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In this paper, we introduce a series solution to a class of hyperbolic system of time-
fractional partial differential equations with variable coefficients. The fractional derivative
has been considered by the concept of Caputo. Two expansions of matrix functions are
proposed and used to create series solutions for the target problem. The first one is a
fractional Laurent series, and the second is a fractional power series. A new approach, via
the residual power series method and the Laplace transform, is also used to find the
coefficients of the series solution. In order to test our proposed method, we discuss four
interesting and important applications. Numerical results are given to authenticate the
efficiency and accuracy of our method and to test the validity of our obtained results.
Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative
arrangement on the behavior of the solution.
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1 INTRODUCTION

Many natural phenomena have been modeled through partial differential equations (PDEs),
especially in physics, engineering, chemistry, and biology, as well as in humanities [1, 2]. A wide
range of PDEs can be classified under the name of hyperbolic PDEs that have the following general
form [2–6]:

ut(x, t) � a(x, t)ux(x, t) + b(x, t)u(x, t) + f (x, t), x ∈ I, t > 0, (1)

subject to the following initial condition:

u(x, 0) � u0(x). (2)

The equations of compressible fluid flow and the Euler equations are examples of PDEs that can
be reduced to hyperbolic PDEs when the effects of viscosity and heat conduction are neglected [6]. In
addition, many mathematical models are appearing as hyperbolic systems of PDEs that have the
following general form:

Ut(x, t) � A(x, t)Ux(x, t) + B(x, t)U(x, t) + F(x, t), x ∈ I, t ≥ 0, (3)

subject to

U(x, 0) � U0(x), (4)
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where U(x, t), F(x, t) ∈ Mn×1, n ∈ N are vector functions of
two variables x and t,U0(x) ∈ Mn×1 is a vector function of x,
A(x, t), B(x, t) ∈ Mn×n are matrix functions of two variables x
and t, and A(x0, t0) is diagonalizable with real eigenvalues for
every (x0, t0) ∈ I × [0,∞). The system in Eqs 3, 4 is said to be
strictly hyperbolic if the eigenvalues of A(x0, t0) are all
distinct, whereas it is said to be elliptic at a point (x0, t0) if
none of the eigenvalues of A(x0, t0) are real for every
(x0, t0) ∈ I × [0,∞).

In recent decades, many mathematical models have been
reformulated using the concept of fractional calculus because
they are found to reflect the phenomenon that has been modeled
in a more precise and realistic way by replacing the ordinary
derivative with a fractional derivative (FD) of the model. The
concept of fractional calculus dates back to the 17th century [7, 8]
and has recently gained considerable interest because of its
extensive use in widespread fields, for instance, engineering,
biological, chemical, and applied physics such as in nonlinear
oscillation, waves, and diffusion as we mentioned [7–13]. In fact,
from that date until now, there are many definitions of the FD.
The most popular definition is the Caputo FD that is denoted and
defined as [7, 8]

Dα
t u(x, t) � { Jm−α

t zmt u(x, t), m − 1< α<m,
zmt u(x, t), α � m,

, t > t0 ≥ 0, (5)

where m ∈ N and Jαt is the Riemann–Liouville fractional integral
operator (R-LFIO) of order α> 0 with respect to t ≥ t0 ≥ 0, which
is defined by

Jαt u(x, t) �
1

Γ(α) ∫t

t0
(t − τ)α− 1u(x, τ)dτ, t > τ > t0 ≥ 0. (6)

For more details about the properties of the two previous
definitions, readers can refer to the references [7–12]. The most
useful properties that we need in this research are

Jαt (t − t0)μ � Γ(μ + 1)
Γ(μ + α + 1)(t − t0)μ+α, μ> − 1, t ≥ t0 ≥ 0, (7)

Jαt λ � λ

Γ(α + 1)(t − t0)α, λ is a constant, (8)

Dα
t (t − t0)μ �

⎧⎪⎪⎨⎪⎪⎩ Γ(μ + 1)
Γ(μ − α + 1)(t − t0)μ− α, μ ∉ {0, 1, 2, . . . ,m − 1}

0 μ ∈ {0, 1, 2, . . . ,m − 1}
,

(9)

Dα
t λ � 0, λ is a constant. (10)

As mentioned, the definition of Caputo is one of the most
important definitions of the FD, since it was and still is an
appropriate and effective tool in the modeling of many natural
phenomena in all sciences and fields. For example, but not limited
to, the definition of Caputo has recently been used to construct a
mathematical model to illustrate the impacts of deforestation on
wildlife species [13], in a fractional investigation of bank data
[14], to model the spread of hookworm infection [15], and newly
to model and analyze the dynamics of novel coronavirus
(COVID-19) [16].

It is difficult to find exact solutions (ESs) for the fractional
differential and integral equations; for this reason, analytical and
numerical methods are usually used to find approximate
solutions (ASs) for those equations. In recent decades, many
methods have been used to find analytical and numerical
solutions for fractional differential and integral equations such
as the variational iteration method [17], the Adomian
decomposition method [18], the homotopy perturbation
method [17], the homotopy analysis method, the fractional
transform method [19], Green’s function method [20], and
other methods [21, 22].

In the last five years, the residual power series method
(RPSM) has achieved an advanced rank among the methods
used to find ASs for many fractional differential and integral
equations. It has been used in determining ESs and ASs for
many equations such as homogeneous and non-homogeneous
time- and space-fractional telegraph equation [23], time-
fractional Boussinesq-type and space-fractional
Klein–Gordon–type equations [24], fractional multi-
pantograph system [25], space- and time-fractional linear
and nonlinear KdV–Burgers equation [26], multi-energy
groups of neutron diffusion equations [27], and other
equations. The RPSM is characterized by its ease and speed
in finding solutions for equations in the form of a power series.
In fact, the RPSM is a mechanism for finding the coefficients of
the fractional power series (FPS) without having to find a
recurrence relation that we normally obtain from equating
the corresponding coefficients in the series. The RPSM is a
good alternate proceeding for gaining analytic solutions for
fractional PDEs.

Despite all the features we mentioned about the RPSM, we will
present in this paper a major modification to the method. We use
the concept of limit at infinity instead of the concept of FD in
determining the coefficients of the power series solution (SS). As
is well known, finding an FD manually is not easy and sometimes
takes tens of minutes when it is calculated by software packages,
while calculating the limit is much easier than calculating the FD
manually and faster by compute. Indeed, the RPSM determines
the coefficients of the power SS of the differential or integral
equations, whereas the proposed technique determines the
coefficients of the expansion that represents the Laplace
transform (LT) of the solution. Therefore, we do not need FDs
during the transaction-finding process. To be able to implement
the newmethod, we need to provide two expansions of the matrix
functions, one to represent the solution of the equation and the
other to represent the LT of the solution. Moreover, the
convergence of the introduced expansions is studied. In fact,
the proposed method called the Laplace-RPSM (L-RPSM) was
first introduced by the authors in [28] and used for introducing
exact and approximate SSs to the linear and nonlinear neutral
FDEs. El-Ajou [29] then adapted the new method in creating
solitary solutions for the nonlinear time-fractional partial
differential equations (T-FPDEs).

Several articles are interested in providing ASs to T-FPDEs of
hyperbolic type, such as the Caputo time-fractional–order
hyperbolic telegraph equation [30], hyperbolic T-FPDEs
[31–35], the time-fractional diffusion equation [36], fractional
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advection–dispersion flow equations [37], and other hyperbolic
equations. However, a limited number of research studies
provided analytical and numerical solutions for hyperbolic
systems of T-FPDEs. Kochubei [38] presented a
numerical–analytical solution for homogeneous hyperbolic
fractional systems, and Hendy et al. [39] introduced a solution
for two-dimensional fractional systems that was provided by a
separate contrast scheme. Therefore, more research is needed in
providing analytical and numerical solutions for such systems
due to their importance in many applications as
mentioned above.

The present work aims to apply the L-RPSM to construct ASs
of a hyperbolic system of T-FPDEs with variable coefficients in
the sense of Caputo’s FD, which are given in the form of the
following model:

U(α)
t (x, t) � A(x, t)U(β)

x (x, t) + B(x, t)U(x, t)
+ F(x, t), 0< α, β≤ 1, x ∈ I, t ≥ 0, (11)

subject to

U(x, 0) � U0(x), (12)

where U(α)
t (x, t) � Dα

t U(x, t) refers to Caputo’s time-FD of
order α of the multivariable vector function U(x, t), U(β)

x (x, t) �
Dβ

xU(x, t) refers to Caputo’s space-FD of order ß of the
multivariable vector function U(x, t), and the definitions of all
terms and variables in Eqs 11, 12 are the same as those in Eqs 3, 4.

This paper is organized as follows: In Section 2, the analysis of
matrix FPS is prepared. In Section 3, the construction of FPS
solution to a hyperbolic system of T-FPDEs with variable
coefficients in the sense of Caputo’s FD is presented using the
L-RPSM. In Section 4, application models and graphical and
numerical simulations are performed in order to illustrate the
capability and the simplicity of the proposed method. Finally, the
conclusion is presented in Section 5.

2 PRELIMINARIES OF MATRIX FPS

Here, we present some definitions and theories regarding matrix
analysis and the matrix FPS, which are playing a central role in
constructing the L-RPSM solution to a hyperbolic system of
T-FPDEs with variable coefficients.

Definition 2.1. The R-LFIO of order α> 0 of a matrix function
U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k, is defined as

Jαt U(x, t) � [Jαt uij(x, t)]r×k, x ∈ I, t ≥ t0. (13)

Definition 2.2. Caputo’s time-FD operator of order α> 0 of a
matrix function U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k, is

Dα
t U(x, t) � [Dα

t uij(x, t)]r×k, x ∈ I, t ≥ t0. (14)

Lemma 2.1. If m − 1< α≤m and m ∈ N, then

1. Dα
t J

α
t U(x, t) � U(x, t),

2. Jαt D
α
t U(x, t) � U(x, t) −∑m−1

j�0
zjU(x, 0+)

ztj
(t−t0)j

j! , t > t0.

Definition 2.3 Let Ak ∈ Mm×n. We say that a sequence {Ak}
converges to a matrix A ∈ Mm×n with respect to a matrix norm
‖ • ‖ on Mm×n if and only if limk→∞‖Ak − A‖ � 0. If {Ak}
converges to A, we write limk→∞Ak � A .

Definition 2.4 For 0< α≤ 1, x ∈ I, and t ≥ t0, a matrix power
series of the following form:

∑∞
m�0

Hm(x)(t − t0)mα � H0(x) +H1(x)(t − t0)α +H2(x)(t − t0)2α

+ . . . , x ∈ I t ≥ t0,
(15)

is called a bivariate matrix FPS around t0, where t is an
independent variable and Hm(x) ∈ Mr×k are matrix functions
of the independent variable x called series coefficients.

Theorem 2.1. Assume that U(x, t) � [uij(x, t)] ∈
Mr×k, 1≤ i≤ r, 1≤ j≤ k, such that uij(x, t) ∈ C (I × [t0, t0 + T))
and Dmα

t uij(x, t) ∈ C(I × (t0, t0 + T)) for 1≤ i≤ r, 1≤ j≤ k,
w � 0, 1, 2, . . . , n + 1, where Dmα

t � Dα
t .D

α
t . . . Dα

t (m-times)
and α> 0. Then,

J(n+1)αt D(n+1)α
t U(x, t) � D(n+1)α

t U(x, ξ)
Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t < t0 + T. (16)

Proof. Of the operator definition in Eqs 6, 13 we have

J(n+1)αt D(n+1)α
t U(x, t) � 1

Γ((n + 1)α) ∫t

t0
(t − y)(n+1)α− 1D(n+1)α

y

U(x, y)dy
� D(n+1)α

t U(x, ξ)
Γ((n + 1)α) ∫t

t0
(t − y)(n+1)α− 1dy(based on the second mean value theorem for integral [4])

� D(n+1)α
t U(x, ξ)

Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t < t0 + T .

Theorem 2.2. Assume that U(x, t) � [uij(x, t)] ∈
Mr×k, 1≤ i≤ r, 1≤ j≤ k, such that uij(x, t) ∈ C(I × [t0, t0 + T))
and Dmα

t uij(x, t) ∈ C(I × (t0, t0 + T)) for 1≤ i≤ r, 1≤ j≤ k,
m � 0, 1, 2, . . . , n + 1, where α ∈ (0, 1]. Then,

U(x, t) � ∑n
m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα

+ D(n+1)α
t U(x, ξ)

Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t ≤ t0 + T .

(17)

Proof. From Theorem 2.1, it suffices to demonstrate that

J(n+1)αt D(n+1)α
t U(x, t) � U(x, t) − ∑n

m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

According to Lemma 2.1, it is easy to show that the formula is
correct for n � 0 and n � 1. Thus, inductively, we prove the
theorem as follows:
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J(n+2)αt D(n+2)α
t U(x,t)� Jαt ((J(n+1)αt D(n+1)α

t )Dα
t U(x,t))

�Jαt ⎛⎝Dα
t U(x,t)−∑n

m�0

D(m+1)α
t U(x,t0)
Γ(mα+1) (t−t0)mα⎞⎠ (by Lemma 2.1)

�Jαt Dα
t U(x,t)−∑n

m�0

D(m+1)α
t U(x,t0)

Γ((m+1)α+1) (t−t0)
(m+1)α (by Eq. (7))

�U(x,t)−U(x,t0)−∑n+1
m�1

Dmα
t U(x, t0)
Γ(mα+1) (t−t0)mα (by Lemma 2.1)

�U(x,t)−∑n+1
m�0

Dmα
t U(x, t0)
Γ(mα+1) (t−t0)mα.

Thus, the proof of Theorem 2.2 has been completed.
Let us call the series (Eq. 17) the bivariate fractional matrix Taylor’s

formula (BFMTF) of the matrix function U(x, t). As any series, the
tail of the series (Eq. 17), Rn(x, t) � D(n+1)α

t U(x, ξ)
Γ((n+1)α+1) (t − t0)(n+1)α, is

called the nth remainder for the Taylor series of U(x, t). The
function P(x, t) � U(x, t) −Rn(x, t) is an approximate function

for U(x, t), and the accuracy of the approximation increases as
Rn(x, t) decreases. Finding a bound for Rn(x, t) gives an
indication of the accuracy of the approximation
P(x, t) ≈ U(x, t). The following theorem provides such a bound.

Theorem 2.3. (The Remainder Estimation Theorem) Assume that
D(n+1)α

t U(x, t), α ∈ (0, 1] is defined on (I × (t0, t0 + d)). If∣∣∣∣∣∣∣∣∣∣D(n+1)α
t U(x, t)

∣∣∣∣∣∣∣∣∣∣≤M(x) on t0 ≤ t ≤ d and fixed x for some matrix
norm ‖ • ‖, then the remainderRn(x, t) of theBFMTFofU(x, t) satisfies

Rn(x, t)≤ M(x)
Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ t ≤ d. (18)

Proof. The definition of the remainder of the BFMTF of
U(x, t) as in Eq. 17 is given by

Rn(x, t) � D(n+1)α
t U(x, t)

Γ((n + 1)α + 1)(t − t0)(n+1)α

� U(x, t) − ∑n
m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

(19)

According to Theorem 2.2, the remainder can be expressed as

FIGURE 1 | Surface graphs of the fifth AS of U1(x, t) and U2(x, t) in Eq. 81 and the ES of U1(x, t) and U2(x, t) in Eq. 72 for a fixed value of β � 0.5 and different
values of α: (A) α � 0.7, (B) α � 0.85, (C) α � 1, and (D) ES when α � 1.
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J(n+1)αt D(n+1)α
t U(x, t) � U(x, t) − ∑n

m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

(20)So, for t0 ≤ τ ≤ t ≤ d, we have

‖Rn(x, t)‖ �
����J(n+1)αt D(n+1)α

t U(x, t)����
�
�������� 1
Γ((n + 1)α) ∫t

t0
(t − τ)(n+1)α− 1D(n+1)α

t U(x, τ)dτ
��������

≤
1

Γ((n + 1)α) ∫t

t0

∣∣∣∣(t − τ)(n+1)α− 1∣∣∣∣����D(n+1)α
t U(x, τ)dτ����

≤
1

Γ((n + 1)α) ∫t

t0

∣∣∣∣(t − τ)(n+1)α− 1∣∣∣∣M(x) dτ

� M(x)
Γ((n + 1)α) ∫t

t0
(t − τ)(n+1)α− 1dτ

� M(x)
Γ((n + 1)α + 1)(t − t0)(n+1)α.

Thus, the proof is completed.
Note that when n→∞, Taylor’s formula (17) is of the form

U(x, t) � ∑∞
m�0

U(mα)
t (x, t0)
Γ(mα + 1) (t − t0)mα, x ∈ I, t0 ≤ t < t0 + T , (21)

which can be applied throughout this work.
Finally, it is worth to mention that if α � 1, then the BFMTF

(Eq. 21) becomes

U(x, t) � ∑∞
m�0

zmU(x, t0)
m!ztm

(t − t0)m, t0 ≤ t < t0 + T , (22)

which is the bivariate classical matrix Taylor’s formula of a matrix
function.

Lemma 2.2. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k,
such that uij(x, t) are of exponential orders (EOs) λij and piecewise
continuous functions (PCFs) on I × [t0,∞), respectively. Then,

1. L[Jαt U(x, t)] � sα−1L[U(x, t − t0)], α> 0.
2. L[Dα

t U(x, t)] � sαL[U(x, t − t0)]
−∑m−1

k�0 sα−k−1z
k
t U(x, t0), m − 1< α<m.

3. L[Dnα
t U(x, t)] � snαL[U(x, t − t0)]

−∑n−1
k�0s(n−k)α−1D

kα
t U(x, t0), 0< α< 1.

Corollary 2.1. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤
j≤ k, such that uij(x, t) are PCFs on I × [t0,∞) and of EOs
λij, respectively. Assume that U(x, t) can be represented as a
BFMTF as in Eq. 21. Then, the inverse LT of U(x, t) has the
following fractional matrix expansion (FME):

U(x, s) � e−t0s∑∞
n�0

U(mα)
t (x, t0)
s1+nα

, 0< α≤ 1, x ∈ I, s> λ, (23)

where λ � minλij , 1≤ i≤ r, 1≤ j≤ k, which can be applied
directly throughout this work when t0 � 0.

Theorem 2.4. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤
j≤ k, such that uij(x, t) are PCFs on I × [t0,∞) and of EOs
λij, respectively, and U(x, s) � L[U(x, t)] can be represented as
the FME in Eq. 23. For some matrix norm ‖ • ‖, if∣∣∣∣∣∣∣∣∣∣ se−t0s L[D(n+1)α

t U(x, t)
∣∣∣∣∣∣∣∣∣∣≤M(x), 0< α≤ 1, on I × (λ, c] and

at a fixed point x, then the norm of the remainder of the FME in
Eq. 23 satisfies

||Rn(x, s)||≤ M(x)
s1+(n+1)α

, x ∈ I, λ< s≤ c . (24)

Proof. As it is assumed in the text of the theorem, suppose
that ∣∣∣∣∣∣∣∣ se−t0s L[D(n+1)α

t ψ(x, t)]∣∣∣∣∣∣∣∣≤M(x), x ∈ I, λ< s≤ c. (25)

As in Eq. 19, the remainder of the FME in Eq. 23 is

Rn(x, s) � U(x, s) − e−t0s∑n
k�0

Dkα
t U(x, t0)
s1+kα

. (26)

Multiplying Eq. 26 by s1+(n+1)α, we get

s1+(n+1)αRn(x, s) � s1+(n+1)αU(x, s) − e−t0s∑n
k�0

s(n+1−k)αDkα
t U(x, t0)

� se−t0s⎛⎝s(n+1)αL[U(x, t − t0)] −∑n
k�0

s(n+1−k)α−1Dkα
t U(x, t0)⎞⎠

� se−t0sL[D(n+1)α
t U(x, t)].

(27)Thus, it follows that

Rn(x, s) � se−t0s

s1+(n+1)α
L[D(n+1)α

t U(x, t)]. (28)

Finally, for 0≤ λ< s≤ c and fixed x, we have

TABLE 1 | Values of ||RES6(x, t)|| for different values of α.

(x, t) α � 0.6 α � 0.8 α � 1.0

(0.0, 0.0) 0.000000 0.000000 0.000000
(0.2, 0.2) 3.5563 × 10−3 1.6882 × 10− 4 7.6648 × 10− 6

(0.4, 0.4) 4.8228 × 10−2 5.1980 × 10− 3 5.3168 × 10− 4

(0.6, 0.6) 2.2559 × 10−1 3.9524 × 10− 2 6.5249 × 10− 3

(0.8, 0.8) 6.8021 × 10−1 1.6888 × 10− 1 3.9295 × 10− 2

(1.0, 1.0) 1.6103 × 100 5.2523 × 10− 1 1.5995 × 10− 1

TABLE 2 | Values of RES7(x, t) for different values of α.

(x, t) α � 0.6 α � 0.8 α � 1.0

(0.0, 0.0) 0.000000 0.000000 0.000000
(0.2, 0.2) 9.6895 × 10− 4 2.6675 × 10−5 6.82732 × 10− 7

(0.4, 0.4) 1.9432 × 10− 2 1.3932 × 10−3 9.2535 × 10− 5

(0.6, 0.6) 1.1395 × 10− 1 1.4361 × 10−2 1.6690 × 10− 3

(0.8, 0.8) 4.0283 × 10− 1 7.5982 × 10−2 1.3162 × 10− 2

(1.0, 1.0) 1.0780 × 100 2.7858 × 10−1 6.5901 × 10− 2
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||Rn(x, s)|| � 1
s1+(n+1)α

����s e− t0sL[D(n+1)α
t U(x, t)]����

≤
M(x)
s1+(n+1)α

.

(29)

Thus, we reach the end of the proof.

3 APPLYING THE L-RPSM TO THE
HYPERBOLIC SYSTEM OF T-FPDES

In this section, we construct an AS to the hyperbolic system of
T-FPDEs with variable coefficients given in Eqs 11, 12 by using
the L-RPSM. To achieve it, firstly, we apply the LT on both sides
of Eq. 11, and use Lemma 2.2, and Eq. 12; then, we have

U(x, s) � U0(x)
s

+ L[L−1[A(x, s)] zβx(L− 1[U(x, s)])]
sα

+L[L−1[B(x, s)]L−1[U(x, s)]]
sα

+ F(x, t)
sα

, x ∈ I, s> λ≥ 0,
(30)

where U(x, s) � L[U(x, t)](s), A(x, s) � L[A(x, t)](s),
B(x, s) � L[B(x, t)](s), and F(x, s) � L[F(x, t)](s). Let the
solution of Eq. 30 have the following FME:

U(x, s) � ∑∞
m�0

Hm(x)
s1+mα

, x ∈ I, s> λ≥ 0, (31)

where Hm(x) � U(mα)
t (x, 0) ∈ Mr×1, m � 0, 1, 2, . . ., 0< α≤ 1,

and A(x, t),B(x, t), and F(x, t) have a BFMTF.
Of course, treating with a finite series is acceptable more than

an infinite series. For this reason, the L-RPSM deals with a finite
series while calculating coefficients of the SS. So, we express the
kth truncated series (kth TS) of U(x, s) as follows:

Uk(x, s) � U0(x)
s

+ ∑k
m�1

Hm(x)
s1+mα

. (32)

To apply the L-RPSM for determining the coefficients Hm(x),
m � 1, 2, 3, . . . , k, in the kth TS in Eq. 32, we define the so-called
residual matrix function (RMF) for Eq. 30 as

RMF(x, s) �U(x, s)−U0(x)
s

−L[L−1[A(x, s)]zβx(L−1[U(x, s)])]
sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

−F(x, t)
sα

, x ∈I, s>λ ≥ 0,

(33)

and the kth residual matrix function (RMFk) of the style form

RMFk(x,s)�Uk(x,s) −U0(x)
s

−L[L−1[A(x,s)]zβx(L−1[Uk(x,s)])]
sα

−L[L−1[B(x,s)]L−1[Uk(x,s)]]
sα

−F(x,t)
sα

,x∈I,s>λ≥0.

(34)

The main idea of the L-RPSM can be shown in the following
clear facts related to the RMF and RMFk:

1. limk→∞RMFk(x, s) � RMF(x, s), x ∈ I, s> λ≥ 0
2. RMF(x, s) � 0 ∈ Mr×1, x ∈ I, s> λ≥ 0
3. RMF(x, s) has an FME. So, we can express it as follows:

RMF(x, s) �∑∞

m�1
Hm(x) − Nm[Hi(x)]

s1+mα
, i ∈ {0, 1, 2, . . . ,m − 1},

(35)

where Nm, m � 1, 2, 3, . . ., are operators depending on the
operators L and zβx .

4. Thus, Hm(x) − Nm[Hi(x)] � 0 ∈ Mr×1, for m � 1, 2, 3, . . .
and i ∈ {0, 1, 2, . . . , m − 1}.

5. RMFk(x, s) is not a TS of the expansion of RMF(x, s), but it
is obtained by substitutingUk(x, s) into Eq. 35. So, it takes
the following form:

RMFk(x, s) �∑k

m�1
Hm(x) − Nm[Hi(x)]

s1+mα
+ ∑nk

m�k+1

N m[Hj(x)]
s1+mα

,

(36)

where j ∈ {0, 1, 2, . . . , k}, i ∈ {0, 1, 2, . . . , m − 1},
N m, m � k + 1, k + 2, . . . , nk, are operators, and N m[Hj(x)]≠ 0.

6. Using the following fact determines the unknown
coefficients Hk(x) , k � 1, 2, 3, . . ., in the FME (Eq. 31):

lims→∞(s1+kαRMF(x, s)) � lims→∞(s1+kαRMFk(x, s))
� Hk(x) − Nk[Hi(x)] � 0, k � 1, 2, 3, . . . , i ∈ {0, 1, 2, . . . , k − 1}.

(37)

Now, to find H1(x), in Eq. 32, substitute the 1st TS,
U1(x, s) � U0(x))

s + H1(x))
s1+α , into the 1st RMF, RMF1(x, s), to get

RMF1(x, s) � H1(x) − N1U0(x)]
s1+α

+ N 2[U0(x),H1(x)]
s1+2α

+ . . .

+N n1[U0(x),H1(x)]
s1+n1α

.

(38)

Multiply Eq. 38 by s1+α to obtain

s1+αRMF1(x, s) � H1(x) − N1[U0(x)] +N 2[U0(x),H1(x)]
sα

+ . . .

+ N n1[U0(x),H1(x)]
s(n1− 1)α

.

(39)

Compute the limit to Eq. 39 as s→∞, use the fact in Eq. 37, and
solve the new obtained equation for H1(x) to have

H1(x) � N1[U0(x)]. (40)

Similarly, to determine the second unknown coefficient in
Eq. 32, H2(x), we substitute U2(x, s) � U0(x))

s + H1(x))
s1+α + H2(x))

s1+2α into
RMF2(x, s) to get
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RMF2(x, s) � H2(x) − N2[U0(x),H1(x)]
s1+2α

+N 3[U0(x),H1(x),H2(x)]
s1+3α

+ . . .

+N n2[U0(x),H1(x),H2(x)]
s1+n2α

.

(41)

Multiply Eq. 41 by s1+2α and compute the limit at infinity for
both sides of a new obtained equation, according to Eq. 37, to
have

H2(x) � N2[U0(x),H1(x)]. (42)

In general, to determine the nth unknown coefficient in
Eq. 32, Hn(x), we substitute Un(x, s) � U0(x))

s + H1(x))
s1+α + . . . +

Hn(x))
s1+nα into RMFk(x, s) for k � n, re-multiplying both sides of
the new obtained formula by s1+nα, and use the fact in Eq. 37
to obtain

Hn(x) � Nn[U0(x),H1(x), . . . ,Hn−1(x)]. (43)

This procedure can be repeated for the required number of
FME coefficients representing the solution of Eq. 30. Therefore,
the kth approximation of the solution of Eq. 30 can be
represented as the following finite series:

Uk(x, s) � U0(x)
s

+ N1[U0(x)]
sα+1

+ N2[U0(x),H1(x)]
s2α+1

+ . . .

+ Nk[U0(x),H1(x), . . . ,Hk−1(x)]
skα+1

. (44)

If we act the inverse LT on both sides of Eq. 44, then we obtain
the kth approximation of the solution of the initial value problem
(IVP) (Eqs 11, 12), which takes the following expression:

Uk(x, s) � U0(x)
s

+ N1[U0(x)]
Γ(1 + α) tα + N2[U0(x),H1(x)]

Γ(1 + 2α) t2α + . . .

+ Nk[U0(x),H1(x), . . . ,Hk−1(x)]
Γ(1 + kα) tkα.

(45)

4 APPLICATIONS AND NUMERICAL
SIMULATIONS

To test our proposed method, we present in this section four
interesting and important applications. The first three
applications are prepared so that the ES is already known,
while the last application is prepared without knowing the
solution in advance to test the predictability of the solution or
obtain a suitable AS.

Application 4.1. Consider the following homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) − A(x, t)U(1)

x (x, t) − B(x, t)U(x, t) � 0,

0< α≤ 1, x ∈ R, t ≥ 0, (46)

subject to

U(x, 0) � ( x
1
), (47)

where

A(x, t) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ tαx

1
2x

x2 −t
3α

2x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
B(x, t) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ t4αx − tα −t2α

t5α + t2αx4

x
+ tαxΓ(1 + 2α)

Γ(1 + α) −x2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and the ES is U(x, t) � ( x
1 + t2αx2

).
To obtain an FME solution for this application using the

L-RPSM, transform Eq. 46 to the Laplace space as follows:

U(x, s) − U(x, 0)
s

− L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]
sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

� 0, x ∈ R, s> λ≥ 0.
(48)

Let the solution of Eq. 48 have a form of the FME as in Eq. 31.
According to the condition in Eq. 47, the first coefficient of the
FME in Eq. 31,H0(x) � U(x, 0) � ( x

1
). Therefore, the kth TS of

Eq. 31 takes the following expression:

Uk(x, s) � ( x
1
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0, (49)

and the kth RMF of Eq. 48 is

RMFk(x,s)�Uk(x,s)−⎛⎝x

1
⎞⎠1
s
−L[L−1[A(x,s)]z1x(L−1[Uk(x,s)])]

sα

−L[L−1[B(x,s)]L−1[Uk(x,s)]]
sα

, x∈R,s>λ≥0.

(50)

To find the first unknown coefficient H1(x) � ( h11(x)
h12(x)) in

Eq. 49, we put the 1st TS, U1(x, s) � ( x1) 1
s + H1(x)

s1+α , into the 1st

RMF to get the following abbreviated expression:

RMF1(x,s)�⎛⎝h11(x)
h12(x)

⎞⎠ 1
s1+α

+⎛⎝ 0

h12(x)−Γ(1+2α)
⎞⎠ x2

s1+2α

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ h11(x)
Γ(1+α)

−x4−xh11(x)Γ(1+2α)
Γ(1+α)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+2α)
s1+3α

+⎛⎝ h12(x)
−h11(x)x3

⎞⎠ Γ(1+3α)
Γ(1+α)s1+4α

−⎛⎝x2

0
⎞⎠Γ(1+4α)

s1+5α
−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝xh11(x)

Γ(1+α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+5α)
s1+6α

−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h11(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+6α)
Γ(1+α)s1+7α.

(51)

Multiply Eq. 51 by s1+α to obtain
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s1+α RMF1(x,s)�⎛⎝h11(x)
h12(x)

⎞⎠ +⎛⎝ 0

h12(x)−Γ(1+2α)
⎞⎠x2

sα

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ h11(x)
Γ(1+α)

−x4−xh11(x)Γ(1+2α)
Γ(1+α)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+2α)
s2α

+⎛⎝ h12(x)
−h11(x)x3

⎞⎠ Γ(1+3α)
Γ(1+α)s3α

−⎛⎝x2

0
⎞⎠Γ(1+4α)

s4α
−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝xh11(x)

Γ(1+α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+5α)
s5α

−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h11(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+6α)
Γ(1+α)s6α.

(52)

Take the limit at infinity for Eq. 52 and use Eq. 37 to get

H1(x) � ( h11(x)h12(x)) � ( 0
0
). (53)

Similarly, we can obtain the second unknown coefficient in Eq.

49, H2(x) � ( h21(x)
h22(x)). Substitute U2(x, s) � ( x

1
) 1

s + H2(x)
s1+2α into

RMF2(x, s) to get the next summarized expression of the second

RMF of Eq. 48:

RMF2(x,s)�⎛⎝ h21(x)
h22(x)−x2Γ(1+2α)

⎞⎠ 1
s1+2α

+⎛⎝ Γ(1+2α)
x2h22(x)−x4Γ(1+2α)

⎞⎠ 1
s1+3α

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h21(x)
Γ(1+2α)

−xh21(x)Γ(1+α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+3α)
s1+4α

−⎛⎝x2−h22(x)
x3h21(x)

⎞⎠ Γ(1+4α)
Γ(1+2α)s1+5α

−⎛⎝0

1
⎞⎠Γ(1+5α)

s1+6α
−⎛⎝xh21(x)

0
⎞⎠ Γ(1+6α)
Γ(1+2α)s1+7α −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h21(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+7α)
Γ(1+2α)s1+8α.

(54)

Multiply Eq. 54 by s1+2α, apply the limit at infinity of the
obtained equation, and use Eq. 37 to get

H2(x) � ( h11(x)
h12(x)) � ( 0

x2Γ(1 + 2α)). (55)

If we repeat the previous procedure for k � 3, 4, . . ., we can see that

Hk(x) � ( 00), for k � 3, 4, . . . . (56)

So, the ES for Eq. 48 will be as follows:

U(x, s) � 1
s
( x
1
) + ( 0

x2
) Γ(1 + 2α)

s1+2α
. (57)

If we apply the inverse LT on Eq. 57, then the SS of the IVP
(Eqs 46, 47) will take the following form:

U(x, t) � ( x
1
) + ( 0

x2
)t2α, (58)

which coincides with the ES.
Application 4.2. Consider the following non-homogeneous

hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) + A(x, t)U(1)

x (x, t) + B(x, t)U(x, t)
� F(x, t), 0< α≤ 1, x ∈ R, t ≥ 0, (59)

subject to

U(x, 0) � ( 0
x2
), (60)

where

A(x, t) �⎛⎝ x tα

2x+ t2α 0
⎞⎠, B(x, t) �⎛⎝ tα x

0 2x+ t2α
⎞⎠,

F(x, t) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ x3 + exΓ(1+α)+(2+ ex)xtα +(x+ ex)t2α

2x3 +(2xex +Γ(1+2α)Γ(1+α) )tα +(2+x)xt2α + ext3α + t4α
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

According to the construction in Section 3, the LT of Eq. 59
can be represented by

U(x, s) −⎛⎝ 0

x2
⎞⎠ 1

s
+ L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]

sα

+ L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0.

(61)

The kth TS of the FME of the solution of Eq. 61 has the
following form:

Uk(x, s) � ( 0
x2
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0,

(62)
and the kth RMF of Eq. 61 is

RMFk(x, s) �Uk(x, s)−( 0

x2
)1
s

+ L[L−1[A(x, s)]z1x(L−1[Uk(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[Uk(x, s)]]
sα

−F(x, t)
sα

, x ∈R, s>λ≥0.

(63)

So, to set the first unknown coefficient of Eq. 62, substitute
U1(x, s) into s1+αRMF1(x, s) to get

s1+αRMF1(x, s) � ( h11(x) − exΓ(1 + α)
h12(x) )

+ ( xh12(x) − 4xΓ(1 + α) − xexΓ(1 + α)
2xh12(x) − 2xexΓ(1 + α) − Γ(1 + 2α)) 1

sα

−⎛⎜⎜⎜⎜⎜⎜⎜⎝ ex + x − h11(x)
Γ(1 + α)
2x

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 2α)
s2α

−⎛⎜⎜⎜⎜⎜⎜⎝ 0

ex − h12(x)
Γ(1 + α)

⎞⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 3α)
s3α

− ( 0

1
) Γ(1 + 4α)

s4α

(64)
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and use the result in Eq. 37 to obtain

H1(x) � ( h11(x)
h12(x)) � ( exΓ(1 + α)

0
). (65)

Again, substitute U2(x, s) into s1+2αRMF2(x, s) to get

s1+2αRMF2(x, s) � ( h21(x)
h22(x) − Γ(1 + 2α))

+ ( xh22(x) − xΓ(1 + 2α)
2xh22(x) − 2xΓ(1 + 2α)) 1

sα

−⎛⎜⎜⎜⎜⎜⎜⎜⎝ h21(x)Γ(1 + 3α)
Γ(1 + 2α)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 2α)
s2α

−⎛⎜⎜⎜⎜⎜⎜⎝ 0

1 − h22(x)
Γ(1 + 2α)

⎞⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 4α)
s3α

.

(66)

According to the fact in Eq. 37, we have

H2(x) � ( h21(x)
h22(x)) � ( 0

Γ(1 + 2α)). (67)

Similarly, anyone can check that Hk(x) � 0, for k � 3, 4, . . ..
So, the ES for Eq. 61 can be expressed as

U(x, s) � ( 0
x2
) 1
s
+ ( 1

0
) exΓ(1 + α)

s1+α
+ ( 0

1
) Γ(1 + 2α)

s1+2α
. (68)

Thus, the FME solution of the IVP (Eqs 59, 60) would be as
follows:

U(x, t) � ( 0
x2
) + ( ex

0
)tα + ( 0

1
)t2α, (69)

which is identical to the ES U(x, t) � ( extα

x2 + t2α
).

Application 4.3. Consider the following non-homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) + A(x, t)U(β)

x (x, t) + B(x, t)U(x, t)
� F(x, t), 0< α, β≤ 1, x ∈ R , t ≥ 0, (70)

subject to

U(x, 0) � ( 0
xβ
), (71)

where

A(x, t) � ( xβ 0
0 xβ

), B(x, t) � ( 1 tα

tα 1
),

F(x, t) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ tαxβEα(tα) + (tα + tαxβ + Γ(1 + 2α)
Γ(1 + α) )tαEβ(xβ)(2 + Γ(1 + β))xβEα(tα) + t3αEβ(xβ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
and the ES is

U(x, t) � ( t2αEβ(xβ)
xβEα(tα) ), (72)

where Eα(t) is the Mittag-Leffler function defined by the
following expansion [40]:

Eα(t) � ∑∞
m�0

tm

Γ(1 +mα). (73)

Mathematica 7 software has been used through a low-RAMPC for
obtaining all numerical calculations and symbolism. Since theMittag-
Leffler function is an infinite expansion, it was difficult to perform the
calculations using theMittag-Leffler function as it is. For this, the fifth
truncated series of the expansion in Eq. 73 was used throughout the
calculations.

Like the previous applications, transform Eq. 70 to the
Laplace space using the initial condition in Eq. 71 to read as follows:

U(x, s) − U0(x)
s

+ L[L−1[A(x, s)]zβx(L− 1[U(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0, 0< α, β≤ 1, x ∈ R, s> λ≥ 0.

(74)

Let the solution of the algebraic equation (74) has an FME as
in Eq. 31. Then, the kth TS of the FME ofU(x, s) can be given by

Uk(x, s) � ( 0
xβ
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α, β≤ 1, x ∈ R, s> λ≥ 0,

(75)

and the kth RMF of Eq. 74 is given by

RMFk(x, s) � Uk(x, s) − ( 0

xβ
) 1
s

+ L[L−1[A(x, s)]z1x(L− 1[Uk(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[Uk(x, s)]]
sα

− F(x, t)
sα

, x ∈ R, s> λ≥ 0.

(76)

Now, to determine H1(x) in Eq. 73, we substitute U1(x, s) �( 0
xβ
) 1

s + H1(x)
s1+α into Eq. 76 for k � 1, and multiplying the

obtained equation by s1+α gives the following formula:

s1+αRMF1(x, s) � ( h11(x)
h12(x) − xβ

) +H12(x; α, β)
sα

+H13(x; α, β)
s2α

+H14(x; α, β)
s3α

+H15(x; α, β)
s4α

+H16(x; α, β)
s5α

+H17(x; α, β)
s6α

,

(77)
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where H1j(x; α, β) ∈ M2×1, j � 1, 2, . . . , 7, are vector functions
free from s. So, according to Eq. 37, we have

H1(x) � ( h11(x)
h12(x)) � ( 0

xβ
). (78)

Using the same previous approach, we find the following
vector coefficients of Eq. 75:

H2(x) � ( Γ(1 + 2α)Eβ(xβ)
xβ

),
H3(x) � ( 0

xβ
),

H4(x) � ( 0
xβ
),

H5(x) � ( 0
xβ
). (79)

So, the fifth AS of Eq. 74 can be written as follows:

U5(x, s) � ( 0
xβ
) 1
s
+ ( 0

xβ
) 1
s1+α

+ ( Γ(1 + 2α)Eβ(xβ)
xβ

) 1
s1+2α

+ ( 0
xβ
) 1
s1+3α

+ ( 0
xβ
) 1
s1+4α

+ ( 0
xβ
) 1
s1+5α

. (80)

Transforming the AS in Eq. 80 to the t-space by the inverse
LT, we get the fifth approximation of the solution of the IVP (Eqs
70, 71) as follows:

U5(x, t) � ( 0
xβ
) + ( 0

xβ
) tα

Γ(1 + α)

+ ( Γ(1 + 2α)Eβ(xβ)
xβ

) t2α

Γ(1 + 2α)

+ ( 0
xβ
) t3α

Γ(1 + 3α) + ( 0
xβ
) t4α

Γ(1 + 4α) + ( 0
xβ
) t5α

Γ(1 + 5α). (81)

Obviously, there is a pattern between the terms of Eq. 81 that
gives us the ES as in Eq. 72.

The mathematical behavior of the solution of the IVP (Eqs
70, 71) is illustrated next by plotting the three-dimensional
space figures of the fifth approximation of the two
components of the vector solution in Eq. 81 for different
values of α and a fixed value of β � 0.5. Figures 1A–C show
the fifth AS, (U1)5(x, t) and (U2)5(x, t), when α � 0.7, α � 0.85,
and α � 1, respectively, on the square [0, 1] × [0, 1].
Figure 1D shows the ES expressed by Eq. 72 for α � 1.

Figures 1C,D show that the fifth AS of the IVP (Eq. 70, 71) is
excellent compared to the ES, as well as in the previous cases,
which have not been documented in order not to increase the
numbers of graphs. It is known that, by increasing the number

of terms in the series, the accuracy of the solution increases and,
thus, the error of solution reduces; therefore, we can reduce the
error of the solution by calculating more coefficients of the FME
solution as in Eq. 31.

In the next application, the ES is unknown. Therefore, we are
trying to find the ES or an appropriate approximation of the
solution.

Application 4.4. Consider the following non-homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) − A(x, t)U(1)

x (x, t) − B(x, t)U(x, t)
� F(x, t), 0< α≤ 1, x ∈ R, t ≥ 0, (82)

subject to

U(x, 0) � ( x + 1
ex
), (83)

where

A(x,t)�( 0 −e−x(ex+(x−1)Eα(tα) +(1+x)tα)
Γ(1+α)−exx−tαx 0

),
B(x, t) � ( tα 1

0 x
), F(x, t) � ( xEα(tα)

0
).

Similar to the previous applications, the LT of Eq. 82 is
given by

U(x, s) − ( x + 1
ex
) 1
s
− L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]

sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0, 0< α≤ 1, x ∈ R, s> λ≥ 0, (84)

the kth TS of the expansion of the solution of Eq. 84 is given as

Uk(x, s) � ( x + 1
ex
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0,

(85)

and the kth RMF of Eq. 84 is given by

RMFk(x, s) � Uk(x, s) − ( x + 1
ex
) 1
s

− L[L−1[F(x, s)]z1x(L− 1[Uk(x, s)])]
sα

(86)

−L[L−1[B(x, s)] L−1[Uk(x, s)]]
sα

− F(x, t)
sα

, x ∈ R, s> λ≥ 0.

According to the fact in Eq. 37, we can create, successively, the
following first eight coefficients of the expansion in Eq. 31 for this
application:
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H0(x) � ⎛⎝ x + 1

ex
⎞⎠,

H1(x) � ⎛⎝ 1

Γ(1 + α)
⎞⎠,

H2(x) � ⎛⎝ 1 + Γ(1 + α)
0

⎞⎠,
H3(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + Γ(1 + 2α)

Γ(1 + α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H4(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (1 + Γ(1 + α))Γ(1 + 3α)

Γ(1 + 2α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H5(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + α) + Γ(1 + 2α))Γ(1 + 4α)

Γ(1 + α)Γ(1 + 3α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H6(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + 2α) + (1 + Γ(1 + α))Γ(1 + 3α))Γ(1 + 5α)

Γ(1 + 2α)Γ(1 + 4α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H7(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + α)Γ(1 + 3α) + (Γ(1 + α) + Γ(1 + 2α))Γ(1 + 4α))Γ(1 + 6α)

Γ(1 + 3α)Γ(1 + 5α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(87)

Thus, the seventh AS of Eq. 84 has the following expression:

U7(x, s) � H0(x)
s

+ H1(x)
s1+α

+ H2(x)
s1+2α

+ H3(x)
s1+3α

+ H4(x)
s1+4α

+ H5(x)
s1+5α

+ H6(x)
s1+6α

. + H7(x)
s1+7α

,

(88)

so the seventh AS of the IVP (Eqs 82, 83) can be expressed as follows:

U7(x, t) � H0(x) + H1(x) tα

Γ(1 + α) + H2(x) t2α

Γ(1 + 2α)
+ H3(x) t3α

Γ(1 + 3α)
+H4(x) t4α

Γ(1 + 4α) + H5(x) t5α

Γ(1 + 5α) + H6(x) t6α

Γ(1 + 6α)
+ H7(x) t7α

Γ(1 + 7α). (89)

To test the AS in Eq. 89, we need to find the norm of residual
error vector (RES(x, t)) for different values of t and x in the region
[0, 1] × [0, 1], where the residual error vector is defined by

RESk(x, t) � (Uk)(α)t (x, t) − A(x, t)(Uk)(1)x (x, t)
− B(x, t)Uk(x, t) − F(x, t), (90)

and the Frobenius norm is chosen for error analysis and
defined by

‖U(x, t)‖ �

���������������⎛⎝∑m
i�1
∑n
j�1

|uij(x, t)|2
√√ ⎞⎠, U(x, t) � [uij(x, t)] ∈ Mk×r.

(91)

Tables 1, 2 show the values of ||RES6(x, t)|| and ||RES7(x, t)||,
respectively, for different values of α. The data in the tables indicate
that the norm of the residual error of the obtained AS decreases as
(x, t)→ (0, 0) as well as when α→ 1. This indicates that the
convergence of the BFMTF in Eq. 17 depends on t, x, and α as
illustrated in Theorem 2.3. As we know, we can reduce the error in the
FME solution as we increase the number of terms of the expansion. As
we can see from the data in Tables 1, 2, the seventh approximation is
more accurate than the sixth approximation. Anyway, it can be said
that the L-RPSM is good at providing an accurate AS of a hyperbolic
system of T-FPDEs with variable coefficients.

5 CONCLUSION

We have found that the ES for the hyperbolic system of T-FPDEs
with variable coefficients is available if the solution is a linear
combination of power functions or if it is a composite of an
elementary function and a power function. In case the ES is not
available, a good approximation of the solution can be obtained. The
L-RPSM is an effective, accurate, easy, and speed technique in
obtaining the values of coefficients for the SS. Through this work,
we have presented a solution that may be missing for this kind of
problem andwe have opened theway for researchers to provide other
ways to solve this class of equations. Moreover, the newly proposed
technique can be used to construct many types of the ordinary or
partial DEs of fractional order such as Lane–Emden, Boussinesq,
KdV–Burgers, K(m, n), Klein–Gordon, and B(l,m, n) equations.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/
supplementary files.

AUTHOR CONTRIBUTIONS

The idea of this work, implementation, and output of this form
was carried out by both authors.

ACKNOWLEDGMENTS

The first author expresses his appreciation and thanks to Al-Balqa
Applied University for granting him a sabbatical leave that made
this research possible.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 52525011

El-Ajou and Al-Zhour Hyperbolic System of Fractional PDEs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REFERENCES

1. Burger M, Caffarelli L, and Markowich PA. Partial Differential Equation
Models in the Socio-Economic Sciences. Phil Trans R Soc A (2014) 372:
20130406. doi:10.1098/rsta.2013.0406

2. Mattheij R, Rienstra S, and Boonkkamp J. Partial Differential Equations:
Modeling, Analysis, Computation, Technische Universiteit Eindhoven
Eindhoven. Netherlands: Siam (2005). doi:10.1137/1.9780898718270

3. Evans LC. Partial Differential Equations. American Mathematical Society
(2002). doi:10.1090/gsm/019

4. Leray J. Hyperbolic Differential Equations. Princeton, NJ: Institute for
Advanced Study (1953). doi:10.11948/2017095

5. Sanchez Y, and Vickers J. Generalised Hyperbolicity in Spacetimes with
Lipschitz Regularity. J Math Phys (2017) 58:022502. doi:10.1063/1.4975216

6. Toro EF. Notions on Hyperbolic Partial Differential Equations. In: Riemann
Solvers and Numerical Methods for Fluid Dynamics. Heidelberg, Berlin:
Springer (2009). doi:10.1007/b79761

7. Caputo M. Linear Models of Dissipation Whose Q Is Almost Frequency
Independent--II. Geophys J Int (1967) 13:529–39. doi:10.1111/j.1365-246x.
1967.tb02303.x

8. Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity,
Imperial College Press. London, UK: Imperial College (2010). doi:10.
1142/p614

9. Kilbas AA, Srivastava HM, and Trujillo JJ. Theory and Applications of
Fractional Differential Equations. Netherlands: Elsevier, Amsterdam (2006).

10. Magin RL, Ingo C, Colon-Perez L, Triplett W, and Mareci TH.
Characterization of Anomalous Diffusion in Porous Biological Tissues
Using Fractional Order Derivatives and Entropy. Microporous Mesoporous
Mater (2013) 178:39–43. doi:10.1016/j.micromeso.2013.02.054

11. Tarasov VE. Fractional Dynamics: Applications of Fractional Calculus to
Dynamics of Particles. Fields and Media. Berlin, Germany: Springer (2011).

12. West B, Bologna M, and Grigolini P. Physics of Fractal Operators. New York:
Springer (2003).

13. Qureshi S, and Yusuf A. Mathematical Modeling for the Impacts of
Deforestation on Wildlife Species Using Caputo Differential Operator.
Chaos, Solitons & Fractals (2019) 126:32–40. doi:10.1016/j.chaos.2019.05.037

14. Li Z, Liu Z, and Khan MA. Fractional Investigation of Bank Data with Fractal-
Fractional Caputo Derivative. Chaos, Solitons & Fractals (2020) 131:109528.
doi:10.1016/j.chaos.2019.109528

15. Mustapha UT, Qureshi S, Yusuf A, and Hincal E. Fractional Modeling for the
Spread of Hookworm Infection under Caputo Operator. Chaos, Solitons &
Fractals (2020) 137:109878. doi:10.1016/j.chaos.2020.109878

16. Ali A, Alshammari FS, Islam S, Khan MA, and Ullah S. Modeling and Analysis
of the Dynamics of Novel Coronavirus (COVID-19) with Caputo Fractional
Derivative. Results Phys (2021) 20:103669. doi:10.1016/j.rinp.2020.103669

17. Momani S, and Odibat Z. Comparison between the Homotopy Perturbation
Method and the Variational Iteration Method for Linear Fractional Partial
Differential Equations. Comput Maths Appl (2007) 54:910–9. doi:10.1016/j.
camwa.2006.12.037

18. Daftardar-Gejji V, and Bhalekar S. Solving Multi-Term Linear and Non-linear
Diffusion-Wave Equations of Fractional Order by Adomian Decomposition
Method. Appl Maths Comput (2008) 202:113–20. doi:10.1016/j.amc.2008.01.027

19. Das S, and Gupta PK. Homotopy Analysis Method for Solving Fractional
Hyperbolic Partial Differential Equations. Int J Comput Maths (2011) 88:
578–88. doi:10.1080/00207161003631901

20. Momani S, and Odibat ZM. Fractional Green Function for Linear Time-
Fractional Inhomogeneous Partial Differential Equations in Fluid Mechanics.
J Appl Math Comput (2007) 24:167–78. doi:10.1007/bf02832308

21. El-Ajou A. Taylor’s Expansion for Fractional Matrix Functions: Theory and
Applications. J Math Comput Sci (2020) 21(2):1–17. doi:10.22436/jmcs.021.
01.01

22. Oqielat Ma. N, El-Ajou A, Al-Zhour Z, Alkhasawneh R, and Alrabaiah H.
Series Solutions for Nonlinear Time-Fractional Schrödinger Equations:
Comparisons between Conformable and Caputo Derivatives. Alexandria
Eng J (2020) 59(4):2101–14. doi:10.1016/j.aej.2020.01.023

23. El-Ajou A, Oqielat Ma. N, Al-Zhour Z, and Momani S. A Class of Linear Non-
homogenous Higher Order Matrix Fractional Differential Equations:

Analytical Solutions and New Technique. Fract Calc Appl Anal (2020)
23(2):356–77. doi:10.1515/fca-2020-0017

24. El-Ajou A, Al-Smadi M, Oqielat Ma. N, Momani S, and Hadid S. Smooth
Expansion to Solve High-Order Linear Conformable Fractional PDEs via
Residual Power Series Method: Applications to Physical and Engineering
Equations. Ain Shams Eng J (2020) 11(4):1243–54. doi:10.1016/j.asej.2020.
03.016

25. El-Ajou A, Oqielat Ma. N, Al-Zhour Z, and Momani S. Analytical Numerical
Solutions of the Fractional Multi-Pantograph System: Two Attractive Methods
and Comparisons. Results Phys (2019) 14:102500. doi:10.1016/j.rinp.2019.
102500

26. El-Ajou A, Al-Zhour Z, Oqielat Ma., Momani S, and Hayat T. Series Solutions of
Nonlinear Conformable Fractional KdV-Burgers Equation with Some
Applications. Eur Phys J Plus (2019) 134(8):402. doi:10.1140/epjp/i2019-12731-x

27. Shqair M, El-Ajou A, and Nairat M. Analytical Solution for Multi-Energy
Groups of Neutron Diffusion Equations by a Residual Power Series Method.
Mathematics (2019) 7(7):633. doi:10.3390/math7070633

28. Eriqat T, El-Ajou A, Oqielat Ma. N, Al-Zhour Z, and Momani S. A New
Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral
Fractional Pantograph Equations. Chaos, Solitons & Fractals (2020) 138:
109957. doi:10.1016/j.chaos.2020.109957

29. El-Ajou A. Adapting the Laplace Transform to Create Solitary Solutions for the
Nonlinear Time-Fractional Dispersive PDEs via a New Approach. Eur Phys
J Plus (2021) 136:229. doi:10.1140/epjp/s13360-020-01061-9

30. Srivastava VK, Awasthi MK, and Tamsir M. RDTM Solution of Caputo Time
Fractional-Order Hyperbolic Telegraph Equation. AIP Adv (2013) 3(3):
032142. doi:10.1063/1.4799548

31. Abbas S, and Benchohra M. Fractional Order Partial Hyperbolic Differential
Equations Involving Caputo Derivative. Stud Univ Babes-bolyai Math (2012)
57:469–79.

32. Akilandeeswari A, Balachandran K, and Annapoorani N. Solvability of
Hyperbolic Fractional Partial Differential Equations. J App Anal Comp
(2017) 7:1570–85. doi:10.11948/2017095

33. Ashyralyev A, Dal F, and Pinar Z. On the Numerical Solution of Fractional
Hyperbolic Partial Differential Equations. Math Probl Eng (2009) 2009:1–11.
doi:10.1155/2009/730465

34. Khan H, Shah R, Baleanu D, Kumam P, and Arif M. Analytical Solution of
Fractional-Order Hyperbolic Telegraph Equation, Using Natural Transform
Decomposition Method. Electronics (2019) 8(9):1015. doi:10.3390/
electronics8091015

35. Modanl M. Two Numerical Methods for Fractional Partial Differential
Equation with Nonlocal Boundary Value Problem. Adv Differ Equ (2018)
333:333. doi:10.1186/s13662-018-1789-2

36. Lin Y, and Xu C. Finite Difference/spectral Approximations for the Time-
Fractional Diffusion Equation. J Comput Phys (2007) 225:1533–52. doi:10.
1016/j.jcp.2007.02.001

37. Meerschaert MM, and Tadjeran C. Finite Difference Approximations for
Fractional Advection-Dispersion Flow Equations. J Comput Appl Maths
(2004) 172:65–77. doi:10.1016/j.cam.2004.01.033

38. Kochubei AN. Fractional-hyperbolic Systems. Fract Calc Appl Anal (2013) 16:
860–73. doi:10.2478/s13540-013-0053-4

39. Hendy AS, Macías-Díaz JE, and Serna-Reyes AJ. On the Solution of Hyperbolic
Two-Dimensional Fractional Systems via Discrete Variational Schemes of
High Order of Accuracy. J Comput Appl Maths (2019) 354:612–22. doi:10.
1016/j.cam.2018.10.059

40. Simon T. Mittag-Leffler Functions and Complete Monotonicity. Integral
Transforms Special Fun (2015) 26 (1):36–50. doi:10.1080/10652469.2014.965704

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 El-Ajou and Al-Zhour. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 52525012

El-Ajou and Al-Zhour Hyperbolic System of Fractional PDEs

https://doi.org/10.1098/rsta.2013.0406
https://doi.org/10.1137/1.9780898718270
https://doi.org/10.1090/gsm/019
https://doi.org/10.11948/2017095
https://doi.org/10.1063/1.4975216
https://doi.org/10.1007/b79761
https://doi.org/10.1111/j.1365-246x.1967.tb02303.x
https://doi.org/10.1111/j.1365-246x.1967.tb02303.x
https://doi.org/10.1142/p614
https://doi.org/10.1142/p614
https://doi.org/10.1016/j.micromeso.2013.02.054
https://doi.org/10.1016/j.chaos.2019.05.037
https://doi.org/10.1016/j.chaos.2019.109528
https://doi.org/10.1016/j.chaos.2020.109878
https://doi.org/10.1016/j.rinp.2020.103669
https://doi.org/10.1016/j.camwa.2006.12.037
https://doi.org/10.1016/j.camwa.2006.12.037
https://doi.org/10.1016/j.amc.2008.01.027
https://doi.org/10.1080/00207161003631901
https://doi.org/10.1007/bf02832308
https://doi.org/10.22436/jmcs.021.01.01
https://doi.org/10.22436/jmcs.021.01.01
https://doi.org/10.1016/j.aej.2020.01.023
https://doi.org/10.1515/fca-2020-0017
https://doi.org/10.1016/j.asej.2020.03.016
https://doi.org/10.1016/j.asej.2020.03.016
https://doi.org/10.1016/j.rinp.2019.102500
https://doi.org/10.1016/j.rinp.2019.102500
https://doi.org/10.1140/epjp/i2019-12731-x
https://doi.org/10.3390/math7070633
https://doi.org/10.1016/j.chaos.2020.109957
https://doi.org/10.1140/epjp/s13360-020-01061-9
https://doi.org/10.1063/1.4799548
https://doi.org/10.11948/2017095
https://doi.org/10.1155/2009/730465
https://doi.org/10.3390/electronics8091015
https://doi.org/10.3390/electronics8091015
https://doi.org/10.1186/s13662-018-1789-2
https://doi.org/10.1016/j.jcp.2007.02.001
https://doi.org/10.1016/j.jcp.2007.02.001
https://doi.org/10.1016/j.cam.2004.01.033
https://doi.org/10.2478/s13540-013-0053-4
https://doi.org/10.1016/j.cam.2018.10.059
https://doi.org/10.1016/j.cam.2018.10.059
https://doi.org/10.1080/10652469.2014.965704
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	A Vector Series Solution for a Class of Hyperbolic System of Caputo Time-Fractional Partial Differential Equations With Var ...
	1 Introduction
	2 Preliminaries of Matrix FPS
	3 Applying the L-RPSM to the Hyperbolic System of T-FPDEs
	4 Applications and Numerical Simulations
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


