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In brain-computer-interface (BCI) devices, signal acquisition via reducing the electrode
channels can reduce the computational complexity of models and filter out the irrelevant
noise. Differential entropy (DE) plays an important role in emotional components of signals,
which can reflect the area activity differences. Therefore, to extract distinctive feature
signals and improve the recognition accuracy based on feature signals, a method of DE
feature signal recognition based on a Convolutional Gated Recurrent Unit network was
proposed in this paper. Firstly, the DE and power spectral density (PSD) of each original
signal were mapped to two topographic maps, and the activated channels could be
selected in activation modes. Secondly, according to the position of original electrodes, 1D
feature signal sequences with four bands were reconstructed into a 3D feature signal
matrix, and a radial basis function interpolation was used to fill in zero values. Then, the 3D
feature signal matrices were fed into a 2D Convolutional Neural Network (2DCNN) for
spatial feature extraction, and the 1D feature signal sequences were fed into a bidirectional
Gated Recurrent Unit (BiGRU) network for temporal feature extraction. Finally, the spatial-
temporal features were fused by a fully connected layer, and recognition experiments
based on DE feature signals at the different time scales were carried out on a DEAP
dataset. The experimental results showed that there were different activation modes at
different time scales, and the reduction of the electrode channel could achieve a similar
accuracy with all channels. The proposed method achieved 87.89% on arousal and
88.69% on valence.

Keywords: differential entropy, signal extraction, activation mode, convolutional neural network, bidirectional gated
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INTRODUCTION

Signal recognition plays an important role in BCI devices [1]. The ability of perceived robots for
expressing similar human behaviors is considered to be more approachable and humanized, which
can obtain higher participation and more pleasant interaction in reality [2]. In recent years, an
increasing number of researchers are attracted to the research of signal recognitions by computers.
Electroencephalogram (EEG) signals can avoid the camouflage and subjectivity of human
behaviors [3]. Therefore, feature signal recognition based on BCI devices is becoming a
research focus.
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At present, there are two technical problems in the process of
feature signal recognition based on BCI devices. One is how to
extract distinctive feature signals from original signals, and the
other is how to establish a more effective feature recognition
calculation model [4, 5]. Fast Fourier transform (FFT) was a
common method to extract feature signals from the original
signal [6]. However, FFT cannot reflect temporal information in
frequency signal, so a short-time Fourier transform was used to
extract time-frequency domain features which were recognized
as a feature signal [7]. Human brain is a nonlinear dynamic
system. It is difficult to analyze the original signal by traditional
time-frequency feature extraction and analysis methods. So, by
calculating the DE of the original signal, the differential
asymmetry and rational asymmetry signals of the
symmetrical electrodes in the left and right hemispheres of a
brain were used for feature signal recognition, which achieved
an average recognition accuracy of 69.67% on the DEAP dataset
[8]. However, this could only explore the relationship between
symmetric electrodes, not connect all electrodes in a spatial
position. Recent research has shown that distinctive feature
signals were closely related to multiple areas of the cerebral
cortex in BCI [9]. The weights of brain areas were calculated by
attention mechanism and the sum of weights was taken as the
contribution value of brain areas, which showed that frontal
lobe areas play an important role in feature signal recognition
experiments [5]. The feature signals of different activation areas
were extracted by DE and PSD topographic distribution, which
found that prefrontal and temporal lobes of the cerebral cortex
were related to feature signal states [10]. However, they did not
use the relevant brain areas to improve the recognition rate of
feature signals. Hence, a feature extraction method of
multivariate empirical mode decomposition (MEMD) was
used to select feature signal of appropriate channels, which
achieved 75.00% on arousal and 72.87% on valence for feature
signal recognition based on an Artificial Neural Network (ANN)
classifier [11]. However, the traditional machine learning model
is unable to extract more subtle feature signals, which could lead
to a low performance of feature signal recognition. In recent
years, feature signal recognition methods based on deep
learning have developed rapidly. Especially, CNN model has
become a leading method to improve recognition performance.
A method of feeding time-frequency features of each channel
into a 2DCNN model for feature signal state recognition was
proposed, which achieved 78.12% on arousal and 81.25% on
valence [12]. The original signal was decomposed into time
frames, and the multi-channel time frame signals were used as
inputs of a 3DCNN model, which achieved a recognition
accuracy of 88.49% on arousal and 87.44% on valence [13].
The frequency domain feature, spatial feature and frequency
band features of fusion multi-channel signals were fed into a
Capsule Network (CapsNet) based on CNN, which achieved
68.28% on arousal and 66.73% on valence [14]. Although the
CNN model can effectively extract the spatial information from
feature signals, it cannot effectively extract the temporal
information. Therefore, a hybrid neural network model
combined CNN and Recurrent Neural Network (RNN) was
proposed [15]. They used CNN model to extract the correlation

of signals in physical adjacent channels, and used RNNmodel to
mine the context information of feature signal sequences, which
achieved 74.12% on arousal and 72.06% on valence. A Stack
AutoEncoder (SAE) was used to establish a linear mixed model,
and a long-short-term memory recurrent neural network
(LSTM-RNN) was used for feature signal recognition, which
could achieve 81.10% on arousal and 74.38% on valence.
However, the unidirectional RNN and LSTM cannot
backward learn the feature signal sequences, which was the
reason of a low recognition rate.

For solving existing problems in previous studies, firstly,
considering that different areas played different roles in
feature signal recognition, activation pattern was introduced to
reflect the weight of region contribution. So, a method of the DE
feature signal extraction based on an activation mode was
proposed. Secondly, a 1D and 3D feature signal representation
method of considering the spatial-temporal information were
also proposed, which could improve the recognition rate of
feature signals by utilizing the temporal information of
different areas and spatial connection of electrode positions.
Lastly, a recognition framework based on Convolutional Gated
Recurrent Unit network were proposed in this paper. The
recognition framework was composed of 2DCNN and BiGRU
in parallel, which could not only learnmore distinctive and robust
feature signals but also improve the recognition rate.

METHODLOGY

DE Feature Signal Extraction
Original signals collected by the BCI include rhythm signals,
event-related potentials, and spontaneous potential activity
signals [4]. A Butterworth filter [16] is used to decompose the
original signal (X) into four frequency band signals: Xθ, Xα, Xβ,
and, Xc where θ is 4–7 Hz, α is 8–13 Hz, β is 14–30 Hz, and γ is
31–45 Hz.

DE Algorithm
DE is suitable for decoding characteristic signals [7, 10]. Each
frequency band signal is divided into Xi/τ equal parts by a time
window τ, and then analyzed by aDE algorithm.DE can discretize the
value of continuous random variables. The signal sequence values are
divided into small parts with Δx. According to the mean value
theorem, there is always a value xi in each part to make Eq. 1 true.

∫(i+1)△x

i△x
p(x)dx � p(xi)△x (1)

where p(xi) is a probability density function of discrete signals.
Each point at i is assigned to xi, and then the Eq. 1 is substituted
into the Shannon formula for the discrete variables. The process is
shown in Eq. 2.

H(△x) � −∑n

i�1p(xi)△x ln[p(xi)△x]
� −∑n

i�1p(xi)△x ln p(xi) −∑n
i�1

p(xi)△x ln△x

(2)
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When△x approaches 0, ∑n
i�1p(xi)△x approaches 1 and ln△x

approaches −∞. So, the right side of the Eq. 2 approaches∞, and
the left side of Eq. 2 is seen as the DE of a continuous signal in Eq.
2. The DE can be defined as Eq. 3.

H(X) � −∫
X

f (X)log[f (x)]dx (3)

whereX is a random variable, f(x) is a probability density function
of X. Assuming that the original signal X obeys normal
distribution N(μ, σ2), the DE can be solved as Eq. 4.

H(X) � ∫+∞

−∞
1����
2πσ2

√ e
(x−μ)2
2σ2 log⎡⎢⎢⎢⎢⎢⎣ ∫

+∞

−∞

1����
2πσ2

√ e
(x−μ)2

σ2
⎤⎥⎥⎥⎥⎥⎦dx

� 1
2
log(2πeσ2)

(4)

where μ is a mean of X, and σ2 is a variance of X. In Eq. 4, the DE
of signal source Xi can be calculated as long as σ2 is known, and
the variance of normal distributionN(μ, σ2) can be calculated via
Eq. 5.

σ2
∧

� 1
N
∑n

i�1x
2
i (5)

The spectral energy of the discrete signal is defined as
P � ∫+∞

−∞ f 2(t) dt. According to Eq. 5, the variance of signal
source Xi is an average spectral energy value P. From Eq. 4,
the variance of Xi is a constant multiple (Pi/N2) of the spectral
energy in each frequency band. So, the DE of a specific frequency
band can be defined as Eq. 6.

Hi(X) � 1
2
log(2πeσ2

i ) � 1
2
log(Pi) + 1

2
log(2πe

N
) (6)

where Hi(X) is the DE of Xi , Pi is a spectral energy of Xi , σ i
2 is a

variance of Xi , and N is a constant.

DE Feature Signal Vector
A distinctive feature vector is constructed by using Hi(X), the
processing process for a baseline signal of a specific frequency
band can be expressed as Eq. 7.

vij � vitrail(j) − ∑m
i�1v

i
base(k)
m

, j ∈ (N � t
τ
) (7)

Where t is a total signal time, τ is a time sliding window, vij is the
final DE feature vector at jth segment of ith band, vitrail(j) is a DE
feature vector at jth segment of ith frequency band, vibase(k) is a
DE feature vector of a baseline signal in jth segment of ith
band, and m is a number of segments in baseline signals. So, a
1D DE feature signal vector can be expressed as
vij � [c1τ , c2τ , ... , cnτ ]T ∈ Rn, where n is the number of electrode
channels, cnj is the pre-processed signal at nth channel of jth
segment.

The 1D data of n channels are filled into the space electrode
position of d×d, and the unused electrode position is filled with
zero value. Then, a 2D matrix (fτ) can be obtained. In order to

make the matrix denser, a radial basis function (RBF)
interpolation of Gaussian kernel function [17] is used to fill in
zero values. This process can be expressed as Eq. 8.

f
∧

τ(c) � ∑n
i�1

e(−‖x−ciτ‖22σ2
) (8)

Where σ is an extension constant of the RBF function, x is a center
point, c is an electrode channel point, and ‖ · ‖ is 2-norm.

Convolutional Gated Recurrent Unit
Network
The convolutional gated recurrent unit network is composed of
2DCNN and BiGRU in parallel, as shown in Figure 1.

Structural Principle of 2DCNN
CNN is a kind of forward feedback neural network. The model
structure mainly includes input layers, hidden layers and output
layers. The network structure of 2DCNN is shown in Figure 2.

The feature signal matrix f
∧
τ(c) is used as the input of 2DCNN.

The abstract feature extraction of the DE feature signal is
completed by setting the size of the 2D filters, the process can
be defined as Eq. 9.

s(i, j) � ( f
∧

τpW) � ∑
m

∑
n

f (i +m, j + n)w(m, n) (9)

where W is the convolution kernel, (m, n) is the size of the
convolution kernel W, f

∧
τ is the input matrix, (i, j) is the matrix

coordinate. After each convolution operation, the feature data of
each layer is batch-normalized (BN), and a RELU activation
function is added to make the model have nonlinear feature
transformation capability. The RELU function is expressed as
Eq. 10.

RELU(x) � max(x, 0) � { x, if x > 0
0, otherwise

(10)

where max is the maximum function, x is the inputs. The feature
matrix S is fed into the fully connected layer to make it more
expressive in space. The process is shown as Eq. 11.

FS � FC(S), FS ∈ R1024 (11)

where R1014 represents a dimension of 1,024, FC is the fully
connection layer, and FS is a 1,024-dimensional vector.

Structural Principle of BiGRU
GRU [18] is an improvement of LSTM [19]. Compared with
LSTM, GRU is capacity of dealing with a smaller amount of data,
which has a faster calculation speed and can better solve the
problem of gradient disappearance. The schematic diagram of
GRU is shown in Figure 3A. The GRU processes sequence
information by resetting gate rz and updating gate zt, and its
parameter update equation is shown in Eqs. 12–15.

rt � σ(wrxt ⊕ Urht−1) (12)

zt � σ(wzxt ⊕ Uzht−1) (13)
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~ht � tanh[whxt ⊕ Uh(rt ⊗ ht−1)] (14)

ht � (1 − zt) ⊗ ht−1 ⊕ zt⊗~ht (15)

where wr, wz, wh, Ur, Uz, and Uh are the weight parameters of the
BiGRU network, rt is reset gate, zt is update gate, ~ht is candidate
activation unit, ht is the hidden unit at time t, ht-1 is the hidden
unit at time t−1, σ is the activation function, Vt is the GRU input

at time t, ⊗ represents multiplying by elements, and ⊕ represents
adding by elements.

DE feature matrix V is exploited to be the original input of
BiGRUnetwork. The BiGRUnetwork is composed of forward GRU,
backward GRU, and forward-backward output state connection
layers. The structure of BiGRU network is shown in Figure 3B,
which mainly includes input layers, hidden layers and output layers.

FIGURE 1 | Schematic diagram of DE feature signal recognition model based on 2DCNN-BiGRU. The 1D feature sequences of each time step are fed into BiGRU
to extract the time information of feature signals. The 2D feature matrices of each time step are fed into 2DCNN to extract the spatial information of feature signals. Finally,
the decision layer gives the recognition result.

FIGURE 2 | Schematic diagram of the 2DCNNmodel. The inputs are a 3DDE feature matrix of 10 × 10 × 4, and its construction process is shown inConstruction of
3D DE Feature Matrix section. Padding � ‘SAME’ represents the edge information is filled with zeros, Stride � 1 means that the step size of each convolution operation is
1, and Dropout means that hidden neurons are deleted randomly.

FIGURE 3 | (A) Schematic diagram of GRU network. (B) Schematic diagram of BiGRU network.
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EXPERIMENTAL RESULTS AND
DISCUSSION

In this part, the experimental processes would be introduced and
our method would be compared with other methods. Then, the
effectiveness of our framework was evaluated on the DEAP
dataset. To achieve a more reliable emotion recognition
process, the emotion recognition performance of the EEG
access was analyzed by a 5-fold cross-validation technology.

Experimental Environment and
Experimental Dataset
Table 1 Shows the specific experimental environment for
experiments.

In the DEAP dataset [4], EEG signals of 32 subjects who watched
40 1-minutemusic videoswere recorded, and each subject contained
63s EEG data of 32 electrode channels. Among them, the first 3s was
the baseline signal recorded in the relaxed state, and the last 60s was
the trial signal recorded when watching the videos.

According to the level of arousal and valence, the distinctive
categories of DE feature signal states were obtained. In our
experiment, the DE feature signal recognition was divided into
two binary classifications. If scores of the arousal or valence were

less than or equal to 5, the label was marked as low. If scores were
greater than 5, the label was marked as high. Thus, there were four
labels on arousal and valence: high arousal (HA), low arousal
(LA), high valence (HV) and low valence (LV).

Data Preprocessing
In order to improve the accuracy of recognition, the influence
of baseline signals on trial signals needs to be considered.
Before extracting the DE feature signal of original signals,
the original signals are usually divided into short time
frames [15, 19, 20]. The baseline signal was divided into
three segments with a 1s sliding window and the trial signal
into n � 60/τ segments with a τwindow. As shown in Figure 4,
a channel signal of the original data was taken out, and the
original signal of each second is decomposed into θwave,
αwave, βwave, and cwave through the Butterworth filters.
The DE vectors Base_Vector (i) of the three baseline signals
and the DE vectors Trail_Vector (n) of the trial signals in each
time window were calculated by the DE algorithm. Then,
n-feature signals (DE1i�θ,α,β,c) in this channel could be
obtained by Trail_Vector (n) minus Mean∑i�1,2,3
Base_Vector (i) in turn. Finally, the 1D vector DEi �
[DE1

i , DE
1
i , ... , DE

32
i ] of 32 electrode channels could be

obtained, where i is the frequency band.

Construction of 3D DE Feature Matrix.
The DE feature signal value of 32 channels was filled to the orange
position in Figure 5B, and the gray point was filled with zero
values. The electrodes circled in orange were the test points used
in the DEAP dataset, as shown in Figure 5A. The electrodes of the
international 10–20 system [10] were connected with the test
electrodes of the DEAP dataset, which could construct a square
matrix N × N (N is the maximum number of points between
the horizontal test points and the vertical test points). In

TABLE 1 | Specific experimental environment.

Name Version

CPU Intel Core i7-9750H @2.60 GHz
GPU NVIDIA GeForce RTX 2060 6 GB
RAM DDR4 16 GB
OS Windows 10
Frameworks Tensorflow-GPU 1.14.0, MATLAB 2019b

FIGURE 4 |Schematic diagram of the original signal preprocessing flow. Among them, Trail_Vector (n) is the baseline signal feature vector. Trail_Vector (n) is the trial
signal feature vector. DEi � [DE1

i , DE
1
i , ... , DE

32
i ] is the DE feature signal vector of 32 channels. Mean ∑ Base_Vector (i) is the sum average DE of three baseline

segmentations.
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addition, in order to avoid the loss of edge information, a layer
of gray unused points was added to the outer layer of the
matrix, as shown in Figure 5B. In order to make the matrix
denser, the RBF interpolation was used to fill in the zero values
[17]. Finally, a 3D feature matrix was obtained by stacking the
2D feature matrices of four frequency bands, as shown in
Figure 5C.

The sliding windows of 1, 10, 30 and 60s were used to divide
the original signals, and the number of DE feature signal
samples obtained is shown in Table 2. Notably, the time step
window of 60s was the original signal length. The total samples
of each frequency band were 32 × 40 × n, where 32 was the
number of subjects, 40 was the number of experiments of each
subject, and n was the number of signals divided by the time
window. Finally, the same number of samples of the 1D feature
signal vectors and 2D feature signal matrices of each frequency
band were obtained.

2DCNN-BiGRU Model Training and
Parameter Setting
The 1D feature signal vectors and 3D feature signal matrices were
fed into BiGRU model and 2DCNN model respectively. The
proposed model was implemented with Tensorflow framework
and trained on an NVIDIA GeForce RTX 2060 GPU. The Adam
optimizer was adopted to minimize the cross-entropy loss
function. The keep probability of dropout operation was 0.5.
The penalty strength of L2 was 0.5. The hidden sates of the GRU
cell is the number of channels. The learning rate was initialized to
0.001. When the verification errors of the model stopped

dropping, the learning rate was divided by 10 until the
iteration stopped.

In the 2DCNN model of the first three convolutional layers,
64, 256, and 512 convolution kernels with a size of 4 × 4 were used
respectively. In order to reduce the amount of calculation, 64
convolution cores with a size of 2 × 2 were used in the fourth
convolution layer, which added a dropout operation. In addition,
in each convolutional layer, stride was set to 1, padding was set to
SAME, and zero padding was used to prevent information from
being lost at the edge of the inputs. A fully connected layer was
used to convert input features into spatial abstract features. In
order to avoid learning overfitting and improve the generalization
ability of the model, L2 regularization was added to the network.
And then, two layers BiGRU were used to fused the temporal
features obtained by the BiGRU model with the spatial features
obtained by the 2DCNN model. Finally, the DE feature signal
recognition result was obtained through a SoftMax classifier.

Results of 2DCNN-BiGRU in All Electrode
Channels
The 5-fold cross-validation technology was used to validate all
subjects and the recognition results of θ frequency band, α band
signal, β frequency band signal, c band signal and four band
signal combinations were counted at four-time windows. The
recognition results were shown in Table 3. In the dimensions of
arousal and valence, the high frequency band (β and c) had higher
average recognition accuracy than the low frequency band (θ and
α), which showed that the high frequency band had more
abundant DE feature signal information. It also could be
observed that the accuracy of all band combinations was
higher than a single band. The 2DCNN-BiGRU model
achieved the highest average recognition accuracy of 87.20 and
87.90% on arousal and valence at the 10s sliding window.

Results of DE Feature Signal Recognition in
Activation Mode
In order to explore the influence of electrode channels on the
recognition rate of DE feature signals, the activation model of DE
feature signals and PSD feature signals were studied [19]. The DE
feature signals were classified by reducing the electrode channels

FIGURE 5 | Schematic diagram of a 3D feature signal matrix construction. (A) International 10–20 system [10]. (B)A 2D squarematrix of 32 EEG channels. (C) A 3D
feature matrix of DEθ, DEα, DEβ and DEc.

TABLE 2 | The number of feature signal samples of each frequency band signal at
1, 10, 30, and 60s time windows.

Windows (s) Arousal Valence

LA HA Total LV HV Total

1 34,320 42,480 76,800 32,580 44,220 76,800
10 3,432 4,248 7,680 3,258 4,422 7,680
30 1,144 1,416 2,560 1,086 1,474 2,560
60 572 708 1,280 543 737 1,280
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under the activationmodel. A brief framework for the recognition
process is shown in Figure 6.

In the DEAP dataset, the average value of DE and PSD were
calculated, which were from the 32 electrode channels of all
subjects at different time windows. Figure 7A and Figure 7B
showed the averaged PSD and DE distribution, where four
frequency bands (theta, alpha, beta and gamma) represented
four activation models. It was found that the electrode channels
located in the frontal and occipital lobes had a higher activation
capacity. However, different time windows have similar activation
patterns on different frequency bands, which is the reason for the
lower recognition accuracy of DE feature signals. The activation
ability of high frequency bands (beta and gamma) is greater than
that of low frequency band (theta and alpha), which also explains
that beta and gamma bands have better recognition effect than
theta and alpha bands. According to the spatial locations of the

electrodes, the 32 electrodes used in the DEAP dataset were divided
into five clusters, namely, five brain areas, as shown in Figure 8A.
Table 4 summaries the electrode channels in each brain region,
where the frontal lobe represents the electrodes of FP1, AF3, F7, F3,
FP2, AF4, F8, F4, and FZ, the central lobe represents the electrodes
of FC1, CP1, C3, FC2, CP2, C4, and CZ, the temporal lobe
represents the electrodes of FC5, T7, CP5, FC6, T8, and CP6,
the parietal lobe represents the electrodes of P7, P3, P8, P4, and PZ,
and the occipital lobe represents the electrodes of PO3, O1, PO4,
O2, and OZ.

According to the activation areas of each time window, the
combinations of different areas were selected. As shown in
Figure 8B, the frontal, parietal, and occipital areas were
considered as the DE feature signal activation areas at 1, 10,
and 30s windows. The number of electrodes were reduced from
32 to 19, where the selected electrodes were FP1, AF3, F7, F3, FP2,

FIGURE 6 | A brief frame diagram of DE feature signal recognition of convolutional gated recurrent network based on activation mode.

FIGURE 7 | (A) Scalp distribution of the DE feature signal at 1, 10, 30, and 60s windows of different frequency bands. (B) Scalp distribution of the PSD feature signal
at 1, 10, 30, and 60s windows of different frequency bands.

TABLE 3 |When the inputs of the 2DCNN-BiGRUmodel were data of 32 electrodes, the DE feature signal recognition results of each frequency band signal and all frequency
band combinations under the time window of 1, 10, 30, and 60s, respectively.

Windows
(s)

Arousal accuracy (%) Valence accuracy (%)

θ α β γ All θ α β γ All

1 69.85 70.38 70.08 73.72 81.69 70.48 70.43 69.51 74.17 82.13
10 73.07 77.97 78.41 78.34 87.20 72.32 74.56 77.59 76.65 87.90
30 67.95 67.94 70.86 69.85 78.66 68.15 69.52 72.97 69.92 79.35
60 59.41 57.73 59.14 61.25 62.43 58.73 61.10 61.33 61.66 63.52
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AF4, F8, F4, FZ, P7, P3, P8, P4, PZ, PO3, O1, PO4, O2, and OZ.
Under the 60s-time step window, the frontal lobe and central area
were used as the activation areas of the DE feature signals, as
shown in Figure 8C. The number of electrodes were reduced
from 32 to 16, and the selected electrodes were FP1, AF3, F7, F3,
FP2, AF4, F8, F4, FZ, FC1, CP1, C3, FC2, CP2, C4, and CZ.

The DE feature signals of the four frequency bands were used as
the inputs of the 2DCNN-BiGRUmodel, and the DE feature signal

recognition experiments with the selected electrode were
performed at each time window. The recognition results were
shown in Figure 9. At 1s window, the recognition rate of 19
electrodes improved by 0.06% on valence compared with 32
electrodes, while decreased by 0.69% on arousal. At 10s
window, the recognition rate of 19 electrodes improved by
0.79% on arousal and 0.06% on valence compared with 32
electrodes. At 30 s window, the recognition rate of 19 electrodes
decreased by 0.77% on arousal and 1.21% on valence compared
with 32 electrodes. At 60 s window, the recognition rate of 16
electrodes improved by 0.04% on arousal and 0.19% on valence
compared with 32 electrodes. Notably, when the time window was
10 s, the 2DCNN-BiGRU model achieves the highest accuracy.
Experimental results showed that there were different activation
modes at different time scales. By reducing the number of
electrodes in the activation mode, not only could achieve the
recognition rate which was similar to all electrodes of DE
feature signal recognition, but also the performance and
robustness of the recognition models could be improved.

FIGURE 8 | (A) The 32 electrodes of the DEAP dataset are divided into five groups, and the same color represents the same group of areas. (B) The 19 electrodes
are selected by the activation modes at the 1, 10, and 30s windows. (C) The 16 electrodes are selected by the activation modes at the 60s windows.

TABLE 4 | The 32 electrodes in the DEAP dataset are divided into five areas and
the electrodes represents by each brain area.

Brain areas Electrodes name

Frontal FP1, AF3, F7, F3, FP2, AF4, F8, F4, FZ
Central FC1, CP1, C3, FC2, CP2, C4, CZ
Temporal FC5, T7, CP5, FC6, T8, CP6
Parietal P7, P3, P8, P4, PZ
Occipital PO3, O1, PO4, O2, OZ

FIGURE 9 | DE feature signal recognition results of 2DCNN-BiGRU in activation mode.
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In order to further verify the reduction of electrode channels
could achieve similar accuracy to all electrodes, and to verify that
the hybrid model is better than the single model, four models of
2DCNN, BiLSTM, BiGRU, and 2DCNN-BiLSTM are compared
with the 2DCNN-BiGRU. Table 5 shows the structure and inputs
of different models.

In the experiment, the data of the 10s window were used as the
inputs of the models, and the sum average of arousal and valence as
the final results. In order to make the experiment comparable, the
convolutional kernels of each model and the fully connected layer
parameter settings were consistent in experiments. The DE feature
signal recognition rate of each model was shown in Figure 10. The
recognition rate of the selected electrodes was slightly higher than
that of all electrodes in different models. The recognition rate
of 2DCNN-BiLSTM and 2DCNN-BiGRU is higher than that of
2DCNN, BiLSTM and BiGRU, which indicated that the hybrid
models could effectively extract the spatial-temporal features
of DE feature signals. The recognition rate of the 2DCNN-
BiGRU model was slightly higher than that of the 2DCNN-
BiLSTM model, which indicated that the GRU unit was
superior to the LSTM unit in handling small samples.

Comparison of the results of different
experimental methods.
The proposed method was compared with the current recognition
methods based on feature signals, which were applied to the DEAP

dataset. As shown in Table 6, the binary classification experiments
of valence and arousal were carried out, and the similar methods
were followed to evaluate the recognition accuracy.

Our model was compared with traditional machine learning
models of HMM [21], SVM [22] and ANN [11], as shown in
Figure 11. The accuracy of our method improved by 12.89% on
arousal and 13.06% on valence, which showed that the DE feature
signal recognition based on deep learning method could deeply
extract more subtle abstract features and achieve higher
recognition rate.

In order to further verify the effectiveness of the proposed
method, the 2DCNN-BiGRUmodel was compared with the latest
deep learning methods, such as 2DCNN [12], LSTM [19, 23] and
CNN-LSTM [15], as shown in Figure 12. Compared with the
2DCNN model, our model improved by 9.77% on arousal and
7.44% on valence, which indicated that BiGRU could handle the

TABLE 5 | The structure and inputs of 2DCNN, BiLSTM, BiGRU, 2DCNN-
BiLSTM, and 2DCNN-BiGRU models.

Models Data inputs Network structures

2DCNN 3D matrix 4 × (conv2D) + FC + SoftMax
BiGRU 1D vector 2BiGRU + FC + SoftMax
BiLSTM 1D vector 2BiLSTM + FC + SoftMax
2DCNN-BiLSTM 2DCNN: 3D input 4 × (conv2D) + FC + FC + SoftMax

BiLSTM: 1D input 2BiLSTM + FC
2DCNN-BiGRU 2DCNN: 3D input 4 × (conv2D) + FC + FC + SoftMax

BiGRU: 1D input 2BiGRU + FC

FIGURE 10 | At the 10s windows, the DE feature signal recognition
results of 2DCNN, BiLSTM, BiGRU, 2DCNN-BiLSTM, and 2DCNN-BiGRU in
the activation mode.

TABLE 6 | Comparison of the different experimental methods in the DEAP
dataset.

Studies Models Feature
signals

Evaluation
methods

Accuracy (%)

Arousal Valence

Chen
et al. [23]

HMM Fusion
feature

5-Fold 73.00 75.63

Zhuang
et al. [22]

SVM Intrinsic
mode
functions

leave-one-
trail-out

69.10 71.99

Mert
et al. [11]

ANN MEMD-
based
features

leave-one-
trail-out

75.00 72.87

Li et al. [15] CNN-
LSTM

Wavelet
transform

5-Fold 74.12 72.06

Alhagry
et al. [24]

LSTM Raw 4-Fold 85.65 85.65

Kwon
et al. [12]

2DCNN Wavelet
transform

10-Fold 78.12 81.25

Xing
et al. [16]

LSTM Frequency
band power

10-Fold 74.38 81.10

Our
proposed
method

2DCNN-
BiGRU

Differential
entropy

5-Fold 87.89 88.69

FIGURE 11 | The proposed method is compared with the traditional
machine learning methods.
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dynamic information of deep feature signal sequences. Compared
with the LSTM model, our model improved by 2.24% on arousal
and 3.04% on valence, which indicated that the 2DCNN model
could effectively extract the spatial feature. Compared with the
CNN-LSTM model, our model improved by 13.77% on arousal
and 16.63% on valence, which indicated that our spatial-temporal
features based on the activation modes are more effective. In
addition, the DE feature signal was compared with wavelet
transform (WT) [12, 15] power spectral density (PSD) [19]
and raw signals [24], which showed that the DE feature
signals are more effective in our model. However, on one
hand, the hybrid 2DCNN-BiGRU model contains massive
amounts of parameters, which is necessarily unfriendly to
hardware devices. On the other hand, a more advanced Graph
Convolution Network (GCN) [23, 25] can be considered to
further explain the relationship between the electrodes.

CONCLUSION

In this paper, a DE feature signal extraction method based on an
activation mode and its recognition in a Convolutional Gated
Recurrent Unit network were proposed. The DE and PSD feature
signals were used to mine activation patterns at different time
scales to reduce electrode channels. The 1D temporal and 3D
spatial feature signals were respectively fed into 2DCNN and
BiGRU models, which achieved a recognition accuracy of 87.89%
on arousal and 88.69% on valence of the DEAP dataset. It was
found that DE feature signals of reducing electrode channels
could achieve similar recognition accuracy to all electrode

channels, which was of great significance to develop a
recognition device based on BCI system.
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