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The thermodynamic properties of the parabolic-well fluid are considered. The
intermolecular interaction potential of this model, which belongs to the class of the
so-called van Hove potentials, shares with the square-well and the triangular well
potentials the inclusion of a hard-core and an attractive well of relatively short range.
The analytic second virial coefficient for this fluid is computed explicitly and an equation
of state is derived with the aid of the second-order thermodynamic perturbation theory
in the macroscopic compressibility approximation and taking the hard-sphere fluid as
the reference system. For this latter, the fully analytical expression of the radial
distribution function, consistent with the Carnahan-Starling equation of state as
derived within the rational function approximation method, is employed. The results
for the reduced pressure of the parabolic-well fluid as a function of the packing fraction
and two values of the range of the parabolic-well potential at different temperatures are
compared with Monte Carlo and Event-driven molecular dynamics simulation data.
Estimates of the values of the critical temperature are also provided.

Keywords: van hove potential, parabolic-well fluid, thermodynamic perturbation theory, equation of state, Monte
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1 INTRODUCTION

The issue of Frontiers in Physics this paper belongs to is devoted to commemorating the
celebration of fifty consecutive annual Winter Meetings in Statistical Physics in Mexico.
Therefore, we have chosen to write on a subject that has been present in these meetings
from the beginning; namely, the thermodynamic properties of fluids that we are persuaded can
still offer some interesting results.

We begin by recalling that, in an attempt to prove the validity of the thermodynamic limit of
classical statistical mechanics, van Hove [1] introduced in 1949 a potential ϕ(r) consisting of a hard
core of radius r0 and a finite-range attractive tail. The actual form of this so-called van Hove
potential is

ϕ(r) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞, 0≤ r ≤ r0,
< 0, r0 < r ≤ b

> − ε0, r0 < r ≤ b,
0, r > b,

(1)

where r is the distance, b corresponds to the range, and −ε0 corresponds to the lower bound of the
attractive tail, whose form is rather arbitrary. It should be pointed out that two popular models of
intermolecular potentials used in liquid state physics, namely, the triangle-well potential and the
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square-well potential, fulfill the condition of being van Hove
potentials and their thermodynamic properties have been
thoroughly studied (see, for instance, Refs. [2–11] for the
former model and Refs. [12–24] for the latter and references
therein). Surprisingly, as far as we know, the parabolic-well
potential, which is also a van Hove potential, has not been
used for that purpose. The main aim of this paper is to
contribute to partly remedying this situation.

We consider a parabolic-well fluid whose molecules interact
with a potential of the form

u(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞, 0≤ x ≤ 1,

ε[(x − 1
λ − 1

)2

− 1], 1< x ≤ λ,

0, x > λ,

(2)

where x � r/σ is the reduced distance (r being the distance), σ is
the diameter of the hard core, ε> 0 is the well depth, and λ> 1 is
the potential range. As it occurs with other relatively simple
models, the main asset of this model potential is probably that,
despite being an idealized representation, it nevertheless contains
the main features of true molecular interactions in fluids, namely,
a repulsive hard-core and an attractive interaction that
continuously goes to zero as the intermolecular distance
increases. In this regard, it is interesting to recall what Widom
[25] pointed out in the case of the square-well fluid: “Where I
speak of the necessity to treat accurately the effects of the
attractive or repulsive forces, I do not mean that it is
important to know the corresponding part of ϕ(r) with
quantitative accuracy. Indeed, even if the ϕ(r) of Figure 1
were idealized as a square-well potential, as in Figure 3, but
the statistical mechanical consequences of such a potential were
then determined without further approximation, there would

undoubtedly result in an essentially correct description of all the
macroscopic properties of matter throughout a vast region of the
p and T plane, including the neighborhoods of the triple and
critical points. Thus, what matters is not the quantitative accuracy
of the assumed ϕ(r), but rather the qualitative accuracy of the
resulting spatial correlations of molecular positions; the triple and
critical points are distinguished by having the relevant qualitative
features of this correlation, and the nature of its propagation
through the fluid, determined primarily by the short-range
repulsive forces between molecules, or by the longer ranged
attractive forces, respectively.” Something similar may be said
about the parabolic-well potential. In fact, an interesting asset of
this model is that its thermodynamic properties are readily
amenable for treatment within the second-order
thermodynamic perturbation theory of Barker and Henderson
[26]. Within this approach, in order to derive the Helmholtz free
energy of the parabolic-well fluid, two ingredients are required:
on the one hand, one needs the Helmholtz free energy of the
reference hard-sphere fluid of diameter σ. On the other hand, one
also requires an expression for the radial distribution function
gHS(x) of the hard-sphere fluid. In this work, we will profit from
the availability of a method [27], the so-called rational function
approximation (RFA) method, to (analytically) obtain an
approximate gHS(x) which is thermodynamically consistent with
the equation of state of the hard-sphere fluid and make use of this
fact to derive the equation of state of the parabolic-well fluid.

The paper is organized as follows. In the next section, we recall
the main aspects of the RFA method for the computation of
gHS(x) and provide the explicit expression for this quantity in
the first coordination shell. This is followed in Section 3 with the
completely analytic derivation of the equation of state of the
parabolic-well fluid within the second-order Barker-Henderson
thermodynamic perturbation theory in the macroscopic

FIGURE 1 | Various isotherms of the parabolic-well fluid for λ � 1.25. The label TPT indicates that the results have been obtained using thermodynamic perturbation
theory while the label MC refers to Monte Carlo simulation results.
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compressibility approximation and taking the hard-sphere fluid
as the reference system. Section 4 contains some illustrative
results for the reduced pressure of the parabolic-well fluid and
a comparison with our own Monte Carlo and Event-driven
Molecular Dynamics simulation data. We close the paper in
the final section with further discussion and some concluding
remarks.

2 THE RFA METHOD FOR THE
COMPUTATION OF THE RADIAL
DISTRIBUTION FUNCTION OF THE HARD-
SPHERE FLUID

In this section, we provide the analytic result for the radial
distribution function (rdf) of the hard-sphere fluid gHS(x), as
derived with the RFA method [27], and its explicit expression in
the range 1< x ≤ 2. We begin by recalling two important
relationships between the thermodynamic and structural
properties of the hard-sphere fluid derived from statistical
mechanics. On the one hand, the compressibility factor ZHS �
p

ρkBT
(where p is the pressure, ρ the number density, kB the

Boltzmann constant, and T the absolute temperature) of the
hard-sphere fluid is related to the contact value of the rdf gHS(1+)
through

ZHS � 1 + 4ηgHS(1+), (3)

where η � πρσ3/6 is the packing fraction. On the other hand, the

hard-sphere isothermal susceptibility χHS ≡ [d(ηZHS(η))
dη ]− 1 is

related to the rdf through

χHS � 1 + 24η∫∞

0
dx x2 [gHS(x) − 1]. (4)

In the RFA method [27], the Laplace transform of x gHS(x) is
taken to be given by

G(t) � L{x gHS(x)} � t
12η

1
1 − etΦ(t), (5)

where

Φ(t) � (1 + S1t + S2t
2 + S3t

3 + S4t
4)/(1 + L1t + L2t

2),
and the six coefficients S1, S2, S3, S4, L1, and L2 (which depend on
the packing fraction) may be evaluated in an algebraic form by
imposing the following requirements: (i) χHS must be finite and
hence the first two integral moments of the total correlation
function h(x) ≡ g(x) − 1, i.e., ∫∞

0
dx xnh(r)with n � 1, 2, must be

well defined; (ii) the approximation must be thermodynamically
consistent with a prescribed equation of state; i.e., the

thermodynamic relationship χHS � [dηZHS(η)
dη ]− 1

must be

satisfied. Using the first requirement, one finds that L1, S1, S2,
and S3 are linear functions of L2 and S4. Imposing the
requirement (ii) leads to explicit expressions for L2 and S4 in
terms of χHS and ZHS [27]. Finally, the expressions for all the
coefficients are as follows:

L1 � 1
2
η + 12ηL2 + 2 − 24ηS4

2η + 1
, (6)

S1 � 3
2
η
−1 + 4L2 − 8S4

2η + 1
, (7)

S2 � −1
2
−η + 8ηL2 + 1 − 2L2 − 24ηS4

2η + 1
, (8)

FIGURE 2 | Various subcritical isotherms of the parabolic-well fluid for λ � 1.75. The label TPT indicates that the results have been obtained using thermodynamic
perturbation theory while the label MD refers to Event-drivenMolecular Dynamics simulation results. The inset shows an enlargement of the intermediate packing fraction
region for the isotherms with Tp � 1.0 and Tp � 1.1.
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S3 � 1
12

2η − η2 + 12η2L2 − 12ηL2 − 1 − 72η2S4(2η + 1)η , (9)

L2 � −3(ZHS − 1)S4, (10)

S4 � 1 − η

36η(ZHS − 1/3)[1 − [1 + ZHS − 1/3
ZHS − ZPY

(χHS
χPY

− 1)]]1/2.

(11)

Here, ZPY � 1+2η+3η2
(1− η)2 and χPY � (1−η)4

(1+2η)2 are the compressibility

factor and isothermal susceptibility arising in the Percus-

Yevick theory. To close the problem, one has to give an

expression for ZHS, so all the procedure is a function of this

choice. For a given ZHS, the radial distribution function is

given by

gHS(x) �
⎧⎪⎪⎨⎪⎪⎩

0, 0≤ x < 1,
1

12ηx
∑∞
n�1

φn(x − n)θ(x − n), x ≥ 1
(12)

with θ(x − n) being the Heaviside step function and

φn(x) � L−1{ − t[Φ(t)]−n}. (13)

Explicitly, using the residues theorem,

φn(x) � −∑4
n�1

etix ∑n
m�1

Amn(ti)
(n −m)!x

n−m, (14)

where

Amn(ti) � lim
t→ ti

1

(m − 1)!( d
dt
)m− 1

(t − ti)t[Φ(t)]− n, (15)

with ti being the four roots of 1 + S1t + S2t2 + S3t3 + S4t4 � 0;
namely,

t1 � − S3
4S4

+ yp − yn, (16)

t2 � − S3
4S4

+ yp + yn, (17)

t3 � − S3
4S4

− yp − ym, (18)

t4 � − S3
4S4

− yp + ym, (19)

where

yp � −1
2

����������������
S23
4S24

− 2S2
3S4

+ yr + ys
3S4

√
, (21)

yr � −S
2
2 − 3S1S3 + 12S4

3S4ys
, (22)

yn � 1
2

����������������������������������
S23
4S24

− 4S2
3S4

− yr − ys
3S4

− S33
8ypS34

+ S2S3
2ypS24

− S1
ypS4

√
, (23)

ym � 1
2

����������������������������������
S23
4S24

− 4S2
3S4

− yr − ys
3S4

+ S33
8ypS34

− S2S3
2ypS24

+ S1
ypS4

√
, (24)

ys � − 1
21/3

[yt + ����������������������
−4(S22 − 3S1S3 + 12S4)3 + y2t

√ ]1/3, (25)

yt � 2S32 + 9S1S2S3 + 27S23 + 27S21S4 − 72S2S4. (26)

As we will indicate below, once ZHS(η) has been chosen, Eqs.
5–26 are all that is needed to evaluate the first- and second-order
perturbation terms for the free energy of the parabolic-well fluid
within the Barker-Henderson thermodynamic perturbation
theory taking the hard-sphere fluid as the reference system. To
close this section and for later use, we now write the explicit
expression for the radial distribution function up to the first
coordination shell which reads

gHS(x) �
⎧⎪⎪⎨⎪⎪⎩

0, 0≤ x < 1,

∑4
i�1

ai
x
eti(x− 1), 1≤ x ≤ 2

(27)

where

ai � −ti(1 + L1ti + L2t2i )
12η(S1 + 2S2ti + 3S3t2i + 4S4t3i ) (i � 1, 2, 3, 4). (28)

3 THERMODYNAMIC PERTURBATION
THEORY AND THE EQUATION OF STATE
OF THE PARABOLIC-WELL FLUID
Perturbation approaches for the computation of thermodynamic
properties of fluids are well established theoretical tools [28, 29].
In the Barker-Henderson perturbation theory [26], one splits the
potential into a hard-sphere part and a perturbation part; namely,
u(r) � uHS(r) + u1(r), where

uHS(x) � {∞, 0≤ x ≤ 1,
0, x > 1 (29)

and

u1(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 0≤ x ≤ 1,

ε[(x − 1
λ − 1

)2

− 1], 1< x ≤ λ,

0, x > λ

(30)

Once this separation has been made, the Helmholtz free
energy per particle of the parabolic-well fluid is expressed as a
power series in the inverse of the reduced temperature
Tp � kBT/ε, which up to second order reads

f
NkBT

� fHS
NkBT

+ 1
Tp

f1
NkBT

+ 1
Tp2

f2
NkBT

(31)

Here, N is the number of particles and fHS stands for the
Helmholtz free energy of the reference hard-sphere fluid while f1
and f2 (this latter in the so-called macroscopic compressibility
approximation) are given, respectively, by

f1
NkBT

� 12η
ε

∫λ

1
gHS(x)u1(x)x2dx (32)
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and

f2
NkBT

� 6ηχHS
ε2

∫λ

1
gHS(x)u21(x)x2dx. (33)

Note that we have made use of the fact that gHS(x) vanishes for
0≤ x < 1 and of the expression for u1(x) given in Eq. 30,
respectively, to set the lower and upper limits of the integrals
in Eqs. 32, 33. In turn, the equation of state of the parabolic-well
fluid in this approximation is given by

Z ≡
p

ρkBT
� ZHS + 1

Tp
η
z

zη
( f1
NkBT

) + 1
Tp2

η
z

zη
( f2
NkBT

). (34)

And, the chemical potential may be readily obtained as

μ

kBT
� f
NkBT

+ Z, (35)

where f
NkBT

is given in Eq. 31, together with Eqs. 32, 33, and Z is
given in Eq. 34. So, provided we choose ZHS, which of course also
determines χHS and fHS, and take gHS to be the one computed with
the RFA approach and such compressibility factor, the
completely analytic formulation of the second-order Barker-
Henderson thermodynamic perturbation theory in the
macroscopic compressibility approximation for the parabolic-
well fluid taking the hard-sphere fluid as the reference system has
been derived. In our subsequent calculations, we will be restricted
to relatively narrow wells (1< λ≤ 2) so that Eq. 27 for gHS(r) will
be used. Furthermore, ZHS and χHS will be chosen to be those
corresponding to the Carnahan-Starling (CS) equation of state
[30]; namely,

ZHS(η) ≡ ZCS(η) � 1 + η + η2 − η3(1 − η)3 (36)

and

χHS(η) ≡ χCS(η) � (1 − η)4
1 + 4η + 4η2 − 4η3 + η4

. (37)

Further, from the CS equation of state, it also follows that

fHS(η)
NkBT

� fCS(η)
NkBT

� −1 + ln
6η
π
+ (4 − 3η)η(1 − η)2 . (38)

The availability of the completely analytic (albeit
approximate) forms of the Helmholtz free energy and the
equation of state of the system (which are themselves not
very illuminating and therefore will not be explicitly written
down [31]) allows us in principle to compute, for a given value
of λ, the compressibility factor using Eq. 34, the vapor-liquid
coexistence curve from the equality of pressures, and chemical
potentials of the two phases and also to obtain the critical point
in the usual way.

Preliminary results for the isotherms will be presented in the
following section, together with a comparison with our
simulation data. But before presenting such results, we will
take advantage of the simple form of the intermolecular
potential of this fluid to compute its second virial coefficient.
This is given by

B2(T) ≡ − 2πσ3 ∫∞

0
x2(eu(x)kBT − 1) dx (39)

� − π

6
σ3[6kBT

ε
(1 − 2e

ε
kBT + λ)(λ − 1)2 − 4λ3

+3
�����
πkBT

√
e

ε
kBT

ε3/2
(2ε + kBT(λ − 1)2)(λ − 1)Erf( ����

ε

kBT

√ )].
Equation 39, which to the best of our knowledge has not been

reported before, allows us to obtain the Boyle temperature TB of
the parabolic-well fluid as a function of λ by equating B2(TB) to
zero and solving numerically for TB. In Table 1, we show some
particular values and, for comparison, we also include the values
corresponding to triangle-well and square-well fluids with the
same range λ.

To close this section, we will also take advantage of the
knowledge of the second virial coefficient, to obtain estimates
of the critical temperature according to the Vliegenthart and
Lekkerkerker criterion [32], namely, from equating this
coefficient with −6vm, where vm � π

6σ
3 is the volume of the

spherical core. The results for given values of the range are
given in Table 2, where we have also included such estimates
for the cases of the triangle-well and square-well fluids with the
same range λ.

Note that, for all three model fluids, the values of both the
reduced Boyle temperatures and the estimates of the reduced
critical temperatures increase as the range λ is increased. Also
note that the geometrical form of the well influences such values
as reflected in the fact that, for the same value of the range, the
ones corresponding to the triangle-well fluid are smaller than
those of the parabolic-well fluid which, in turn, are smaller than
those of the square-well fluid.

TABLE 1 | Reduced Boyle temperatures Tp
B ≡ kBTB/ε (up to three significant

figures) of triangle-well, parabolic-well, and square-well fluids for various
values of the range λ.

λ Tp
B(Triangle-well

fluid)
Tp
B(parabolic-well

fluid)
Tp
B (square-well

fluid)

5/4 0.72 0.94 1.39
3/2 1.32 1.78 2.85
7/4 2.08 2.87 4.84
2 3.03 4.25 7.49

TABLE 2 | Estimates of the reduced critical temperatures Tp
c ≡ kBTc/ε (up to three

significant figures) of triangle-well, parabolic-well, and square-well fluids for
various values of the range λ, as obtained from the second virial coefficient and the
use of the Vliegenthart and Lekkerkerker criterion.

λ Tp
c(triangle-well

fluid)
Tp
c(parabolic-well

fluid)
Tp
c (square-well

fluid)

5/4 0.43 0.55 0.78
3/2 0.69 0.90 1.39
7/4 1.00 1.35 2.21
2 1.38 1.90 3.27
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4 ILLUSTRATIVE RESULTS

Now we return to our main aim. In order to assess the value of
the thermodynamic perturbation theory approach presented
in the previous section, we have carried out NVT Monte Carlo
(MC) simulations to compute the pressure of parabolic-well
fluids for various values of the range λ≤ 2 and supercritical
temperatures for later comparison with our theoretical results.
The details of such simulations are as follows. The number of
particles in our simulations is N � 1372 and we have
considered a cubic box, of length L and with periodic
boundary conditions. Reduced units are used, so that
lengths are expressed in units of σ (L � lσ, with l a pure
number), the reduced temperature is Tp, the packing
fraction is η � π

6
N
Vσ

3 (where V � L3 is the volume), and the
reduced pressure is pp � pσ3ε−1.

For the sake of illustration, we report here the results of the
simulations for λ � 1.25 and 1.75, along various isotherms. For
each isotherm, eight different packing fraction values η � 0.05 to
0.5 with Δη � 0.05 were simulated in order to compute the
reduced pressure pp. Each run was carried out using 1.5 · 106
Monte Carlo steps (MCS) discarding the first 106 MCS for
equilibration, and the properties were measured every 20 MCS
and averaged every 1000 MCS; furthermore, for each packing
fraction, the values of pp were averaged over 20 parallel
simulations to obtain better statistics.

Finally, the pressure was calculated using the expression

pp � 6
π
ηTp[1 + 4ηgPW(1+) − 4η

Tp
∫λ

1
gPW(x) du

p
1(x)
dx

x3dx]. (40)

Here, up1(x) � u1(x)/ε, gPW(x) is the radial distribution function
of the parabolic-well fluid (computed in the usual way [33] with

the subscript PW standing for parabolic well), and the second
term on the right-hand side of Eq. 40, obtained following a
similar procedure to the one used by Rotenberg [12] in the case of
the square-well fluid, accounts for the hard-core contribution to
the parabolic-well potential.

In Figures 1-3, we show the comparison between the results of
the isotherms obtained with the thermodynamic perturbation
theory and from simulation. Note the good agreement between
theoretical and simulation results for all the values of Tp above the
critical temperature that we considered.

On the other hand, the subcritical isotherms were obtained by
means of Molecular Dynamics (MD) Event-driven simulations.
We have performed event-driven simulations of N � 108000
elastic smooth spheres carried out with the DynamO software
package [34]. The spheres interact by a stepped parabolic-well
type potential [35–37], a discretized version consisting of a
sequence of 15 steps of widths 0.05σ, steps more than
reasonable in most instances [37]. We have used σ,
τ � �����

mσ2/ε
√

, m, and Tp as units of length, time, mass, and
temperature, respectively. The MD event-driven simulations
were performed for one value of the range of the potential,
namely, λ � 1.75, along the isotherms Tp � 1.1, 1.0 and 0.7. In
the first stage, we have performed NVT simulations with an
Andersen thermostat during 2 × 108 collisions, and after the
equilibration, the second stage of NVE simulations with a
duration of 8 × 108 collisions was performed [38]. The full
pressure tensor for the system was determined by means of
the expression

P � Pkinetic + Pinteraction (41)

where the kinetic pressure is given by

FIGURE 3 | Various isotherms of the parabolic-well fluid for λ � 1.75. The label TPT indicates that the results have been obtained using thermodynamic perturbation
theory while the label MC refers to Monte Carlo simulation results.
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Pkinetic � 1
2V

∑N
i

vivi , (42)

with vivi being a dyadic product which yields a matrix result and
the masses of the particles are set as mi � 1. The contribution to
the pressure due to interactions is given by

Pinteraction � 1
Vtsim

∑event
ij

Δpirij , (43)

where the summation is over each two-particle i, j event interaction,
tsim is the total simulation time, Δpi is the momentum impulse on
particle i, and rij � ri − rj is the separation vector between the
interacting particles. Finally, the hydrostatic pressure, which in
this instance coincides with the reduced pressure, was computed
from the trace of the tensor

pp � tr(P)/3 � (Pxx + Pyy + Pzz)/3 . (44)

In Figure 2, we show the comparison of the subcritical
isotherms obtained with the thermodynamic perturbation
theory and from simulation for a range λ � 1.75. The typical
van der Waals loop is clearly seen for the theoretical isotherm
with Tp � 0.7 (which grossly underestimates the simulation data)
and is still present in the isotherms with Tp � 1 and Tp � 1.1,
respectively. On the other hand, we have checked both through
Monte Carlo and Event-driven MD simulations and also through
the outcome of the thermodynamic perturbation theory that the
isotherm with Tp � 1.35 (not shown), which according to the
Vliegenthart and Lekkerkerker criterion should be the critical
one, is a supercritical isotherm. In fact, the simulation data
indicate that the real critical isotherm for this value of the
range lies above but close to the one corresponding to the
theoretical curve for Tp � 1.1.

While it is clear from Figures 1–3 that the qualitative trends
observed in all the simulation results are correctly accounted
for by the theory, a better perspective of its performance may
be gained by looking at the quantitative differences. Therefore,
in Table 3, we display the actual numerical values for a couple
of isotherms. In both cases, it is clear that the good qualitative
agreement seen in Figures 1, 2, respectively, is not
accompanied by quantitative agreement. In fact, the first
theoretical isotherm (λ � 1.25 and Tp � 1.5), which is a
supercritical isotherm, yields an underestimation of the
reduced pressure when compared to the simulation values.
On the other hand, for the second isotherm (λ � 1.75 and
Tp � 1.1), which is subcritical, the general overall trend is that
the theoretical curve overestimates the value of the reduced
pressure. As one would expect, in the case of the supercritical
isotherms, the quantitative agreement is improved as the
reduced temperature is increased.

5 CONCLUDING REMARKS

In this paper, we have addressed the study of the thermodynamic
properties of a fluid whose molecules interact through a

parabolic-well potential. For this model, we obtained the exact
second virial coefficient which in turn allowed us to compute
the Boyle temperature and to estimate the critical temperature
for arbitrary values of the potential range λ. The parabolic-well
potential is in the same family as the triangle-well potential
and the square-well potential, being in some sense
intermediate between the other two. A reflection of this is
the behavior of both the Boyle temperatures and the estimates
of the critical temperatures in which, for a fixed range, the
values corresponding to the parabolic-well potential lie
between the ones corresponding to the other two. Whether
this points out to a deeper relationship between the
geometrical shape of the well and the location of the critical
point in van Hove fluids is not clear to us at this stage but might
be worth considering in the future.

In order to obtain further analytic results, we considered a
thermodynamic perturbation theory approach for this fluid
within the Barker-Henderson second-order macroscopic
compressibility approximation and taking the hard-sphere
fluid as the reference fluid. Restricting ourselves to values of
the range in the interval 1< λ≤ 2 and evaluating the radial
distribution function of the hard-sphere fluid according to the
RFA method with the CS equation of state, we were able to
derive (albeit approximate) fully analytic expressions for the
Helmholtz free energy, the equation of state, and the chemical
potential of the parabolic-well fluid. With such expressions, we
were able to compute theoretically various isotherms for a
given potential range. These were subsequently compared to
our own Monte Carlo NVT and Event-driven MD simulation
results. It must be emphasized that these simulation data are to
our knowledge the only ones available in the literature for this
system.

TABLE 3 | Theoretical and simulation results for the reduced pressure at various
packing fractions in two isotherms of the parabolic-well fluid. The labels MC,
MD, and TPT stand for Monte Carlo, Event-driven MD, and thermodynamic
perturbation theory, respectively.

λ � 1.25, Tp � 1.5

η Simulation (MC) TPT
0.1 0.4984 0.3912
0.15 0.9408 0.6931
0.2 1.5577 1.1066
0.25 2.4038 1.6873
0.3 3.5641 2.5289
0.35 5.1764 3.7918
0.4 7.4700 5.7559
0.45 10.8447 8.9191
0.5 16.0428 14.1890

λ � 1.75, Tp � 1.1

η Simulation (MD) TPT
0.1 0.0694 0.1129
0.15 0.0642 0.0738
0.2 0.0413 0.0007
0.25 0.0094 −0.0280
0.3 0.0227 0.1287
0.35 0.4810 0.6941
0.4 1.7221 1.9983
0.45 4.2439 4.5110
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It should be clear that the calculations that we have presented
in the previous section are still preliminary but we want to stress
that further work on this subject is currently being carried out.
Nevertheless, at this stage, a few additional comments are in
order. We begin by pointing out that the qualitative agreement
between the results for the isotherms above the critical one
obtained from thermodynamic perturbation theory and those
stemming out of NVT Monte Carlo simulations, as well as the
improvement of the quantitative agreement as the reduced
temperature is increased, although clearly rewarding, are not
very surprising in view of the fact that our theoretical
approximation relies on the convergence of the perturbation
expansion for high temperatures. Also rewarding is the fact
that the results of the Event-driven MD simulation for the
isotherm Tp � 1.0 in the case in which the range is λ � 1.75,
which is a subcritical isotherm, are also well accounted for by the
curve obtained using thermodynamic perturbation theory. The
same happens with the isotherm with Tp � 1.1. On the other
hand, the gross underestimation of the theoretical curve for the
subcritical isotherm with Tp � 0.7 and the same value of the
range indicates that the convergence of the perturbation series is
very poor for this reduced temperature. In any case, it is fair to say
that the present theoretical approach provides a good starting
point for the study of the thermodynamic properties of parabolic-
well fluids. Future work with the same approach contemplates
the computation of the critical point and the liquid-vapor
coexistence curve of such fluids. Finally, since we are
persuaded that the parabolic-well fluid may still offer some
other insights on the thermodynamic behavior of fluids, we

hope that the results of the present paper may also motivate
others to conduct more studies using this model.
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