)
evolution of a one-parameter family of modulated plane wave
potentials

ψ(τ, 0; ε) � sech(τ)eiϕ/ε, ϕ � −μ log(cosh(τ)), (6)

where μ ∈ R is the chirp parameter controlling the phase, was
studied. The advantage of this family of potentials is that the
corresponding scattering data (the IST spectrum) can been
calculated explicitly [33]; moreover, its soliton “content” is
controlled by the chirp parameter μ; the discrete spectrum
component (solitons) is only present when |μ|< 2; otherwise,
the spectrum is purely continuous (radiation). The spectrum is
purely discrete if and only if μ � 0 and ε � 1

N, where N � 1, 2, . . ..
In this case, the potential (6) represents an exact N-soliton
solution of the NLSE (3).

The RHP approach allowed establishing rigorous semiclassical
asymptotics describing the complex nonlinear dynamics of the
NLSE (3) with analytic initial data decaying as |τ|→∞. In
particular, it was shown in Ref. 32 that for the potential (Eq.
6), the initial evolution is approximated at leading order in ε by
the solution of the dispersionless NLSE (ε � 0 in (Eq. 5)) that
undergoes gradient catastrophe at the point (τc, ξc) � (0, 1

μ+2) (see
Ref. 34 for broader class of initial data ψ(τ, 0; ε)).

It was shown in Ref. 1 that if the gradient catastrophe occurs (for
ε � 0), it exhibits a regularization mechanism (for ε≠ 0) via the
emergence of a localized coherent structure, which is asymptotically
close to PS (2). The mechanism is universal because it does not
depend on the particular form of initial data ψ(τ, 0; ε). Specifically, it
was shown that the solution at the point of maximum localization
τm � τc +O(ε4/5), ξm � ξc +O(ε4/5) assumes the form |ψ(τ, ξm)| �

a0[1 − 4/(1 + 4a20((τ − τm)/ε)2)](1 +O(ε1/5)), where a0 �������
ρ(0, ξc)

√ +O(ε1/5) is the background amplitude, that is, it is
determined at the leading order by the value of instantaneous
power at the gradient catastrophe point. In the case of potential
(6), it was found that ρ(0, ξc) � μ + 2. The maximum value of |ψ| in
the local PS is then 3a0 and is determined up to O(ε1/5). We stress
that the above approximate PS solution is valid locally, in the
ε-vicinity of the point (τm, ξm).

Importantly, the effect of the local emergence of the PS right
beyond the gradient catastrophe point is universal and does not
depend on the composition of the (global) IST spectrum of the
initial data. In other words, the initial condition for (5) can have
high soliton content or be completely solitonless—in all cases, the
PS appears as a nonlinear coherent structure locally regularizing
the gradient catastrophe. The specific form of the initial condition
affects only the time ξm of the PS development.

3 LOCAL EMERGENCE OF THE
PEREGRINE SOLITON IN EXPERIMENTS
WITH SINGLE PULSE
The self-compression of pulses has been a very widely
investigated topic experimentally, especially since the first
observation of solitonic behavior in optical fibers in 1980 [35].
Indeed, it has been observed that the propagation of solitonic
pulses with sufficiently high initial peak power is always
accompanied, at first, by a narrowing of the pulses and an
increase in their peak power before eventually undergoing
successive splittings. These observations have been successfully
compared to the well-known dynamics of higher-order solitons
or “N-solitons” such that the phenomenon of pulse self-
compression was referred to as the “Soliton effect” [2, 36, 37].
This effect has been widely studied [16, 38], including the two-
stage compression technique [39] and higher-order effects
[40, 41].

FIGURE 1 | Local emergence of the Peregrine soliton in the process of pulse compression. (A) Numerical simulations: space–time dynamics of a single hump,
reproduced with permission from Ref. 24. (B) Intensity and (C) phase measurements of compressed pulse characteristics in optical fiber at the distances indicated,
comparing experiment (black line) with simulations (red line). For the results at 10.0 and 10.6 m, there is a flip in the phase characteristics across the central intensity lobe.
Dashed lines are the theoretical profiles of an ideal Peregrine soliton, reproduced with permission from Ref. 43.
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In the context of 1-D hydrodynamics experiments, similar
dynamics have been observed in the compression of the envelope
of N � 2 and N � 3 solitons, which suggests that the underlying
mechanism may be of the same origin [42].

The recent mathematical results described above provide a
new interpretation of the mechanism underlying most of the past
experiments on what was called “soliton self-compression.” Two
main ideas are important: (i) the mechanism actually does not
depend on the soliton content of the pulse and (ii) the Peregrine
soliton emerges locally as the regularization of gradient
catrastrophe.

Point (ii) has been recently demonstrated in optical fiber
experiments [43] using two different setups. In particular,
picosecond pulses with a peak power P0 � 26.3 W have been
injected into a Ge-doped highly nonlinear optical fiber. The input
pulses were well fitted by a sech profile corresponding to a soliton
of an order N ≈ 6, that is, ε ≈ 0.16. These experiments were
performed for different fiber lengths, and a complete
characterization of the compressed pulse in both amplitude
and phase was achieved using the FROG technique [44]. The
retrieved intensity (bottom) and phase (top) at the fiber lengths
indicated, comparing experiment (black line) with simulations
(red line), are plotted in Figures 1B,C. In all cases, there is an
excellent agreement between experiment and simulation.
Importantly, the intensity and phase profiles of an ideal PS
solution match very well the experiment and simulation across
the pulse center while approaching the maximum compression
point (for the lengths of the fiber around 10 m). The main
difference is that the PS solution is characterized by the
background that extends to τ→ ± ∞, whereas the pedestal
observed in experiments is limited by the temporal width of
the input pulse. As explained above, the emergence of the PS here
is a local dynamical mechanism. As observed in Figure 1B, the π
phase jump occurring at zero intensity between the central lobe
and the background pedestal is a remarkable signature of the PS.
Moreover, the change of the sign of the phase derivative across the
maximum compression point, another characteristic of the exact
PS solution, is also observed in the experiments between 10 and
10.6 m.

It is important to note that the experimental results of [43]
show that the mechanism demonstrated in the semiclassical limit
of NLSE [1] is very robust and can be observed over a very broad
range of ε. The PS is observed at the maximum compression point
of the pulse as long as ε � ������

LD/LNL
√

≤ 0.5 (N > 2).

4 STATISTICAL SIGNATURES IN
NONLINEAR RANDOM WAVE EVOLUTION

Recent studies have shown that the dynamical mechanism
leading to the local emergence of the PS (see Sections 3 and
4) plays a crucial role in the emergence of rogue waves (RWs) and
in the statistics of integrable turbulence [22–24]. Integrable
turbulence corresponds to complex dynamical phenomena
arising along the nonlinear propagation of random waves in a
system governed by an integrable equation such as the NLSE [22,
43, 45–49].

An important example of integrable turbulence in NLSE
systems arises when the initial field corresponds to the linear
superposition of numerous independent Fourier components:

ψ(τ, ξ) � ∑
k

ak(ξ)e2πiT kτ with k ∈ Z. (7)

Here, periodic boundary conditions with a period T are used, and
ak(0) � |a0k|eiϕ0k is a kth Fourier component with a uniformly
distributed random phase ϕ0k ∈ [−π, π]. This kind of partially
coherent waves is fundamental because of the omnipresence, in
natural environments, of stochastic waves with a finite Fourier
spectrum having delta-correlated frequency components. The
central limit theorem shows that the statistics of ψ given by
Eq. 7 is Gaussian and the statistics of |ψ|2 is exponential [46].

First observed in the open sea, RWs have been studied in a
large variety of nonlinear media and can be defined as extreme
(high-amplitude) events that appear more frequently than
predicted by the linear theory [11]. Experimental
investigations of the evolution of the partially coherent wave
first in a water tank [50] and later in controlled optical fiber
experiments well described by the NLSE [46] demonstrated the
emergence of non-Gaussian statistics. An example of
corresponding numerical simulation is shown in Figure 2,
where the nonlinear propagation of partially coherent initial
condition characterized by the exponential distribution for |ψ|2
(depicted by green in plots in Figures 2A,D) leads to the heavy-
tailed probability density function (Figure 2A orange and red
lines)—the main evidence of the rogue wave emergence.

It is important to note that at present, there is no theory
describing these statistical properties in the focusing 1-D NLSE
system [22, 23, 46, 49]. However, remarkably, the local PSs (see,
e.g., inset in Figure 2D), previously considered as a prototype of
RWs, were identified in numerical simulations of the NLSE,
reported along with the pioneering experimental observations.
By using temporal imaging techniques, it has been proved that the
temporal intensity profile of some extreme events emerging
during the evolution of partially coherent light in optical fibers
resembles the localized PS [22]. Recent advances of heterodyne
time microscopy have enabled the ultrafast single-shot
measurement of both phase and amplitude of random waves
[23]. By using this technique, the local emergence of the PS
embedded in partially coherent waves propagating in optical
fibers has been fully demonstrated [23]. Having access to the
phase and intensity profiles, it becomes possible to reconstruct the
complex amplitude and, therefore, numerically find the initial
structure resulting in the RW simply by simulating the reversed
NLSE. Such nonlinear temporal holography revealed that the
typical structure that leads to the RW emergence is a large initial
hump. This observation constitutes the first solid evidence of the
gradient catastrophe regularization playing a role in the nonlinear
dynamics of partially coherent waves. Note that similar
observations have been made in deep water wave experiments
[51, 52].

A systematic study of the local PS emergence in integrable
turbulence behind the 1-D NLSE has been provided first
numerically [24] and later verified experimentally in a 1-D
water tank [52]. Employing the robust theoretical results
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described in Section 2, a strong correlation between the
distribution of lengths of local PS maximum compression and
the most probable distances of the RW emergence has been
found. Assuming that local humps present in the initial
conditions evolve independently at least before the gradient
catastrophe point, maximum compression points were
estimated for each of them locally by renormalizing the NLSE
according to the hump’s amplitude and duration. The computed
probability density of the local PS emergence position took a
shape of an asymmetric overshoot having a distinct maximum. As
a measure of deviation from the Gaussian distribution, and
therefore, the increased probability of RW observation, a
fourth moment of the distribution (kurtosis) was employed.
The presence of the overshoot in the kurtosis evolution for
partially coherent initial conditions (see Figure 2C) has been
shown in Ref. 53. Numerical simulations reported in Ref. 24
demonstrate a remarkable correlation between these two
overshoots, implying that the area of the highest probability of
observation of the extreme events in the evolution of partially
coherent waves in the focusing 1-D NLS model is directly related
to the local emergence of PSs as a regularization of the gradient
catastrophe. As well as for the deterministic initial conditions
described in Section 3, this effect remains valid beyond the formal
applicability of the results reported in Ref. 1.

5 DISCUSSION

The PS has been originally discovered as a breather solution of the
focusing NLSE (with nonzero boundary conditions) that exhibits

the remarkable property to be localized both in space and time [3].
It has been observed in experiments made in the 2000s with
plasmawaves [14], water waves [15], and optical waves [13]. In the
2010s, it has been shown mathematically that the PS also emerges
locally as a universal mechanism of dispersive regularization of a
gradient catastrophe arising in the self-focusing evolution of an
initially broad pulse [1]. This mechanism of local emergence of the
PS is universal in the sense that it depends neither on the exact
shape of the initial pulse nor on its soliton content. The
understanding that the PS emerges locally in the process of
self-focusing of a broad wave packet [43] has shed new light
on the self-compression of light pulses, which has been extensively
studied in the fiber optics community in the 1980s.

The dynamical process of the emergence of the PS in the
evolution of broad and smooth wave packets is highly relevant in
the context of integrable turbulence where the nonlinear
evolution of partially coherent waves is investigated at the
statistical level. Partially coherent waves with an initial Gaussian
statistics are indeed composed of a random collection of large
humps (see Figure 2) which individually experience the self-
focusing process leading to the gradient catastrophe regularized
by the emergence of the PS [24]. As shown in Ref. [24], this feature
explains well the behavior followed by statistical moments of the
wave field such as the kurtosis. Remarkably, a similar conclusion
draws from the large deviation theory with applications to the
stochastic water wave dynamics [54].

The scenario of the local emergence of the PS in the
regularization of a gradient catastrophe is expected to be
robust against some perturbations such as dissipation and
forcing [55, 56], and higher-order nonlinear effects [57].

FIGURE 2 | Numerical simulations of partially coherent wave propagation in the focusing NLS system. (A) Probability density function of
∣∣∣∣ψ∣∣∣∣2 at three different

propagation distances ξ � 0 (green), 0.366 (orange), and 2 (red). The dashed black line corresponds to exp(−∣∣∣∣ψ|2). (B) Spatiotemporal diagram of
∣∣∣∣ψ∣∣∣∣. White boxes

highlight the coherent structures that appear out of initial humps and can be locally fitted with the Peregrine soliton. The scale of ξ is identical in (B) and (C). (C) Evolution of
the kurtosis (black). Green, orange, and red lines correspond to ξ � 0, 0.366, and 2. The kurtosis and the probability density function are computed over 10’000
realizations of the partially coherent wave similar to one depicted in (B). (D)

∣∣∣∣ψ∣∣∣∣2 profile at two values of ξ � 0, 0.366 (colors are preserved). Inset plot demonstrates a fit of
the high-amplitude event with the exact formula of the Peregrine soliton. In all the simulations, the value of ε is 0.2, reproduced with permission from Ref. 24.
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However, the investigation of the role of higher-order effects now
represents essentially an open question.
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