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We present a compositional algebraic framework to describe the evolution of quantum
fields in discretised spacetimes.We show how familiar notions fromRelativity and quantum
causality can be recovered in a purely order-theoretic way from the causal order of events
in spacetime, with no direct mention of analysis or topology. We formulate theory-
independent notions of fields over causal orders in a compositional, functorial way. We
draw a strong connection to Algebraic Quantum Field Theory (AQFT), using a sheaf-
theoretical approach in our definition of spaces of states over regions of spacetime. We
introduce notions of symmetry and cellular automata, which we show to subsume existing
definitions of QuantumCellular Automata (QCA) from previous literature. Given the extreme
flexibility of our constructions, we propose that our framework be used as the starting point
for new developments in AQFT, QCA and more generally Quantum Field Theory.
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1 INTRODUCTION

Likemuch of classical physics, the study of Relativity and quantum field theory has deep roots in topology
and geometry. However, recent years have seen a steady shift from the traditional approaches to a more
abstract algebraic perspective, based on the identification of spacetime structure with causal order.

This new way of looking at causality finds its origin in a much-celebrated result by Malament [1],
itself based on previous work by Kronheimer, Penrose, Hawking, King and McCarthy [2, 3]. IfM is a
Lorentzian manifold, we say that M is future- (resp. past-) distinguishing iff two events x, y ∈ M
(i.e. two spacetime points) having the same exact causal future (resp. past) are necessarily identical1.
Given a Lorentzian manifold M, we can define a partial order ≤M between its events—the causal
order—by setting x ≤M y iff x causally precedes y in M, i.e. iff there exists a future-directed causal
curve—a smooth curve in M with everywhere future-directed time-like or light-like tangent
vector—from x to y. The 1977 result by Malament [1] can then be stated as follows.

Theorem 1: Let M and M′ be two Lorentzian manifolds, both manifolds being future-and-
past–distinguishing. The associated causal orders (M, ≤M) and (M′, ≤M′) are order-isomorphic if
and only if M and M′ are conformally equivalent.

While the result by Malament guarantees that future-and-past–distinguishing manifolds (up to
conformal equivalence) can be identified with their causal orders, it does not provide a
characterization of which partial orders arise as causal orders on manifolds (or restrictions
thereof to manifold subsets). This lack of exact correspondence between topology and order is
the motivation behind many past and current lines of enquiry. Notable mention in this regard is
deserved by the work of [4, 5], which aims to formulate causal order in terms of partial orders and
domain theory. Within that framework, a complete characterization of which partial orders arise as
the causal orders of Lorentzian manifolds is still an open question.
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1The requirement for a manifold M to be future- and past-distinguishing is essentially one of well-behaviour, e.g. excluding
causal violations such as closed timelike curves (all points of which necessarily have the same causal past and future).
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A different approach to the order-theoretic study of
spacetime is given by the causal sets research program (cf [6,
7]). A causal set is a poset which is locally finite, i.e. such that for
every x, y ∈ C the subset {z ∈ C

∣∣∣∣x ≤ z ≤ y} is finite.2 Causal sets
arise as discrete subsets of Lorentzian manifolds (under the causal
order inherited by restriction) and a fundamental pursuit for the
community is a characterisation of the large-scale properties of
spacetime as emergent from a discrete small-scale structure. In
particular, the question whether a causal set can always be
(suitably) embedded as a discrete subset of a Lorentzian
manifold is central to the programme and—as far as we are
aware—one which is still to be completely answered [7].

When it comes to incorporating quantum fields into the
spacetimes, efforts have mostly been focused in three directions:
algebraic approaches, topological approaches and quantum
cellular automata.

The algebraic approaches take a functorial and sheaf-
theoretic view of quantum fields, studying the local structure
of fields through the algebras of observables—usually C*-algebras
or von Neumann algebras—over the regions of spacetime.
Prominent examples include Algebraic Quantum Field Theory
(AQFT) [9, 10] and the topos-theoretic programmes [11, 12].
Presheaves are special functors used to associate (field) data to
spacetime regions, in a way which is guaranteed to respects
causality and locality constraints imposed by space-time
topology.We will take a deeper look at this approach in Section 5.

The topological approaches focus instead on global aspects
of relativistic quantum fields, foregoing any possibility of
studying local structure by requiring that field theories be
topological, i.e. invariant under large scale deformations of
spacetime. The resulting Topological Quantum Field Theories
(TQFTs) [13–15] have achieved enormous success in fields such
as condensed matter theory and quantum error correction. Like
AQFT, TQFTs have a categorical formulation as functors from a
category of spacetime “pieces” to categories of Vector spaces and
algebras. The difference is in the nature of those “pieces”: in
AQFT a spacetime is given and the order structure of its regions is
considered; in TQFT, on the other hand, (equivalence classes of)
basic topological manifolds are given, which can be combined
together to form myriad different spacetimes.

The approaches based on Quantum Cellular Automata
(QCA) [16–18], finally, attempt to tame the issues with the
formulation of quantum field theory by positing that full-
fledged quantum fields in spacetime can be understood as the
continuous limit of much-more-manageable theories, dealing
with quantum fields living on discrete lattices and subject to
discrete time evolution (known as Quantum Cellular Automata).

In this work, we propose to use tools from category theory
to unify key aspects of the approaches above under a single
generalized framework. Specifically, our work is part of an effort
to gain an operational, process-theoretic understanding of the
relationship between quantum theory and Relativistic causality

[8, 19–21]. Our key contribution, across the next four sections,
will be the formulation of a functorial and theory-independent
notion of field theory based solely on the order-theoretic
structure of causality. To exemplify the flexibility of our
construction, in Section 5 we will build a strong connection to
Algebraic Quantum Field Theory, based on a sheaf-theoretic
formulation of states over regions. In Section 6, finally, we will
formulate a notion of cellular automaton which encompasses and
greatly generalizes notions of QCA from existing literature.

2 CAUSAL ORDERS

In this work, we will consider posets as an abstract model of
causally well-behaved spacetimes. This means that we will be
working in the category Pos of posets and monotone maps
between them, with Malament’s result [1] showing that future-
and-past–distinguishing conformal Lorentzian manifolds embed
into Pos. To highlight the intended relationship to spacetimes, we
will refer to partial orders as causal orders for the remainder of
this work.

Definition 2: By a causal order we mean a poset Ω � (|Ω|, ≤),
i.e. a set |Ω| equipped with a partial order ≤ on it. We refer to the
elements of Ω as events. Given two events x, y ∈ Ω we say that x
causally precedes y (equivalently that y causally follows x) iff x ≤ y.
We say that x and y are causally related iff x ≤ y or y ≤ x. A causal
sub-order Ω′ of a causal order Ω is a subset

∣∣∣∣Ω′∣∣∣∣4|Ω| endowed
with the structure of a poset by restriction.3

As we now proceed to demonstrate, several familiar
concepts from Relativity can be defined in a purely
combinatorial manner on partial orders.

2.1 Causal Paths
Definition 3: Let Ω be a causal order and let x, y ∈ Ω be two
events. A causal path from x to y is a maximal totally ordered
subset c4Ω such that x � min c and y � max c. Maximality of
the subset c4Ω here means that there is no total order c′4Ω
strictly containing gamma and such that x � min c′ and
y � max c′. We write c : x⇝ y to denote that γ is a causal
path from x to y.

The causal diamond from x to y in a causal order Ω is the
union of all causal paths x⇝ y inΩ. Furthermore, causal paths in
Ω can be naturally organized into a category as follows:

• The objects are the events x ∈ Ω;
• The morphisms from x to y are the paths x⇝ y;
• The identity morphism on x is the singleton path {x} : x⇝ x;
• Composition of two paths c : x⇝ y and ξ : y⇝ z is the set-
theoretic union of the subsets c, ξ4Ω:

ξ+c :� (ξ ∪ c) : x⇝ z. (1)

2The local finiteness condition for a causal set can equivalently be stated as the
requirement that the partial order arises as the reflexive-transitive closure of a non-
transitive directed graph, its Hasse diagram (see e.g. [8]). 3I.e. such that for all x, y ∈

∣∣∣∣Ω′∣∣∣∣ we have that x ≤ y in Ω′ if and only if x ≤ y in Ω.
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Definition 4: LetΩ be a causal order and let x ∈ Ω be an event.
The causal future J+(x) of x is the set of all events y which causally
follow it:

J+(x) :� {y ∈ Ω
∣∣∣∣x ≤ y}. (2)

Similarly, the causal past J−(x) of x is the set of all events y which
causally precede it:

J−(x) :� {y ∈ Ω
∣∣∣∣y ≤ x}. (3)

We also define causal future and past for arbitrary subsets A4Ω
by union:

J+(A) :� ∪
x∈A

J+(x) J−(A) :� ∪
x∈A

J−(x). (4)

Remark 5: A causal order Ω is automatically future-and-
past–distinguishing. To see this, assume that J+(x) � J+(y) for
some x, y ∈ Ω: then both x ∈ J+(x) � J+(y), implying y ≤ x, and
y ∈ J+(y) � J+(x), implying x ≤ y, so that x � y by antisymmetry
of the partial order ≤. The assumption that J−(x) � J−(y)
analogously implies that x � y.

Definition 6: LetΩ be a causal order and let x ∈ Ω be an event.
By a causal path c : x⇝ +∞ (resp. c : −∞⇝ x) we denote a
maximal totally ordered subset c4Ω such that x � min c (resp.
x � max c). If Ω has a global maximum (resp. global minimum),
then we denote it by +∞ (resp. −∞) for consistency with our
previous definition of causal paths, otherwise the symbol +∞ (resp.
−∞) is never used to denote an actual element of C.

The causal future (resp. causal past) of an event x is the union
of all causal paths x⇝ +∞ (resp. −∞⇝ x).

2.2 Space-Like Slices
Definition 7: Let Ω be a causal order and let A4Ω be any subset.
The future domain of dependence D+(A) of A is the subset of all
events x ∈ Ω which “necessarily causally follow A,” in the sense
that every causal path −∞⇝ x intersects A:

D+(A) :� {x ∈ Ω |∀c : −∞⇝ x. c∩A≠ 0/}. (5)

The past domain of dependence D−(A) of A is the subset of all
events x ∈ Ω which “necessarily causally precede A”, in the sense
that every causal path x⇝ +∞ intersects A:

D−(A) :� {x ∈ Ω |∀c : x⇝ +∞. c∩A≠ 0/}. (6)

The domains of dependence of a subset A are related to its past
and future by the following two Propositions.

Proposition 8: Let Ω be a causal order and let A4Ω be any
subset. Then D+(A)4J+(A) and D−(A)4J−(A).

Proof: Let x ∈ D+(A) be any event in the future domain of
dependence of A. The set of causal paths −∞⇝ x is necessarily
non-empty, because there must be at least one such path
extending the singleton path {x} : x⇝ x. Let c : −∞⇝ x be
one such path. Because x ∈ D+(A), c must intersect A at some
point y ≤ x, and we define c′ :� c∩ J+({y})≠ 0/. By definition,
y � min c′. Because J+({y}) is upward-closed, x � max c′ and c′ :

y⇝ x is such that c′4J+({y})4J+(A), so we conclude that
x ∈ J+(A). The proof that D−(A)4J−(A) is analogous. □

Proposition 9: Let Ω be a causal order and let A4Ω be any
subset. If B4D+(A) then J+(B)4J+(A) and J−(B)4J−(A)∪ J+(A).
Dually, if B4D−(A) then J−(B)4J−(A) and J+(B)4J−(A)∪ J+(A).

Proof: Without loss of generality, assume B4D+(A)—the case
B4D−(A) is proven analogously. From Proposition 8 we have that
B4D+(A)4J+(A), so we conclude that J+(B)4J+(A) by upward-
closure of J+(A). Now consider x ∈ J−(B). Let c : x⇝ y be any path
with y ∈ B and let c′ : −∞⇝ y be any path extending c. Because
B4D+(A), the intersection c′ ∩A contains at least some point z.
Because c′ is totally ordered, we have two possible cases: z ≤ x and
z ≥ x. If z ≤ x, then c′ ∩ J+({z})∩ J−({x}) : z⇝ x shows that
x ∈ J+(A). If z ≥ x, then c′ ∩ J−({z})∩ J+({x}) : x⇝ z shows that
x ∈ J−(A). □

Definition 10: LetΩ be a causal order.We say that two events x, y
are space-like separated if they are not causally related, i.e. if neither
x ≤ y nor y ≤ x. Consequently, we define a (space-like) sliceΣ inΩ to be
an antichain, i.e. a subset Σ4Ω such that (Σ, ≤) is a discrete partial
order (equivalently, any two distinct x, y ∈ Σ are space-like separated).

Definition 11: Let Ω be a causal order and let A4P(Ω) be a
collection of subsets ofΩ. We say that the subsets inA are space-like
separated if the following conditions holds for all distinct A,B ∈ A:

A∩(J+(B)∪ J−(B)) � 0/. (7)

In particular, a space-like slice is the union of a collection of
space-like separated singleton subsets. See Figure 1 for examples.

More than diamonds or paths, slices are the focus of this work.
Space-like slices are a generalization of space-like surfaces from
Relativity: the term “slice” is used here in place of “surface”
because the latter traditionally implies some topological
conditions.

Definition 12: LetΩ be a causal order. The category of all slices
on Ω, denoted by Slices(Ω), is the strict partially monoidal
category [22] defined as follows.

• Objects of Slices(Ω) are the slices of Ω.
• The category is a poset and the unique morphism from a
space-like slice Σ to another space-like slice Γ is denoted Σ9Γ
if it exists. Specifically, we say that Σ9Γ if and only if
Γ4D+(Σ), i.e. iff Γ lies entirely into the future domain of
dependence of Σ. See Figures 2, 3 for examples.

• The monoidal product on objects Σ⊗ Γ is only defined when Σ
and Γ are space-like separated, in which case it is the disjoint
union Σk Γ.

• The unit for the monoidal product is the empty space-like
slice 0/4Ω.

• The partial monoidal product on objects extends to morphisms
because whenever Σ′4D+(Σ) and Γ′4D+(Γ)—i.e. whenever
Σ9Σ′ and Γ9Γ′—we necessarily have:

Σ′k Γ′4D+(Σ)∪D+(Γ)4D+(Σk Γ), i.e. Σ⊗ Γ9Σ′⊗ Γ′.
(8)
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The partial monoidal product is strict, i.e. strictly associative and
unital4 when all products are defined. The partial monoidal product is
also commutative, i.e. it is symmetric (wherever defined) with an
identity Σ⊗ Γ � Γ⊗Σ as the symmetry isomorphism.

The order relation Σ9Γ on slices has been defined in such a way
as to ensure that the field state local to the codomain slice Γ will be
entirely determined by evolution and marginalization of the field
state on the domain slice Σ. In particular, the definition is such that
any sub-slice Σ′4Σ necessarily satisfies Σ9Σ′, since the field state
on Σ′ can be obtained from the field state on Σ by marginalization/
discarding. The connection to marginalisation will be discussed in
further detail in Section 4.3 below.

2.3 Diamonds and Regions
Let Ω be a causal order. If x, y are two events in Ω, the causal

diamond from x to y inΩ is the causal sub-order (◇x,y, ≤)-Ω
defined as follows:

◇x,y :� {z ∈ Ω
∣∣∣∣x ≤ z ≤ y} � ∪

c:x⇝y
c. (9)

Definition 14: LetΩ be a causal order. A region inΩ is a causal
sub-order (R, ≤) - Ω which is convex, i.e. one such that for all
events x, y ∈ R the causal diamond from x to y inΩ is a subset of R
(i.e. R contains all paths c : x⇝ y in Ω).

Definition 14 is the order-theoretic incarnation of the
requirement that causal diamonds generate the topology of
Lorentzian manifolds: we could have equivalently stated it as
saying that regions in Ω are all the possibly unions of causal
diamonds inΩ (including the empty one). A special case of region
of particular interest is the region between two slices Σ9Γ.

Definition 15: Let Ω be a causal order and consider two slices
Σ9Γ. We define the region between Σ and Γ as follows:

◇Σ,Γ :� ∪
x∈Σ
∪
y∈Γ

◇x,y (10)

In particular, a causal diamond◇x,y is the region between the slices
{x} and {y}. More generally, a region between slices Σ and Γ is the
intersection ◇Σ,Γ � J+(Σ)∩ J−(Γ) of their future and past respectively.

FIGURE 2 | (A): two slices Σ, Γ such that Σ9Γ. (B): two slices Σ, Γ such that Σ9&doublehyphen; 9pt/ Γ, highlighting a past-directed path γ starting from an event
of Γ and not intersecting Σ at any point.

FIGURE 1 | (A): the Hasse diagram for a causal order on six events {a,b, c,d, e, f}. (B): the maximal slices for the causal order highlighted (all other slices can be
obtained as subsets of the maximal slices).

4I.e. we have that Σ⊗∅ � Σ � ∅⊗Σ, for all slices Σ.
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The slices Σ and Γ bounding the region ◇Σ,Γ can be obtained
respectively as the sets of its minima Σ � min◇Σ,Γ and of its
maxima Γ � max◇Σ,Γ. As a special case, a slice Σ is the
region between Σ and Σ. Conversely, every closed bounded
region R—and in particular every finite region—is in the form
R � ◇minR,maxR. See Figure 4 for examples.

3 CATEGORIES OF SLICES

Because we didn’t impose any topological constraints on the slices, it
is possible that the category Slices(Ω)will, in practice, contain objects
which are too irregular or exotic for physical fields to be defined over
(such as fractal slices with low topological dimension). To obviate this
issue, we consider more general categories of slices on a given causal
order: this will allow us to restrict our attention to slices with any
properties we desire, as long as we retain enough slices to reconstruct
the structure of the causal order Ω, both 1) globally and 2) locally.

No requirement is made for all products that exist in Slices(Ω)
to also exist on members of a more general category of slices:
it is the case that certain properties desirable in practice may
not be closed under arbitrary union of space-like separated
slices themselves satisfying the property.5 However, we
impose the requirement 3) that these more general
categories of slices be partially monoidal sub-categories of
Slices(Ω).

Definition 16: Let Ω be a causal order. A category of slices on
Ω is the full sub-category C of Slices(Ω) defined by a given set

FIGURE 4 | (A): the region between two slices on the honeycomb lattice. (B): an unbounded (necessarily infinite) region on the honeycomb lattice.

FIGURE 3 | (A): the Hasse diagram for a causal order. (B): the maximal slices for the causal order highlighted. (C): the category of all slices for the causal order.

5An example of this phenomenon is given by constant-time partial Cauchy slices in
Minkowski spacetime: the union of two disjoint constant-time partial Cauchy slices
having the same time parameter yields another constant-time partial Cauchy slice,
but the union of two space-like separated constant-time partial Cauchy slices
having different time parameters does not yield a constant-time partial Cauchy
slice as a result.
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obj(C) of slices chosen in such a way that the following three
conditions hold.

(1) For any two events x, y ∈ Ω with x ≤ y, there exist slices
Σ, Γ ∈ obj(C) such that x ∈ Σ, y ∈ Γ and Σ9Γ.

(2) If Σ, Γ and Δ are three slices in C, then the restriction
(Δ∩◇Σ,Γ) of Δ to the region ◇Σ,Γ is also a slice in C.

(3) The category of slices C is a partially monoidal subcategory of
Slices(Ω). In particular, 0/ ∈ obj(C) and whenever Σ⊗ Γ exists
in C for some Σ, Γ ∈ obj(C) then Σ⊗ Γ also exists in Slices(Ω)
(Associativity and unitality of ⊗ are strict in C as they are in
Slices(Ω)).

In particular, Slices(Ω) is itself a category of slices on Ω.

Condition (2) in the definition above tells us that we can talk
about regions directly within a given category C of slices, without
first having to reconstruct the causal order Ω: this will form the
basis of the connection to AQFT in Section 5 below.

As an example of particularly well-behaved slices, we
define a notion of Cauchy slices—akin to that of Cauchy
surfaces from Relativity—and remark that any “foliation” of a
causal order in terms of such slices gives rise to what is
arguably the simplest non-trivial example of category of
slices.

Definition 17: A slice Σ on Ω is a Cauchy slice if every causal
path c : −∞⇝ +∞ in Ω intersects Σ at some (necessarily unique)
event. Cauchy slices are in particular maximal slices. A
category of Cauchy slices on Ω is a category C of slices on Ω
such that every slice Σ ∈ obj(C) is a subset Σ4Γ of some Cauchy
slice Γ ∈ obj(C).

Proposition 18: A foliation on a causal order Ω is a set F of
Cauchy slices on Ω such that:

(1) The slices in F are totally ordered according to 9;
(2) Every event x ∈ Ω is contained in some slice Σ ∈ F ;
(3) The slices in F are pairwise disjoint.

If F is a foliation, write CauchySlices(F ) for the full sub-
category of Slices(Ω) generated by all slices which are subsets of
some Cauchy slice in F . Then CauchySlices(F ) is a category of
Cauchy slices on Ω.

Proof: Let CauchySlices(F ) denote the full sub-category of
Slices(Ω) generated by all slices which are subsets of some
Cauchy slice.

For any two events x ≤ y in Ω, let
Σ, Γ ∈ obj(CauchySlices(F )) be two Cauchy slices such that
x ∈ Σ and y ∈ Γ, the existence of such slices guaranteed by
the definition of foliation. Because the foliation is totally
ordered, we have that Σ9Γ or Γ9Σ (or both, if Σ � Γ and
x � y). If x � y, either works, while if x < y then necessarily
Σ9Γ. Either way, condition (1) for CauchySlices(F ) to be a
category of slices is satisfied. □

Let Σ′, Γ′ and Δ′ be three slices, respectively contained in three
Cauchy slices Σ, Γ and Δ inside the foliation. Because of total
ordering and disjointness of slices in F , the only instance in
which Δ∩◇Σ,Γ ≠ 0/ is when Σ9Δ9Γ. In this case,

Δ∩◇Σ,Γ � Δ ∈ obj(Cauchy Slices(F )). Otherwise,
Δ∩◇Σ,Γ � 0/ ∈ obj(Cauchy Slices(F )). Either way, condition
(2) for Cauchy Slices(F ) to be a category of slices is satisfied
when Σ, Γ and Δ are Cauchy slices. This result immediately
generalises to Σ′, Γ′ and Δ′: we have that
Δ′ ∩◇Σ′,Γ′4Δ∩◇Σ,Γ4Δ, so that Δ′ ∈ obj(Cauchy Slices(F ))
and condition (2) for Cauchy Slices(F ) to be a category of slices
is satisfied.

Finally, if Σ, Γ are two slices such that Σ⊗ Γ is defined in
Cauchy Slices(F ), then Σ, Γ are necessarily disjoint subsets of the
same Cauchy sliceΔ. It is then immediate to conclude that condition
(3) for Cauchy Slices(F ) to be a category of slices is satisfied.

3.1 The category of Causal Orders
As objects, causal orders have been defined simply as posets.
However, causal orders are note simply posets, and this should be
reflected in the kind ofmorphisms that can be used to related them to
one another. Malament’s result [1] may seem at first to indicate that
order-preserving maps are the correct choice, but upon closer
inspection one realises that the result itself only talks about order-
preserving isomorphisms, giving no indication about other maps.

A prototypical example of the behavior we wish to avoid is
that where Ω′- Ω is a sub-poset such that x ≤ y in Ω for some
x, y ∈ Ω′ but x ≤/ y in Ω′. The issue above is the reason behind
the rather specific formulation of the notion of causal sub-order
in Definition 2, prompting us to choose a special subclass of
order-preserving maps as morphisms between causal orders.

Definition 19: The category CausOrd of causal orders is the
symmetric monoidal category defined as follows:

• Objects of CausOrd are causal orders, i.e. posets.
• Morphisms Ω→Θ in CausOrd are the order-preserving
functions f : Ω→Θ such that we have x < y in Ω
whenever we have f (x)< f (y) in Θ.

• The monoidal product on objects Ω⊗Θ is the (forcedly)
disjoint union ΩkΘ :� Ω × {0}∪Θ × {1}.

• The unit for the monoidal product is the empty causal order 0/.
• The monoidal product extends to the disjoint union of
morphisms. If f : Ω→Ω′ and g : Θ→Θ′, then the
monoidal product f ⊗ g : Ω⊗Θ→Ω′ ⊗ Θ′ is defined as
follows:

f ⊗ g :� f k g � (x, i)1{ (f (x), 0) ∈ Ω′ × {0} if i � 0(g(x), 1) ∈ Θ′ × {1} if i � 1
.

(11)

The monoidal product is not strict nor commutative, but
symmetric under the symmetry isomorphisms s :
ΩkΘ→ΘkΩ defined by s(x, i) � (x, 1 − i).
It is easy to check that the causal sub-orders Ω′ of a causal

order Ω according to Definition 2 are all sub-objects Ω′- Ω in
the category CausOrd, so that the notion of causal sub-order is
consistent with the usual notion of categorical sub-object. As
discussed above, the regions in a causal order Ω are examples of
causal sub-orders, but not all sub-orders are regions: e.g. paths are
always sub-orders but not necessarily regions. In general, if we
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haveΩ′-Ω then it is not necessary forΩ′ to be convex, i.e. it is
not necessary for Ω′ to contain all paths x ⇝ y in Ω for any two
events x, y ∈ Ω′: in the sense, the causal sub-order Ω′ can
“coarsen” the causal order Ω by dropping events “in between”
events of the latter. As the following proposition shows, this
“coarsening” of causal orders is the only other case we need to
consider when talking about causal sub-orders.

Definition 20: LetΩ be a causal order and let the morphism i :
Ω′- Ω be a causal sub-order of Ω. We say that the morphism i :
Ω′-Ω is a region if the image i(Ω′)4Ω is a region inΩ. We say
that the morphism i : Ω′ - Ω is a coarsening if the image
i(Ω′)4Ω is such that for all x ≤ y ∈ Ω there exist x′, y′ ∈ Ω′ with
i(x′)≤ x ≤ y ≤ i(y′).

Proposition 21: LetΩ be a causal order and let i :Ω′-Ω be a
causal sub-order of Ω. Then i factors (essentially) uniquely as i �
r+f for some region r : Θ - Ω and some coarsening f : Ω′ - Θ.

Proof: Let Θ be the region of Ω obtained as the union of the
causal diamonds ◇x,y for all x, y ∈ i(Ω′). Let r : Θ - Ω be the
injection of Θ into Ω as a sub-poset and let f : Ω′ - Θ be the
restriction of the codomain of i to Θ: clearly i � r+f , r is a region
and f is a coarsening (because of how Θ was constructed).

Now let Θ′ be such that r′ : Θ′- Ω is a region and f ′ : Ω′ -
Θ′ is a coarsening with i � r′+f ′: to prove essential uniqueness,
we want to show that there is some isomorphism θ : Θ′→Θ
such that f � θ+f ′ and r′ � r+θ. Because r′+f ′ � i, the image
r′(Θ′) is the regionΘ itself, so that the restriction θ : Θ′→Θ of
the codomain of r′ to Θ is an isomorphism with r′ � r+θ. Now
we have r+f � i � r′+f ′ � r+(θ+f ′): but r is a monomorphism
(i.e. it is injective), so necessarily f � θ+f ′. □

The category CausOrd also has epi-mono factorization,
i.e. every morphism f : Ω′→Ω can be factorised

(essentially) uniquely as an epimorphism (i.e. a surjective
map) q : Ω′→Θ and a monomorphism (i.e. an injective
map) i : Θ - Ω. We have already adopted the
nomenclature of causal suborder for the latter form of
morphism, while we will henceforth use causal quotient to
refer to the former. Causal quotients are surjective
morphisms which “collapse” several events into one, in a
way which respects the causal order: as an example, a snippet
of the causal quotient q : H→D from the (infinite)
honeycomb lattice to the (infinite) diamond lattice is
shown in Figure 5.

If Σ is a slice in Ω, we can define its pullback f *(Σ) to be the
causal suborder of Θ generated by { x ∈ Θ

∣∣∣∣ f (x) ∈ Σ }, i.e.
largest causal sub-order of Θ mapped onto Σ. The pullback
of a slice Σ has a rather simple structure: the slices Γ in the
pullback f *(Σ) are exactly the disjoint unions Γ :� kx∈ΣΓx for
all possible choices (Γx)x∈Σ of slice sections of f over the
individual events x of Σ.

(Γx)x∈Σ ∈ ∐
x∈Σ

obj(Slices(f *({x}))) (12)

A depiction of the pullback under the causal quotient q : H→D
described above can be seen in Figure 6.

If C is a category of slices onΩ, we can define its pullback along
f to be the full sub-category f *(C) of Slices(Θ) spanned by all
slices Γ in Θ such that Γ ∈ obj(Slices(f *(Σ))) for some
Σ ∈ obj(C). The relationship 9 between slices in pullbacks is
a little complicated and its full characterization is left to
future work.

Remark 22: The two notions of pullback defined above—for
slices and for categories of slices—are related by the observation

FIGURE 5 | Causal quotient from the honeycomb lattice to the diamond lattice. The pre-images of three events from the diamond lattice are highlighted.
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that Slices(f *(Σ)) � f *(Slices(Σ)) for any slice Σ of Ω (which can
equivalently be seen as a causal sub-order Σ - Ω).

4 CASUAL FIELD THEORIES

In the previous Section, we have defined several commonplace
notions from Relativity in the more abstract context of causal
orders. In this Section, we endow our causal order with fields,
living in an appropriate symmetric monoidal category.

4.1 Categories for Quantum Fields
Depending on the specific applications, there are many
symmetric monoidal categories available to model quantum
fields.

• If the context is finite-dimensional, quantum fields can be
taken to live in the category CPM[fHilb] of finite-
dimensional Hilbert spaces and completely positive maps
between them.

• If the context is finite-dimensional and super-selected
systems are of interest, quantum fields can be taken to live
in the category CP*[fHilb] � fC*alg of finite-dimensional
C*-algebras and completely positive maps between them.

• If the context is finite-dimensional, an even richer
playground available for quantum fields is the category
Split[CPM[fHilb]]: this is the Karoubi envelope of the
category CPM[fHilb], containing CP*[fHilb] and a
number of other systems of operational interest (such as
fixed-state systems and constrained systems, see e.g. [23]).

• If the context is infinite-dimensional, e.g. in the case of
AQFT [10, 11], the categories usually considered for
quantum fields are the category Hilb of Hilbert spaces
and bounded linear maps, the category C*alg of C*-
algebras and its subcategories W*alg of W*-algebras
(sometimes known as “abstract” von Neumann algebras)
and vNA of (concrete) von Neumann algebras.

• The categories Hilb, C*alg, W*alg and vNA have some
annoying limitations, so in an infinite-dimensional
context one can alternatively work with hyperfinite
quantum systems [24], which incorporate infinities and
infinitesimals to offer additional features—such as duals,
traces and unital Frobenius algebras—over plain Hilbert
spaces and C*-algebras.

The framework we present here is agnostic to the specific choice
of process theory (aka symmetric monoidal category) for quantum
fields. In fact, it is agnostic to the specific physical theory considered
for the fields: any causal process theory can be considered.

4.2 Causal Field Theories
Let Ω be a causal order. A causal field theory Ψ on Ω is a

monoidal functor Ψ : C→D from a category C of slices on Ω to
some symmetric monoidal categoryD, which we refer to as the field
category.

Remark 24: It may sometimes be desirable to add a
requirement of injectivity on objects for the functor Ψ . This has
two main motivations, one of physical character and one of
mathematical character. Physically, injectivity means that the
field spaces corresponding to distinct events have distinct
identities (although they can be isomorphic). Mathematically,
injectivity means that the image of the functor is itself a sub-
category of D, matching the style used by other works on
compositional causality [8, 19, 20, 23]. While we do not require
this as part of our definition, we will take care for the constructions
hereafter to be sufficiently general to accommodate the possibility
that such a requirement be imposed.

We now ask ourselves: what physical information does the
functorΨ encode? On objects,Ψ associates each space-like slice Σ
to the space Ψ(Σ) of fields over that slice: every point in Ψ(Σ) is a
valid initial condition for field evolution in the future domain of
dependence for Σ.

Remark 25: If Σ is finite and the singleton slices {x} for the
individual events x ∈ Σ are all in the chosen category C of slices,

FIGURE 6 | A slice Σ on the diamond lattice and three maximal slices Γ, Γ′ and Γ′′ in its pullback qp(Σ) on the honeycomb lattice.
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then the action of Ψ on Σ always factorizes into the tensor product
of its action on the individual events:

Ψ(Σ) � ⊗
x∈Σ

Ψ({x}) (13)

On morphisms, Ψ associates Σ9Γ to a morphism Ψ(Σ)→Ψ(Γ):
this is a specification of how the field evolves from Σ to Γ, i.e. this
defines the map sending a field state

∣∣∣∣ϕ〉 over the initial sliceΨ(Σ)
to the evolved field state Ψ(Σ9Γ)∣∣∣∣ϕ〉 over the final slice Ψ(Γ).
This identification of functorial action with field evolution is the
core idea of our work. In particular, it explains our specific
definition of morphisms in Slices(Ω), and hence in all categories
of slices: Σ9Γ if and only if the field data on Σ is sufficient to
derive the field data on Γ, assuming causal field evolution.
Monoidality of the functor on objects says that the space of
fields on the union of disjoint slices is the monoidal
product—the tensor product, when working in the familiar
linear settings of Hilbert spaces, C*-algebras, von Neumann
algebras, etc.—of the spaces of fields on the individual slices.
Note that this requirement is stronger than the requirement
imposed by AQFT, where field algebras over space-like
separated diamonds are only required to commute as sub-
algebras of the global field algebra, not necessarily to take the
form of a tensor product sub-algebra.

Functoriality and monoidality on morphisms have some
interesting consequences, which we now discuss in detail. Let
Σ9Σ′ and Γ9Γ′ for a pair of space-like separated slices Σ and Γ
and another pair of space-like separated slices Σ′ and Γ′.
Consider the field evolution between the two disjoint unions
of slices:

Ψ((Σ⊗ Γ)9(Σ′ ⊗ Γ′)) : Ψ(Σ)⊗Ψ(Γ)→Ψ(Σ′)⊗Ψ(Γ′) (14)

Monoidality on morphisms implies that the field evolution above
factors as the product of the individual field evolutions
Ψ(Σ)→Ψ(Σ′) and Ψ(Γ)→Ψ(Γ′):

Ψ((Σ⊗ Γ)9(Σ′ ⊗ Γ′)) � Ψ(Σ9Σ′)⊗Ψ(Γ9Γ′) (15)

This may look surprising at first, but it becomes entirely natural
upon observing the following.

Proposition 26: Let Ω be a causal order. If Σ and Γ are space-
like separated slices inΩ and Σ9Σ′, then Σ′ and Γ are also space-
like separated slices.

Proof: If Σ and Γ are space-like separated, then
Γ∩ (J+(Σ)∪ J−(Σ)) � ϕ. Because Σ9Σ′, furthermore,
Proposition 9 tells us that J+(Σ′)∪ J−(Σ′)4J+(Σ)∪ J−(Σ). We
conclude that Γ∩(J+(Σ′)∪ J−(Σ′)) � 0/, i.e. that Σ′ and Γ are also
space-like separated. □

Proposition 26 above tells us that in our factorization scenario
the entire region between Σ and Σ′ on one side and the entire
region between Γ and Γ′ on the other side are space-like
separated. Thus any causal field evolution from Σ⊗ Γ to
Σ′ ⊗ Γ′ would physically be expected to factor: this can be seen
as a manifestation of the principle of locality for field theories,
sometimes also known as “clustering.”

Remark 27: Please note that the principle of locality obtained
above only implies that the evolution of fields must factorize over

space-like separated regions. This imposes no constraints on the
field state, which can be any state of the space of fields. In
particular, if the field category has entanglement (e.g., categories
of Hilbert spaces with the usual tensor product) then the field state
can entangle space-like separated regions, while field evolution
cannot.

4.3 Causality and No-Signalling
Because any category C of slices on a causal order Ω is a
partiallymonoidal subcategory of Slices(Ω), in particular it necessarily
contains the empty slice (the monoidal unit). We define the following
family of effects, indexed by all slices Σ ∈ obj(C):

By monoidality we have that is some scalar in the field category
D and that the family respects the partial monoidal structure:

By functoriality, furthermore, the family of effects above is
respected by the image of the functor:

This means that the family of effects defined above is
an environment structure and that—as long as injectivity of Ψ is
imposed—the image of the causal field theory Ψ is a causal
category [19, 20].6 Physically, this means that the field
evolution happens in a no-signalling way: if the
effects are used as discarding maps—generalizing
the partial traces of quantum theory—then the field state over
a given slice Σ does not depend on the field state over slices which
are in the future of Σ or are space-like separated from Σ.

This emergence of causality and no-signalling from
functoriality is in fact a consequence of a breaking of time
symmetry which happened in the very definition of the
ordering between slices. Indeed, consider the “time-reversed”
causal order Ωrev , obtained by reversing all causal relations in
Ω (i.e. y ≤ x inΩrev if and only if x ≤ y inΩ). The slices forΩrev are
exactly the slices for Ω, i.e. the categories of all slices Slices(Ωrev)
and Slices(Ω) have the same objects. If time symmetry were to
hold, we would expect the arrows in Slices(Ωrev) to be exactly the
reverse of the arrows in Slices(Ω). However, the conditions
defining the arrows in both categories are as follows:

• Σ9Γ in Slices(Ω) iff Γ4D+(Σ) in Ω;
• Γ9Σ in Slices(Ωrev) iff Σ4D+(Γ) in Ωrev ,
i.e. iff Σ4D−(Γ) in Ω.

The two conditions that Γ4D+(Σ) and Σ4D−(Γ), both in Ω,
are not in general equivalent: this shows that time symmetry is

6We have taken the liberty to extend the definition of environment structures to
partially monoidal categories, such as the image of a Ψ injective on objects under
the partial monoidal product induced by the partial monoidal product of the
domain category C.
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broken by our definition of the relationship between slices,
ultimately leading to the emergence of causality and no-
signalling constraints on functorial evolution of quantum fields.

5 CONNECTION WITH ALGEBRAIC
QUANTUM FIELD THEORY

The definition of causal field theories looks somewhat similar to
that of Topological Quantum Field Theories (TQFTs) as
functors from categories of cobordism to categories of vector
spaces. The big difference between the causal field theories we
defined above and TQFTs is that the latter take the basic
building blocks for field theories to be defined over arbitrary
topological spacetimes, while the former define the evolution
over a single given spacetime. This difference is an aspect of a
general abstract duality between compositionality and
decompositionality.

In compositionality, larger objects are created by composing
together given elementary building blocks in all possible ways:
this is the approach behind an ever growing zoo of process
theories (e.g., see [25] and references therein). In
decompositionality, on the other hand, larger objects are given
as a whole and subsequently decomposed into smaller
constituents, with composition of the latter constrained by the
context in which they live: this approach, based on partially
monoidal structure, was recently introduced by [22] as a way to
talk about compositionality in physical theories where a universe
is fixed beforehand. While TQFTs are compositional [13, 26],
causal field theories are more naturally understood from the
decompositional perspective.

In fact, decompositionality is the key ingredient in a
completely different family of approaches to quantum theory,
including Algebraic Quantum Field Theory (AQFT) [10] and the
topos-theoretic approaches [11, 12]. In AQFT, the relationship
between fields and the topology of spacetime is encapsulated into
the structure of a presheaf, having as its domain the poset formed
by causal diamonds in Minkowski space under inclusion and as
its codomain a category of C*-algebras and *-homomorphisms.
Specifically, each region (causal diamond) of Minkowski
spacetime is mapped to the C*-algebra of “local” quantum
observables (categorically: effects) on that region. From this
perspective, locality and causality are formulated as the
requirement that algebras of local observables over space-like
separated regions commute within the algebra of global
observables (that is, local effects cannot be entangling over
space-like separated regions).

To understand the decompositional character of causal field
theories, we draw inspiration from the AQFT approach and turn
our functors, defined on slices, into presheafs defined on
“regions” (generalising unions of causal diamonds in AQFT).
However, our approach differs from the AQFT approach in a
number of ways:

• We dispense of the algebras themselves: as mentioned
earlier in Section 4.1, our approach is independent of the
specific process theory chosen for the fields.

• Instead of looking at the space of local observables/effects,
we take the (equivalent) dual perspective and work with the
space of local states.

• Local states can be entangling, so the formulation of locality
and causality as “commutativity” is no longer applicable,
even in the case where the field category is a category of C*-
algebras. Instead, locality and causality arise as a
consequence of factorization of field evolution over
space-like separated slices.

We begin by showing that categories of slices can be restricted
to regions, as long as we take care to define regions in such a way
as to respect the restrictions imposed by a specific choice of
category of slices.

Definition 28: A bounded region in a category of slices C on a
causal order Ω is a region on Ω in the form ◇Σ,Γ for some
Σ, Γ ∈ obj(C). Bounded regions in C form a poset Regionsbnd(C)
under inclusion.

Definition 29: A region in a category of slices C is a region R on
Ω which can be obtained as a union R � ∪λ∈Λ◇Σλ ,Γλ of a family
(◇Σλ ,Γλ)λ∈Λ, closed under finite unions, of bounded regions in C.
Regions in C also form a poset Regions(C) under inclusion, with
Regionsbnd(C) as a sub-poset.

Note that if C � Slices(Ω) then the regions in C are exactly the
regions on Ω: by definition, a region R on Ω is the union of the
bounded regions ◇x,y for all x, y ∈ R.

Proposition 30: Let C be a category of slices and R be a region
in it. The restriction C|R of C to the region R, defined as the full sub-
category of C spanned by the slices Δ ∈ obj(C) such that Δ4R, is
itself a category of slices.

Proof: If R � ◇Σ,Γ is a bounded region in C, then the statement
is an immediate consequence of requirement (2) for categories of
slices. Now assume that R � ∪λ∈Λ◇Σλ ,Γλ is a union of bounded
regions in C.

If x ≤ y are two events in R, then it must be that x ∈ ◇Σλx ,Γλx and
y ∈ ◇Σλy ,Γλy for some λx, λy ∈ Λ: closure under union of the family
(◇Σλ ,Γλ)λ∈Λ then guarantees that there exists some λx,y ∈ Λ with
x, y ∈ ◇Σλx,y ,Γλx,y . Because C is a category of slices, we can find two
slices Δx9Δy in C such that x ∈ Δx and y ∈ Δy . Then the
restrictions (Δx ∩◇Σλx,y ,Γλx,y) and (Δy ∩◇Σλx,y ,Γλx,y) satisfy
requirement (1) for C|R to be a category of slices.

If Σ, Γ and Δ are three slices in C|R, then in particular the
diamond ◇Σ,Γ is a subset of R (the latter is a region) and so is the
intersection Δ∩◇Σ,Γ, which exists in C because the latter is a
category of slices. Hence requirement (2) for C|R to be a category
of slices is satisfied.

Requirement (3) for C|R to be a category of slices is satisfied,
because if Σ, Γ4R then also Σ⊗ Γ4R whenever the latter is
defined. □

Given a causal field theory Ψ : C→D, the restrictions Ψ|R :
C|R →D are again causal field theories. To match the spirit of
AQFT, we need two more ingredients: the definition of a space of
states StatesΨ(R) over a region R and the definition of restrictions
StatesΨ(R)→ StatesΨ(R′) between spaces of states associated
with inclusions R′4R of regions.

Definition 31: Given a region R in a category of slices C, the
space of states StatesΨ(R) over the region is defined to be the set
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comprising all families ρ of states over the slices in C|R which are
stable under the action of Ψ, i.e. comprising all the families

ρ ∈ ∏
Δ∈obj(C|R)

StatesD(Ψ(Δ)), (19)

such that for all Δ,Δ′ ∈ obj(C|R) with Δ9Δ′ the following
condition is satisfied:

Ψ(Δ9Δ′)+ρΔ � ρΔ′. (20)

By StatesD(Ψ(Δ))we have denoted the states on the objectΨ(Δ) of
the symmetric monoidal category D, i.e. the homset
HomD[I,Ψ(Δ)] where I is the monoidal unit of D.

Proposition 32: Given a causal field theory Ψ : C→D, we can
construct a presheaf StatesΨ : Regions(C)op → Set by associating
each region R ∈ obj(Regions(C)) to the space of states StatesΨ(R)
over the region, and each inclusion i : R′4R to the restriction
function StatesΨ(R)→ StatesΨ(R′) defined by sending a family
ρ ∈ StatesΨ(R) to the family StatesΨ(i)(ρ) ∈ StatesΨ(R′) given as
follows:

StatesΨ(i)(ρ)Δ′ � ρ
i(Δ′). (21)

We refer to StatesΨ as the presheaf of states over regions of C.
Proof: The only thing to show is functoriality of StatesΨ. If

i � idR : R4R is the identity on a region R, then we have:

StatesΨ(i)(ρ)Δ � ρi(Δ) � ρΔ, (22)

i.e. StatesΨ(i) � idStatesΨ(R) is the identity on the space of states
over the region. If now j : R″4R′ and i : R′4R, then i+j : R″4R
and we have:

StatesΨ(j)(StatesΨ(i)(ρ))Δ″ � StatesΨ(i)(ρ)j(Δ″) � ρi(j(Δ″))
� StatesΨ(i+j)(ρ)Δ″ . (23)

Hence StatesΨ is a presheaf StatesΨ : Regions(C)op → Set. □
Definition 33: A global state ρ for a causal field theory Ψ :

C→D is a global compatible family for StatesΨ , i.e. a family ρ �
(ρ(R))R∈Regions(C) such that StatesΨ(i)(ρ(R)) � ρ(R′) for all
inclusions i : R′4R in Regions(C). We refer to the set of all
global states as the space of global states.

Remark 34: IfΩ is a region in C, i.e. ifΩ ∈ Regions(C), then the
states in StatesΨ(Ω) (Ω as a region) are in bijection with the global
states as follows:

{ρ ∈ StatesΨ(Ω)1(StatesΨ(R4Ω)(ρ))R∈Regions(C)(ρ(R))R∈Regions(C)1ρ(Ω)
. (24)

Because of this, we consistently adopt the notation StatesΨ(Ω) to
denote the space of global states. If R is a region in C, we also adopt
the notation StatesΨ(R4Ω) for the map
StatesΨ(Ω)→ StatesΨ(R) sending a global state ρ �
(ρ(R))R∈Regions(C) to its component ρ(R) over the region R. To
unify notation, we will also adopt ρΣ to denote (ρ(R))Σ, taking
the same value for any region R containing Σ (e.g., for R � Σ).

Remark 35: If the field category D is suitably enriched (e.g.,
in a category with all limits), then a natural choice is for the
the space of states to be defined by a presheaf valued in the
enrichment category. For example, quantum theory is enriched
over positive cones, i.e. R+-modules, and the R+-linear
structure of states in quantum theory extends to a
R+-linear structure on the spaces of states of causal field
theories having quantum theory as their field category. We
will not consider such enrichment in this work, though all
constructions we present can be readily extended to such a
setting.

Spaces of states according to Definition 31 encode a lot of
redundant information, because we don’t want to look into
the specific structure of regions. However, there are certain
special cases in which an equivalent description of the space
of states over a region can be given.

To start with, consider two slices Σ9Γ and note that the
state on any slice Δ4◇Σ,Γ in a bounded region ◇Σ,Γ
is uniquely determined by applying Ψ(Σ9Δ) to the state
on Σ:

ρΔ � Ψ(Σ9Δ)(ρΣ). (25)

This is, for example, the case for all bounded regions between
Cauchy slices in a category of slices CauchySlices(F ) generated
by some foliation F . If the foliation F has a minimum Σ0—an
initial Cauchy slice—then any global state ρ ∈ StatesΨ(Ω) is
entirely determined by its component ρΣ0

over the initial slice Σ0:

ρΔ � Ψ(Σ09Δ)+ρΣ0, (26)

for any Δ ∈ F and any region R in CauchySlices(F ) such that
Δ4R. This extends to all slices in CauchySlices(F ) by
restriction.

Inspired by Relativity, we would like the state on any Cauchy
slice in the foliation to determine the global state, not only that on
an initial Cauchy slice (whichmay not exist). For this to happen, we
need to strengthen our requirements on the causal field theory,
which needs to be causally reversible.

Definition 36: Let Ω be any causal order. By the causal reverse
of Ω we mean the causal order Ωrev on the same events as Ω and
such that x ≤ y in Ωrev if and only if x ≥ y in Ω.

Definition 37: A category of slices C on a causal orderΩ is said
to be causally reversible if the full sub-category of Slices(Ωrev)
spanned by obj(C) is a category of slices on the causal reverse Ωrev.
If this is the case, we write Crev for said category of slices over Ωrev

and refer to it as the causal reverse of C. We write 9
rev

for the
morphisms of Crev.

Definition 38: Let Ψ : C→D be a causal field theory on a
causal orderΩ. If C is causally reversible, a causal reversal of Ψ is a
causal field theory Φ : Crev →D such that:

(1) The functors Ψ and Φ agree on objects, i.e. for all Σ ∈ obj(C)
we have that Ψ(Σ) � Φ(Σ);

(2) Whenever we have two chains of alternating morphisms in C and
Crev which start and end at the same slices Σ, Γ, say in the form

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 53426511

Gogioso et al. Functorial Evolution of Quantum Fields

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Σ9Δ19
rev Δ29 . . .Δ2n9Γ,

Σ9Δ′
1
9
rev Δ′

2
9 . . .Δ′

3m
9Γ, (27)

for some n,m≥ 0, the composition of the images of the morphisms
under Ψ and Φ always yield the same morphism Ψ(Σ)→Ψ(Γ):

Ψ(Δ2n9Γ)+...+Φ(Δ19
rev Δ2)+Ψ(Σ9Δ1)

�Ψ(Δ′2m9Γ)+...+Φ(Δ′19rev Δ′2)+Ψ(Σ9Δ′1). (28)

We say that Ψ : C→D is causally reversible—or simply
reversible—if C is causally reversible and Ψ admits a causal
reversal.

Proposition 39: Let CauchySlices(F ) be the category of slices
on a causal order Ω generated by some foliation F . Then
CauchySlices(F ) is always causally reversible and for any two
Cauchy slices Δ,Σ we have that Δ9Σ if and only if Σ9revΔ.
Furthermore, if a causal field theory Ψ : CauchySlices(F )→D is
reversible, then a global state ρ is entirely determined by the state
ρΣ on any Cauchy slice Σ ∈ F as follows:

ρΔ � ⎧⎨⎩ Ψ(Σ9Δ)+ ρΣ if Σ9Δ
Φ(Σ9rev Δ)+ ρΣ if Δ9Σ , (29)

where Φ : CauchySlices(F )rev →D is any causal reversal of Ψ.
Proof: The main observation behind this result is as follows: if

Σ,Δ are two Cauchy slices, then the conditions Δ4D+(Σ) and
Σ4D−(Δ) are equivalent. Hence CauchySlices(F ) is always
causally reversible and Δ9Σ if and only if Σ9revΔ for any
two Cauchy slices Δ,Σ.

Now letΨ be causally reversible, let Σ ∈ F be a Cauchy slice in
the foliation and consider any global state ρ. If Σ9Δ for some
other Cauchy slice Δ ∈ F , then the definition of a global state
implies that ρΔ � Ψ(Σ9Δ)+ρΣ. If instead Δ9Σ, then Σ9revΔ
and the definition of a global state implies that ρΣ � Ψ(Δ9Σ)+ρΔ.
But the definition of a causal reverse also implies that:

Φ(Σ9rev Δ)+ ρΣ � Φ(Σ9rev Δ)+Ψ(Δ9Σ)+ ρΔ � Ψ(Σ9Σ)+ ρΔ

� idΨ(Σ) + ρΔ � ρΔ.

(30)

Hence the value ρΣ completely determines the global state ρ
(since the value on all other slices in Cauchy Slices(F ) is
determined by restriction from the value on a corresponding
Cauchy slice). □

It is an easy check that not only the global states ρ ∈ StatesΨ(Ω)
are determined—under the conditions of Proposition 39—by
their component ρΣ ∈ StatesD(Ψ(Σ)) over any Cauchy slice Σ in
the foliation, but also that Eq. 29 can be used—under the same
conditions—to construct a global state ρ ∈ StatesΨ(Ω) from a
state ρΣ ∈ StatesD(Ψ(Σ)) on any Cauchy slice Σ in the foliation.

Before concluding this Section, we would like to remark that a
succinct description of spaces of states over regions can be obtained
in settingsmuchmore general than those of foliations: for example,
in all those cases where the every region admits a suitable Cauchy

slice and the causal field theory is reversible. The careful
formulation of this more general setting is key to the further
development of the connection between causal field theory and
AQFT and it is left to future work.

6 CONNECTION TO QUANTUM CELLULAR
AUTOMATA

The idea of a cellular automaton was first introduced by von
Neumann, aimed at designing a self replicating machine [18].
A Cellular Automaton (CA) over some finite alphabet A has
its state stored as a d-dimensional lattice of values in A, i.e. as
a function ψ : Zd →A. The state is updated at discrete time
steps, each step updated as ψ(t+1) :� F(ψ(t)) according to some
fixed function F : (Zd →A)→ (Zd →A). The function F acts
locally and homogeneously: there is some fixed finite subset
N ⊂ Zd (typically a neighborhood of 0 ∈ Zd) and some
function f : N →A such that the value of each lattice site x at
time step t + 1 only depends on the finitely many values in the subset
x +N at time t:

F(ψ) :� x1 f(ψ∣∣∣∣x+N). (31)

A Quantum Cellular Automaton (QCA) is a generalization of
a CA where the lattice states ψ : Zd →A are replaces by (pure)
states in the tensor product of Hilbert spaces ⊗x∈ZdHx (all Hx

finite-dimensional and isomorphic) and the function F is replaced
by a unitary U : ⊗x∈ZdHx →⊗x∈ZdHx , with requirements of
locality and homogeneity.

Remark 40: There are several slightly different formulation of
the infinite tensor product above that can be used, each with its
own advantages and disadvantages: though it is not going to be a
concern for this work, the authors are partial to the construction by
von Neumann [27].

An early formulation of the notion of QCA is due to Richard
Feynman, in the context of simulations of physics using quantum
computers [28]. More recent work on quantum information and
quantum causality has shown that the evolution of certain free
quantum fields can be recovered as the continuous limit of certain
quantum cellular automata (cf [16, 17]. and references therein).
In the final section of this work, we show that our framework is
well-suited to capture notions of QCA such as those appearing in
the literature. Specifically, our construction encompasses and
greatly generalises that presented in [17].

6.1 Causal Cellular Automata
The first requirement in the definition of a QCA is that of
homogeneity—called “translation invariance” in [17]—i.e. the
requirement that the automaton act the same way at all points of
spacetime. Because presentations of QCAs are usually given in
terms of discrete updates of states on a lattice by means of a
unitary U, only the requirement of homogeneity in space is
usually mentioned. However, such presentations also have
homogeneity in time as an implicit requirement, namely in
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the assumption that the same unitary U be used to update the
state at all times.

Instead of updating the state time-step by time-step in a
compositional fashion, our formulation of quantum cellular
automata will see the entirety of spacetime at once, with states
over slices and regions recovered in a decompositional
approach. Nevertheless, the requirement of homogeneity for
a QCA can still be formulated as a requirement of invariance
under certain symmetries of spacetime, so we begin by
formulating such a notion of invariance for causal field
theories.

Definition 41:A symmetry on a causal orderΩ is an action of a
group G on Ω by automorphisms of causal orders, i.e. a group
homomorphism G→AutCausOrd[Ω]. If C is a category of slices on
Ω, a symmetry on C is a symmetry onΩwhich extends to an action
on C by partially monoidal functors, i.e. one such that the following
conditions are satisfied:

(1) for all g ∈ G, if Σ ∈ obj(C) then g(Σ) ∈ obj(C);
(2) for all g ∈ G and all Σ, Γ ∈ obj(C), if Σ9Γ then g(Σ)9g(Γ);
(3) for all g ∈ G and all Σ, Γ ∈ obj(C), if Σ⊗ Γ is defined in C then

g(Σ⊗ Γ) � g(Σ)⊗ g(Γ) is also defined in C.
Note, for all g ∈ G, that g(0/) � 0/ and that g(Σ) is
automatically a slice whenever Σ is a slice.

Definition 42: Let C be a category of slices with a symmetry
action of a group G. A G-invariant (or simply symmetry-invariant)
causal field theory on C is a causal field theoryΨ : C→D equipped
with a family of natural isomorphisms αg : Ψ0Ψ+g such that
αh·g � αhg+αg , where we have identified elements g ∈ G with their
action as partially monoidal functors g : C→ C.

Remark 43: The spirit behind the definition of symmetry-
invariant causal field theories is that the functors Ψ (sending
slices 1 fields) and Ψ+g (sending slices 1 g-translated slices
1 fields) should be the same. However, we have remarked when
first defining causal field theories that—be it for ease of physical
interpretation or for conformity with existing literature on
causal categories—it may sometimes be desirable that the
images Ψ(Σ) of different slices be different. Not being able to
impose the equality Ψ � Ψ+g in such a setting, the next best
thing is to ask for natural isomorphism Ψ � Ψ+g.

Because we are dealing with symmetries, however, it is
sensible to require for the natural isomorphisms αg
themselves to respect the group structure. Again, the first
instinct might be to require something in the form
αh·g � αh+αg , but this expressions does not type-check: we
have a natural transformation αh·g : Ψ0Ψ+h+g, a natural
transformation αg : Ψ0Ψ+g and a natural transformation
αh : Ψ0Ψ+h. In order to compose αh and αg we instead
have to take the action of αh translated to Ψ+g:

αhg : Ψ+ g0(Ψ+ h)+ g. (32)

Explicitly, the natural transformation αhg is defined by
(αhg)(Σ) :� αh(g(Σ)).

The second requirement in the definition of a QCA is that
of locality (or causality). When quantum cellular automata
are considered in a relativistic context—e.g. as discrete

models of quantum field theories—the requirement of
locality is meant to capture the idea that the action of the
automaton should respect the causal structure of spacetime (so
that the state on a point x at time t + Δt should not depend on the
state at the previous time t on points y which are “too far away”,
i.e. such that (x, t + Δt) and (y, t) are space-like separated).

In [17], the requirement of locality is formulated as the
requirement that the output state of the automaton over a point
x of the lattice at time t + 1 only depend on the state over a finite
neighborhood x +N at time t: this is both in terms of local state
(causality) and in the stronger sense that the field evolution should
factor into a product of local maps (localisability). In our
framework, on the other hand, causality and localisability are
both automatically enforced: the field evolution always factors
over space-like separated regions, as a consequence of
monoidality, and the local state over a slice never depends on
the state on any other slice which is space-like separated from it (as
a consequence of factorisation).

Remark 44: The causal order Ω which captures the causality
requirement from [17] with finite neighborhood N ⊂ Zd can be
constructed by endowing the set |Ω| :� Zd × Z with the reflexive-
transitive closure of the relation (y, t)≤ (x, t + 1) for all times
t ∈ Z, for all points of the lattice x ∈ Zd and for all points y ∈ x +
N in the neighborhood of x.

The third and final requirement in the definition of a QCA is
that of unitarity. In our framework, this is a problem for two
(mostly unrelated) reasons.

• Our formulation of causal field theories aims to be agnostic
to the choice of process theory. On the other hand, unitarity
is a strongly quantum-like feature, the formulation of which
would require a significant amount of additional structure
on the field category.

• The usual formulation of quantum cellular automata only
considers global evolution, never directly dealing with
restrictions—situations e.g., in which the state is evolved
unitarily but part of the output state is discarded as
environment. Our framework instead treats such
restrictions as an integral part of evolution.

Luckily, unitarity per se is not necessary from an abstract
foundational standpoint: the real feature of interest is reversibility,
a feature of causal field theories which we have already explored. For
the sake of generality, we will not include reversibility in the
definition below, leaving it as an explicit desideratum.

Remark 45: In categories of Hilbert spaces and completely
positive maps, it is legitimate to imagine that causality and
reversibility would jointly imply that the cellular automata also
be unitary. This is indeed the case under the conditions of
Proposition 39: because the state on any Cauchy slice
automatically determines the state on all the other slices—and
because that state on a single slice is arbitrary—evolution between
Cauchy slices must be unitary.

Definition 46: A Causal Cellular Automaton (CCA) consists of
the following ingredients.
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(1) A foliation F on a causal order Ω.
(2) A category of Cauchy slices C such that each slice in C is a

subset of some Cauchy slice in F .7

(3) A symmetry action of a group G on C, inducing—via the
G-action on Ω—a transitive action of G on the Cauchy slices
in the foliation F .

(4) A G-invariant causal field theory Ψ : CauchySlices(F )→D.

A reversible CCA is one where the causal field theory Ψ is
reversible.

Definition 46 is much more general than the definition of
QCA from [17] and hence captures more sophisticated
examples. However, its ingredients are directly analogous to
those appearing in that definition of a QCA.

• The foliation F on Ω generalizes the discrete time steps in
the definition of a QCA.

• The slices in C generalize the equal-time hyper-surfaces
which support the state of a QCA at fixed time.

• The symmetry action of G on CauchySlices(F ) and its
transitivity on the foliation F generalise homogeneity
in both space and time of the lattices supporting
a QCA.

• The G-invariance of the causal field theory Ψ generalizes
both the translation symmetry in space and the time-
translation symmetry of a QCA.
A different approach to QCAs in non-homogeneous space-

times appears in [29, 30], in terms of graph dynamics. The graph

dynamics models and the models described in this work present a
significant overlap—in the specific case of quantum theory—but
are ultimately incomparable: on the one end, graph dynamics impose
certain structural requirements on spacetime slices for the foliation,
requirements which are not necessary in this work; on the other end,
quantum graph dynamics allow a superposition of graphs at each slice
of the foliation, a possibility which is not considered in this work.

6.2 Partitioned Causal Cellular Automata
We now proceed to construct a large family of examples of CCAs
based on the partitioned QCAs of [17]. In doing so, we generalise
the scattering unitaries to arbitrary processes and allow for the
definition of state restriction to non-Cauchy equal-time surfaces.
We refer to the resulting CCA as partitioned CCA.

6.2.1 Causal Order
As our causal order Ω we consider the following subset of
(1 + d)-dimensional Minkowski spacetime (setting the
constant c for the speed of light to c � ��

d
√

):

Ω :� {(t, x) ∣∣∣∣∣ t ∈ Z, x ∈ (t, . . . , t) + 2Zd}. (33)

where (t, . . . , t) + 2Zd is the set of all x ∈ Zd such that
xi � t (mod 2). For d � 1 we get the (1 + 1)-dimensional
diamond lattice discussed before. In general, the immediate
causal predecessors of a point (t, x) are the following 2d points:

(t − 1, x −N ) � {(t − 1, x − δ)∣∣∣δ ∈ N }, (34)

where we defined the “neighborhood”N :� {±1}d . Similarly, the
immediate successors of (t, x) are the following 2d points:

FIGURE 7 | Action of a partitioned causal cellular automaton over a complicated morphism Σ9Γ in the (1 + 1)-dimensional example of the diamond lattice. Here
N � {±1}, so each event in the causal order is associated to a copy ofH⊗N � H⊗H. The restriction action of the CCA (Eq. 45) can be seen on the two events at the bottom left.
The pure evolution action of the CCA (Eq. 46) can be seen on the central pyramid of ten events, as the application ofUwithout discarding. The evolution +marginalisation action of
theCCA (Eq. 48) can be seen on the eight events at the sides of the central pyramid, as the application ofU followed by discarding of one of the two outputs. The input of the
morphism depicted consists of eight copies ofH⊗H, one for each event of Σ, while the output of themorphism depicted consists of two copies ofH⊗H, one for each event of Γ.

7Each Cauchy slice Σ in F is then automatically the union of all slices Δ ∈ obj(C)
such that Δ4Σ.
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(t + 1, x +N ) � {(t + 1, x + δ)∣∣∣δ ∈ N }. (35)

6.2.2 Foliation and Category of Slices
The causal order Ω admits a foliation F where each slice is a
constant-time Cauchy slice Σt for some t ∈ Z:

Σt :� {(t, x) ∣∣∣∣∣ x ∈ (t, . . . , t) + 2Zd}. (36)

A suitable category of slices C to associate to this foliation is
given by taking as slices all the finite sets Σt,X ⊂ Σt of events
having the same time coordinate t:

Σt,X � {(t, x)∣∣∣x ∈ X}, (37)

where X ⊂ (t, . . . , t) + 2Zd is some finite subset. The morphisms
9 of C are given as follows for k≥ 0:

Σt,X9Σt+k,Y if and only if ∪
y∈Y

((t, y +N (k)))4X , (38)

where the “iterated neighborhood” N (k) is defined as N + . . . +
N by adding together k≥ 0 copies ofN (and we setN (0)

:� {0}).
Explicitly we have:

N (k)
:� { {−k,−k + 2, . . . − 1,+1, . . . , k − 2, k} if k odd

{−k,−k + 2, . . . − 2, 0,+2, . . . , k − 2, k} if k even
.

(39)

It is easy to check (by a t1 −t symmetry argument) that C is
reversible.

6.2.3 Symmetry
The category C admits a symmetry action of the group
G :� ZN � Z2d . We index the coordinates of vectors in ZN by
the 2d points δ ∈ N � {±1}d . We denote by τδ the vector in ZN

which is 1 at the coordinate labeled by δ and 0 at all other
coordinates. The action is then specified by setting:

τδ(t, x) :� (t + 1, x − δ), (40)

that is, the 2d generators of ZN send a generic event (t, x) to each
of its 2d immediate causal successors in Ω, one for each possible
choice of sign ±1 along each of the d directions of the space
lattice Zd .8 Each generator τδ for the symmetry action sends a
Cauchy slice Σt in the foliation to the next Cauchy slice Σt+1, so
the action of G on the foliation is transitive.

6.2.4 Causal Field Theory—Field Over Slices
As our field category we consider a generic causal process theory D,
i.e. a symmetric monoidal category equipped with a family of
discarding maps for all objects H ∈ obj(D),
respecting the tensor product ⊗ and tensor unit I of
D: and . Discarding maps
generalize the partial trace of quantum theory: normalized states
ρ : I→H—generalizing density matrices—are defined to be those
such that and normalized morphisms

U : H→K—generalizing CPTP maps—are defined to be those
such that . See e.g. [20, 23, 25] for more information.

To create a G-invariant causal field theory Ψ, we consider
some object H ∈ obj(D) together with some endomorphism
U : H⊗2d →H⊗2d , which we will refer to as the scattering map.
For reasons that will soon become clear, it is more convenient to
index the factors ofH⊗2d by the 2d points in the neighborhoodN ,
hence writing U : H⊗N →H⊗N .

We define the action of Ψ on the slices in C as follows:

Ψ(Σt,X ) :� (H⊗N )⊗X � H⊗(N×X ). (41)

The tensor product is well-defined in all symmetric monoidal
categories, since X is always finite. Physically, the field takes
values in a copy ofH⊗N over each event (t, x) of spacetime, each
individualH factor ofH⊗N encoding the contribution to the field
state at (t, x) from the field state at each of its immediate causal
predecessors in (t − 1, x +N ).
6.2.5 Causal Field Theory - Restriction and Evolution
From their definition in Eq. 38, it is easy to see that
morphisms Σt,X 09Σt+k,X k on C can always be factored in the
following way:

Σt,X09Σt,Y09Σt+1,X19Σt+1,Y19 . . .9Σt+k,Xk, (42)

where Yi4X i for all i � 0, . . . , k − 1 and the following holds for
each i � 1, . . . , k:

Y i−1 � ∪
x∈X i

{(t + i − 1, x + δ)∣∣∣δ ∈ N }. (43)

This means that we only need to care about the action of Ψ on
two kinds of morphisms:

• The restrictions Σt,X9Σt,Y , where Y4X ;
• The 1-step evolutions Σt,Y9Σt+1,X , where Y �
∪
x∈X

{(t, x + δ)∣∣∣δ ∈ N }.
The existence of the factorisation above can be proven by

induction, observing that any morphism Σt,X09Σt+1,X 1 factors
into the product:

(Σt,Y09Σt+1,X1)⊗(Σt,X0\Y090/), (44)

where Y0 is defined as before so that Σt,Y0 is exactly the set of
immediate causal predecessors of the codomain Σt+1,X 1.

On restrictions Σt,X9Σt,Y , where Y4X , the functor Ψ is
defined to act by marginalization, discarding the field state over
all those events in the larger slice Σt,X which don’t belong to the
smaller slice Σt,Y :

(45)

On 1-step evolutions Σt,Y9Σt+1,X , where
Y � ∪x∈X {(t, x + δ)∣∣∣δ ∈ N }, the functor Ψ is defined to act by
a combination of evolution by U and marginalization. The
evolution component is simply an application of U to the state
at each event of Y:

8The reason for the negative sign in x − δ is thatN was originally defined to be the
neighborhood in the past.

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 53426515

Gogioso et al. Functorial Evolution of Quantum Fields

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


U⊗Y : H⊗(N×Y) →H⊗(N×Y). (46)

The marginalization component then needs to go from the
codomain H⊗(N×Y) of the map above to the desired codomain
H⊗(N×X). To do this, we recall that the H factor of H⊗(N×X )
corresponding to a given δ ∈ N and a given x ∈ X is intended
to encode the component of the state at (t + 1, x) coming from(t, x + δ). Analogously, the H factor of H⊗(N×Y)

corresponding to a given δ ∈ N and a given y ∈ Y is
intended to encode the component of the evolved state
going to (t + 1, y − δ). Hence to go from H⊗(N×Y) to
H⊗(N×X) we need to discard all factors in H⊗(N×Y)

corresponding to components of the evolved state which
are not going to some (y − δ) ∈ X :

(47)
Putting the evolution and marginalization components

together we get the action of Ψ on 1-step evolutions:

Ψ(Σt,Y9Σt+1,X ) :� ⎛⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎝ ⊗(δ,y)∈N×Y
Fδ,y

⎞⎟⎟⎟⎟⎠+U⊗Y⎞⎟⎟⎟⎟⎠
: H⊗(N×Y) →H⊗(N×X ). (48)

By construction, the above is a G-invariant causal field theory,
completing the definition of our partitioned causal cellular
automaton. If U is an isomorphism, the same construction on
Crev using U−1 provides a causal reversal for Ψ, showing that the
partitioned causal cellular automaton above is reversible under
those circumstances. Finally, Figure 7 below depicts an example
of action on morphisms for a (1 + 1)-dimensional partitioned
causal cellular automaton.

6.3 Sketch of the Continuous Limit for the
Dirac Quantum Cellular Automata
To conclude, we note how in [17] it is argued that the Dirac
equation for free propagation of an electron can be recovered in
the continuous limit of a specific (1 + 1)-dimensional partitioned
QCA. The original argument could not be made fully rigorous,
because the QCAs defined therein were discrete and no setting
was available to the author in which to make proper sense of the
infinite tensor product arising from the limiting construction. A
rigorous analysis of the limit is presented in [31], but the limit
itself exists outside of the QCA framework.

Our definition of CCA, on the other hand, has no requirement
of discreteness. Furthermore, the freedom left in the choice of
field category for a CCA allows us to benefit from the full power of
the non-standard approach to categorical quantum mechanics
[24, 32]. As a consequence, we are able to sketch below a
formalization within our framework of the continuous limit
for the Dirac QCA, following the same lines as the
construction of a (1 + d)-dimensional partitioned CCA above.

The key to obtain a continuous limit for the Dirac QCA is to
rescale the discrete lattice Ω to one with infinitesimal mesh ε:

εΩ :� {ε(t, x) ∣∣∣∣ t ∈ +Z, x ∈ (t, . . . , t) + 2+Zd}, (49)

where +Z are the non-standard integer numbers. The slices are now
allowed to contain an infinite number of points and can be
used to approximate all equal-time partial Cauchy hyper-
surfaces in (1 + d)-dimensional Minkowski spacetime.
Unfortunately, the infinite number of points in our slices
now requires infinite tensor products to be taken: to deal with this,
we use as our field category the dagger compact category +Hilb of
non-standard hyperfinite-dimensional Hilbert spaces, where such
infinite products can be handled safely.

We set the scattering map to be the following non-standard
unitary

U � 1⊕ σXexp(−imεσX)⊕ 1, (50)

where σX is the X Pauli matrix: this is the same unitary used in the
Dirac QCA, but with the real parameter ε turned into an
infinitesimal. Each application of U only inches
infinitesimally further from the identity, but in the non-
standard setting we are allowed to consider the cumulative
effect across infinite sequences of infinitesimally close slices.
The first order approximations to the Dirac equation derived
in [17] turn into legitimate infinitesimal differentials,
connecting the state on each slice to the state on the
(infinitesimally close) next slice: once the standard part is
taken, the lattice εΩ ends up covering the entirety of
(1 + d)-dimensional Minkowski spacetime, the differentials
get integrated and Ψ turns into a continuous-time field
evolution following the Dirac equation.

Remark 47: The power to express limiting constructions
algebraically, without exiting the original framework, is one of
the most attractive aspects of non-standard analysis. The dagger
compact category +Hilb (and other categories derived from it) can
be used to make categorical sense of constructions from quantum
field theory [24, 32], including other cellular automata with field-
theoretic continuous limits. The formulation of such limits within
our framework is an point of great interest, but is left to
future work.

7 CONCLUSION AND FUTURE WORK

In this work, we have defined a functorial, theory-independent
notion of causal field theory founded solely on the order-theoretic
structure of causality. We have seen how the causality requirement
for such field theories is automatically satisfied as a consequence of
symmetry-breaking in the ordering on space-like slices. In an effort
to connect to Algebraic Quantum Field Theory (AQFT), we have
constructed complex spaces of states over regions of spacetime and
discussed how the associated information redundancy can be
reduced in selected cases. We have introduced symmetries in
our framework and shown that Quantum Cellular Automata
(QCA) can be modeled within it, both in their traditional
discrete formulation and in their continuous limit.

Despite our efforts, we feel we have barely scratched the surface on
the potential of this material. In the future, we envisage three lines of
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research stemming from this work. Firstly, we believe that the
connection with AQFT can be strengthened and honed to the
point that the framework will be a tool for the construction of
new models. This includes a thorough understanding of the
structure of spaces of states for categories of slices more general
than those induced by foliations. Secondly, we wish to further
explore and fully characterise the possibilities associated with
working in the continuous limit of QCAs, with an eye to
applications in perturbative quantum field theory. Finally, we
plan to extend the framework in a number of directions,
including indefinite causal order—already achieved for QCAs
by [30], at least in partial form—enrichment and the possibility
of working with restricted classes of causal paths (in temporal
analogy to categories of slices).
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