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Electron correlations play a central role in iron-based superconductors. In these
systems, multiple Fe 3d-orbitals are active in the low-energy physics, and they are
not all degenerate. For these reasons, the role of orbital-selective correlations has
been an active topic in the study of the iron-based systems. In this article, we survey
the recent developments on the subject. For the normal state, we emphasize the
orbital-selective Mott physics that has been extensively studied, especially in the iron
chalcogenides, in the case of electron filling n ∼ 6. In addition, the interplay between
orbital selectivity and electronic nematicity is addressed. For the superconducting
state, we summarize the initial ideas for orbital-selective pairing and discuss the recent
explosive activities along this direction. We close with some perspectives on several
emerging topics. These include the evolution of the orbital-selective correlations,
magnetic and nematic orders, and superconductivity as the electron filling factor is
reduced from 6 to 5, as well as the interplay between electron correlations and
topological band structure in iron-based superconductors.
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1 INTRODUCTION

Since the discovery of superconductivity in F-doped LaFeAsO [1], the study of iron-based
superconductors (FeSCs) has been one of the most active fields in condensed matter physics.
The FeSCs feature a large family of materials, which are divided into two major classes, the
iron pnictides and iron chalcogenides. The highest superconducting transition temperature
(Tc) is at 56 K for the iron pnictides [2, 3] and 65 K or even higher in the single-layer iron
chalcogenide [4–8]. It is believed that the high-temperature superconductivity in the FeSCs
originates from electron-electron interactions [9–14]. This motivates the consideration of
similarities and differences between the FeSCs and other correlated superconductors,
especially the cuprates [15]. Similar to the cuprates, most parent compounds of FeSCs
have an antiferromagnetically (AFM) ordered ground state [12, 16], and the
superconductivity emerges within a certain range of chemical doping. In contrast with
the cuprates, most, though not all, parent iron pnictides and iron chalcogenides are metals
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[9–14], typically exhibiting electron and hole Fermi pockets
as revealed by angle resolved photoemission spectroscopy
(ARPES) measurements [17].

These properties raise important questions about the role of
electron correlations in the FeSCs and how the correlations
interplay with the superconductivity in these materials. In this
review, we survey recent developments on the orbital-selective
electron correlations in the FeSCs.

1.1 Electron Correlations in the FeSCs
We start by outlining the two important issues regarding the
electron correlations of the FeSCs. The first issue concerns the
overall strength of the electron correlations. The parent FeSCs are
bad metals [18, 19], with the room-temperature electrical
resistivities reaching the Mott-Ioffe-Regel limit and
corresponding to the product of Fermi wave vector and mean-
free path being of order unity. TheMott-Ioffe-Regel criterion [20]
signifies a system with a metallic ground state and with strong
electron correlations. Further evidence for the bad metal behavior
comes from the optical conductivity measurement, which showed
that the Drude weight is considerably reduced by the electron
correlations [21–25]. In relation to this, the effective mass of the
single-electron excitations is much enhanced from their non-
interacting counterpart, with the enhancement factor ranging
from 3 to 20 across the FeSC families [17, 26–30]. These bad-
metal characteristics, together with the existence of a large spin
spectral weight observed by neutron scattering experiments
(already for the parent iron pnictides [31, 32]) and a number
of other characteristics from measurements such as the X-ray
emission [33] and Raman scattering [34] spectroscopies, imply
that the parent FeSCs possess a considerable degree of electron
correlations. Indeed, the integrated spin spectral weight measured
from the dynamical spin susceptibility is at the order of 3 μ2B per
Fe in the parent iron pnictides, which is too large to be generated
by particle-hole excitations in the Fermi-surface nesting picture
but is consistent with the spin degrees of freedom being
dominated by the contributions from the incoherent electronic
excitations [32]. The total spin spectral weight is even larger in the
iron chalcogenides [11–13].

All of these experimental results suggest that the parent FeSCs are
in the bad metal regime which is close to a metal-to-Mott-insulator
transition (MIT). This regime can be described by a w-expansion
around the MIT within the incipient Mott picture [18, 35, 36], where
w is the overall fraction of the electron spectral weight that occupies
the coherent itinerant part. To the zeroth order inw, the spin degrees
of freedom appear in the form of quasilocalized magnetic moments
with frustrated exchange interactions; this picture anchors the
description of the AFM order and the associated magnetic
fluctuations. The importance of such incoherent electronic
excitations to the low-energy physics of the FeSCs has also been
emphasized from related considerations [37–48, 50–56].

1.2 Orbital-Selective Correlations and
Orbital-Selective Superconducting Pairing
The other, related, issue is the multiorbital nature of the
low-energy electronic structure of FeSCs. As illustrated in

Figures 1A,B, the Fermi surface of the parent FeSCs consists
of several pockets, and each pocket contains contributions from
multiple Fe 3d orbitals. The Fe ion has a valence of +2,
corresponding to n � 6 electrons occupying its five 3d orbitals.
These orbitals are not all degenerate, and there are an even
number of electrons per Fe site. Thus, the MIT in such
systems, if it does take place, is expected to be quite distinct.
The common tetragonal structure of FeSCs only preserves the
degeneracy between the dxz and dyz orbitals. The partially lifted
orbital degeneracy may cause the effects of the electron
correlations to be orbital dependent. As a simple example,
consider a system with two nondegenerate orbitals. The
bandwidths or the electron fillings in these two orbitals are
generically different. Thus, even for the same Coulomb
repulsion, the degree of electron correlations is expected to be
different, and this difference is denoted as orbital selectivity. The
case of extreme distinction corresponds to an orbital-selective
Mott phase (OSMP): as sketched in Figure 1C, orbital 2 becomes
a MI where the electrons are fully localized, while orbital 1
remains metallic. The notion that some orbitals can be driven
through a delocalization-localization transition while the others
remain delocalized can be traced back to the physics of Kondo
destruction in f-electron physics [57–59]. For d-electron systems,
the OSMP was first considered for Ca2−x SrxRuO4 [60] within a
multiorbital model whose kinetic part is diagonal in the orbital
basis, for which the orbital and band bases are the same.

An important characteristic of the FeSCs is that different
orbitals are coupled to each other, as dictated by the
crystalline symmetry, and this makes the consideration of the
OSMP especially nontrivial. Here, the treatment of the orbital-
selective correlation effect in multiorbital models with such
interorbital coupling was introduced in [61]. The analysis of
[61] sets the stage for realizing

(1) An OSMP in the multiorbital Hubbard models for the iron
chalcogenides [62]. Here, the dxy states are localized while the
other 3d states are delocalized with nonzero coherent spectral
weight. This is so in spite of the fact that the bare
Hamiltonian contains a kinetic coupling between the dxy
and other 3d orbitals of Fe;

(2) A distinct crossover [dashed line, Figure 2A], with the
increasing strength of the interactions, from the regime of
a weakly correlated metal into an OSMP-proximate regime
[62–64]. In this regime, dubbing a “strongly correlated metal”
(SCM), all the orbitals remain itinerant but some of the
orbitals have substantially reduced and orbitally
differentiated quasiparticle weights.

The theoretical work went together with the experimental
observation of an OSMP in several iron chalcogenides [29, 30,
65]. The mechanism for the suppression of interorbital
coupling by the correlation effects, which allows for the
OSMP, is further clarified in terms of a Landau free-energy
functional in [66]. (Related microscopic studies have been
carried out in [67].) In all these analyses, the interplay
between the Hund’s coupling (JH) and Hubbard interaction
(U) plays a crucial role (see the discussions below and in
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Figures 2, 3). A complementary approach to the correlation
effects describes the localization-delocalization phenomena in
the form of orbitally differentiated coherence-incoherence
crossover, referred to as Hund’s metal [39, 68, 69]; this
approach leads to results that share considerable
commonality to those arising from the orbital-selective

Mott physics. Very recently, the low-temperature
emergence of the OSMP has been identified in FeTe1−x Sex
near the FeTe end (x→ 0) [70]. In addition, the orbital-
selective Mott correlations have been advanced as the
mechanism for the striking renormalization to the Fermi
surface and low-energy electronic dispersion of LiFeAs [71].

FIGURE 1 | (A): Fermi surface of a five-orbital multiorbital Hubbard model for the iron pnictides, consisting of both hole (black symbols) and electron (red symbols)
pockets. The 1-Fe Brillouin zone (BZ) is used hereafter. (B)Orbital weights (O.W.) along the electron pocket centered at (π,0). θ is defined in panel (A), adapted from [72].
(C) Sketch of the orbital-selective Mott phase in a two-orbital model. Orbital 1 is metallic, with its renormalized bandwidth being nonzero, and orbital 2 is a Mott insulator
where the active degree of freedom is a magnetic moment localized at each site. Note that interorbital coupling is in general nonzero in the kinetic part of the
Hamiltonian. The OSMP can develop only when the corresponding interorbital coupling is renormalized to zero.

FIGURE 2 | (A) Ground-state phase diagram of the five-orbital multiorbital model for alkaline iron selenides at commensurate filling n � 6. The dark and light gray
regions correspond to the MI and OSMP, respectively. The orange dashed line refers to a crossover between the weakly correlated metal (WCM) and badmetal (strongly
correlated metal, SCM). (B) and (C) The evolution of the orbital resolved quasiparticle spectral weights [in (B)] and electron filling factor per spin [in (C)] with U in the
five-orbital model at JH/U � 0.2, adapted from [62].
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The recognition of the orbital-selective correlations has led to
the initial work on the orbital-selective pairing [72]. This notion
was motivated by—and applied to the analysis of—the properties
of the superconducting state in the under-electron-doped
NaFeAs [73]. In other theoretical approaches, various forms of
orbital-selective pairing were considered in the contexts of the
FeSCs [74, 75].

1.3 Perspective and Objective
Because most of the parent compounds are not Mott insulators
(MIs), assessing the strength of electron correlations has been an
important topic since the beginning of the FeSC field. In
principle, the AFM ground state and the superconducting state
nearby may originate from the Fermi surface nesting mechanism
of a weak-coupling theory [76–80].

As outlined above, the correlation strength of the FeSCs is
intermediate: here, the Coulomb repulsion and the bandwidth are
similar in magnitude, and the competition between the electrons’
itineracy and localization is the most fierce. Spectroscopy
measurements have provided ample evidence that, for the
parent compounds of the FeSCs, the incoherent part of the
electron spectral weight (1 − w) is larger than the coherent
counterpart w, which provides a microscopic definition of a
bad metal. The full force of the electron correlations in the
FeSCs has now become quite apparent [13, 81–98]. In leading
toward this understanding, the orbital-selective aspects of the
correlations and pairing have played an important role.

Recognizing that the study of the orbital-selective correlations
and pairing has had explosive developments in recent years, here
we survey the recent theoretical progress on the orbital selectivity
for both the normal and superconducting states in multiorbital
models for FeSCs. We focus on the MIT at n � 6 and show how
the Hund’s coupling stabilizes a bad metal phase with a large

orbital selectivity. Especially for the iron chalcogenides, an
OSMP—with the dxy orbital being Mott localized and the
other 3d orbitals remaining itinerant—appears in the phase
diagram. We further discuss the experimental evidences for
the orbital selectivity as well as the implications of the orbital-
selective correlations for the magnetism, electronic nematicity,
and superconductivity of FeSCs. For the superconducting state,
we summarize how the orbital-selective superconducting pairing
not only accounts for the strikingly large superconducting gap
anisotropy, but also gives rise to novel pairing states. The latter
clarifies a number of puzzles in alkaline iron selenides. We note
that the orbital-selective correlations correspond to a very broad
and active subject. Thus, instead of aiming to be comprehensive,
here we review the conceptual and model studies of the orbital-
selective Mott physics in the normal state and, relatedly, of the
orbital-selective pairing in the superconducting state.

We also note that standard weak-coupling approaches (see, e.g.,
[99]) do not capture the orbital-selective Mott regime. However, the
orbital-selective correlation effects, with some orbitals having
substantially reduced and orbitally differentiated quasiparticle
weights similar to what we summarize here, have more recently
been incorporated in a phenomenological way [100, 101] into the
weak-coupling approaches. Some of the limitations of the weak-
coupling analyses have been suggested [100, 101] to be remedied by
this phenomenological approach, but other issues inherent to the
weak-coupling treatments—such as the under-accounting of the spin
spectral-weight—remain [31] within the phenomenological
approach.

The rest of the manuscript is organized as follows: in Section 2
we first briefly introduce the multiorbital Hubbard model for
FeSCs and outline the U(1) slave-spin theory [63, 66] used for
studying the MIT in this model. This approach accounts for the
proper symmetry of the involved phases. We also consider a

FIGURE 3 | Illustrating the effect of the interorbital kinetic hybridization in theU(1) slave-spin theory. The black curve shows the effective spinon dispersion, which is
described byWαβ

k f†kασ fkβσ . (The physical spin index σ is suppressed in the figure legends.) Meanwhile, the slave-spin Sα experiences a local field, hα � ∑βQ
f
αβ〈~zβ〉, where

Qf
αβ ∝ 〈~zα〉〈~z†β〉. The red arrows indicate the self-consistency betweenWαβ

k and hα, which results in a biquadratic interorbital coupling as shown in Eqs. 12,13, adapted
from [66].

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 5783474

Yu et al. Orbital Selective Correlations and Superconductivity

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Landau free-energy functional that demonstrates how an OSMP
can be robust in spite of a nonzero bare interorbital kinetic
hybridization. We proceed to address the bad metal behavior and
the OSMP that is identified in the phase diagram of this model
and discuss the implication for the nematic phase of iron selenide.
In Section 3 we set up the multiorbital t-J model for studying the
superconductivity of FeSCs and discuss the main results of the
orbital-selective superconducting pairing and its implications. In
Section 4 we present a brief summary and an outlook for several
emerging directions.

2 ORBITAL-SELECTIVE CORRELATIONS IN
THE NORMAL STATE OF IRON-BASED
SUPERCONDUCTORS

To study the effects of orbital-selective correlation, we consider a
multiorbital Hubbard model for the FeSCs. The Hamiltonian reads

H � HTB +Hint. (1)

HereHTB is a tight-binding model that contains multiple Fe 3d
orbitals and preserves the tetragonal lattice symmetry of the
FeSCs in the normal state. The tight-binding parameters are
obtained by fitting to the DFT band structure of specific
compounds. A number of tight-binding models, ranging from
two to five orbital models, have been proposed for FeSCs [77, 78,
102–106]. In principle, any of these models can be used to
illustrate the correlation effects. In practice, we adopt the more
realistic five-orbital models, which capture the salient features of
the electronic structure and Fermi surface and facilitate a direct
comparison to the experimental results. As already stressed, the
tetragonal symmetry dictates that interorbital hopping
amplitudes are allowed and the fitted tight-binding parameters
do show that such hopping amplitudes are nonzero. Specifically,
the noninteracting part of the Hamiltonian is written as

HTB � 1
2
∑
ijαβσ

tαβij d
†
iασdjβσ +∑

iασ

(Λα − μ)d†
iασdiασ . (2)

Here, d†iασ creates an electron in orbital (� 1, . . . , 5) with spin σ
at site i; tαβij , with i≠ j, are the tight-binding parameters, with those
for α≠ β describing the interorbital couplings; andΛα refers to the
orbital-dependent energy levels, associated with the crystal field
splittings, and is diagonal in the orbital basis. In particular, the C4

symmetry dictates that dxz and dyz are degenerate, but no
symmetry enforces any degeneracy between the dxy orbital and
the other orbitals. Indeed, for any orbital β≠ xy,
Λxy,β ≡ Λxy − Λβ ≠ 0. The chemical potential μ controls the
total electron number n that occupies the 3d orbitals of each
Fe site. In the model, n � 6 for the parent (undoped) compound.

The onsite interaction Hint takes the following form:

Hint � U
2
∑
i,α,σ

niασniασ + ∑
i,α< β,σ

{U ′niασniβσ + (U ′ − JH)niασniβσ}
− JH ∑

i,α< β,σ
(d†iασdiασd†iβσdiβσ + d†

iασd
†
iασdiβσdiβσ), (3)

where niασ � d†iασdiασ . Here, U and U ′ denote the intraorbital and
interorbital repulsion, respectively, and JH is the Hund’s rule
exchange coupling. These coupling parameters satisfy U ′ � U −
2JH [107].

2.1 The U(1) Slave Spin Theory
The multiorbital system described by the model in Eq. 1
undergoes a MIT driven by the electron correlations at any
commensurate electron filling. This transition can be studied
by using a U(1) slave-spin theory [63, 66]. In this subsection we
summarize the theoretical approach for the MIT and show that,
besides the conventional metallic and Mott insulating phases,
there is also an OSMP as the ground state of the system.

Slave-particle (or parton) construction has a long history in
the study of correlated systems [108–111]. For the single orbital
Hubbard model, the slave boson method of [111] has been
successfully applied. But the construction of this theory for an
M-orbital Hubbard model would require 4M slave bosons, which
is not feasible for the case of FeSCs where M � 5. More recent
variations include slave rotor [112] and Z2 slave-spin [113]
formulations. For the purpose of describing the MIT, the Z2

gauge structure [113–115] is problematic given that the MIT
concerns the (de)localization of a U(1)-symmetric charge
degrees of freedom [116]. The U(1) slave-spin formulation is
more suitable, given that it captures the symmetry of the pertinent
phases.

In the U(1) slave-spin formulation [63, 66], the electron
creation operator is represented as

d†iασ � S+iασ f
†
iασ . (4)

Here the XY component of a quantum S � 1/2 spin operator
(S+iασ) is used to represent the charge degree of freedom of the
electron at each site i, for each orbital α and each spin flavor σ.
Correspondingly, the fermionic “spinon” operator, f †iασ , is used to
carry the spin degree of freedom. To restrict the Hilbert space to
the physical one, a local constraint

Sziασ � f †iασ fiασ −
1
2
, (5)

is implemented. This representation contains a U(1) gauge
redundancy corresponding to f †iασ → f †iασe

−iθiασ and
S+iασ → S+iασeiθiασ . In parallel to the slave-rotor approach [112],
in this representation, the slave spins carry the U(1) charge.
Correspondingly, the U(1) slave-spin theory can naturally
describe the MIT, including in multiorbital settings.

To construct a saddle-point theory, one has to work within the
Schwinger boson representation of the slave spins. A detailed
derivation of the saddle-point equations can be found in [63, 66].
Here, for conciseness, we will mostly stay in the slave-spin
representation and simply describe the main results. To ensure
that the quasiparticle spectral weight in the noninteracting limit is
normalized to 1 at the saddle point level, and in analogy to the
standard treatment in the slave-boson theory [111], we define a
dressed operator:

ẑ†iασ � P+
iασS

+
iασP

−
iασ , (6)
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where the projectors P ±
iασ � 1/

�����������
1/2 + δ ± Sziασ

√
and δ is an

infinitesimal positive number to regulate P ±
iασ . Next we rewrite

Eq. 4 with the dressed operator to d†iασ � ẑ†iασ f
†
iασ . The

Hamiltonian, Eq. 1, is then effectively rewritten as

H � 1
2
∑
ijαβσ

tαβij ẑ
†
iασ ẑjβσ f

†
iασ fjβσ +∑

iασ

(Λα − μ)f †iασ fiασ − λiασ[f †iασ fiασ
− Sziασ] + HS

int. (7)

Here, we have introduced the Lagrange multiplier λiασ to
enforce the constraint in Eq. 5. In addition, HS

int is the
interaction Hamiltonian, Eq. 3, rewritten in terms of the
slave-spin operators [61] as follows:

HS
int � ∑

i

⎧⎪⎨⎪⎩U ′

2
⎛⎝∑

ασ

Sziασ⎞⎠
2

+ U − U ′

2
∑
α

⎛⎝∑
σ

Sziασ⎞⎠
2

− JH
2
∑
σ

⎛⎝∑
α

Sziασ⎞⎠
2

− JH ∑
α< β

[S+iα↑S−iα↓S+iβ↓S−iβ↑
− S+iα↑S

+
iα↓S

−
iβ↓S

−
iβ↑ + H.c.]⎫⎪⎬⎪⎭. (8)

One practical way is to neglect the spin flip terms in Eq. 8
without affecting the qualitative results [63]. The quasiparticle
spectral weight is defined as

Ziασ � |ziασ |2 ≡ |〈ẑiασ〉|2. (9)

A metallic phase corresponds to Ziασ > 0 for all orbitals, and a
Mott insulator corresponds to Ziασ � 0 in all orbitals with a
gapless spinon spectrum.

At the saddle-point level, the slave-spin and spinon operators are
decomposed and the constraint is treated on average. We obtain two
effective Hamiltonians for the spinons and the slave spins, respectively:

Heff
f � ∑

kαβ

[ϵαβk 〈~z†α〉〈~zβ〉 + δαβ(Λα − λα + ~μα − μ)]f †kαfkβ, (10)

Heff
S � ∑

αβ

[Qf
αβ(〈~z†α〉~zβ + 〈~zβ〉~z†α) + δαβλαS

z
α] +HS

int, (11)

where δαβ is Kronecker delta function, ϵαβk � 1/N∑ijσ t
αβ
ij e

ik(ri−rj),
Qf

αβ � ∑kσϵ
αβ
k 〈f †kασ fkβσ〉/2, and ~z†α � 〈P+

α〉S+α〈P−
α〉. Finally, ~μα is an

effective onsite potential defined as ~μα � 2ϵαηα, where ϵα �∑β(Qf
αβ〈~z†α〉〈~zβ〉 + c.c.) and ηα � (2nfα − 1)/[4n f

α(1 − n f
α)],

with n f
α � 1/N∑k〈 f †kαfkα〉.

We study the MIT in the paramagnetic phase preserving the
translational symmetry and can hence drop the spin and/or site
indices of the slave spins and the Lagrange multiplier in the
saddle-point equations, (10)(11). The parameters zα and λα are
then solved self-consistently.

2.2 Landau Free-Energy Functional for
Orbital-Selective Mott Physics
As described earlier and illustrated in Figure 1C, the OSMP can
develop only when (at least) one of the orbitals becomes localized,

while the others remain delocalized. How can this be possible in a
multiorbital model with nonzero bare interorbital coupling
between orbitals? While the U(1) slave-spin approach found
an affirmative answer, it is important to ask whether the result of
this microscopic approach is robust. To do so, we construct a
Landau theory based on the slave-spin formulation [66]. We start
from the saddle-point Hamiltonians Eq. 10. Consider first Eq. 10,
where the kinetic hybridization between two different orbitals
α≠ β isWαβ

k f †kα fkβ, withW
αβ
k � ϵαβk 〈~z†α〉〈~zβ〉∝ 〈~z†α〉〈~zβ〉. Because

f †kα fkβ is conjugate to Wαβ
k , from the linear response theory, it is

easy to show that 〈f †kα fkβ〉∝Wαβ
k ∝ 〈~zα〉〈~z†β〉. As a result, the

kinetic hybridization of the spinons is

〈Heff
f 〉

αβ
� ∑

k

εαβk 〈~z†α〉〈~zβ〉〈 f †kα fkβ〉∝ |〈~zα〉|2
∣∣∣∣〈~zβ〉∣∣∣∣2. (12)

Next for Eq. 11, we can define an effective field of
hα � ∑βQ

f
αβ〈~zβ〉. For similar reasoning as mentioned above,

we obtain Qf
αβ ∝ 〈~zα〉〈~z†β〉, which leads to

〈Heff
S 〉αβ → |〈~zα〉|2

∣∣∣∣〈~zβ〉∣∣∣∣2. (13)

Note that Eq. 13 are natural consequence of Eq. 11, and this
self-consistent procedure of the saddle-point theory is illustrated
in Figure 3. Based on Eq 12 we can construct a Landau free-
energy functional in terms of the quasiparticle weights, zα. For
simplicity of notation, we consider a two-orbital model, but our
analysis straightforwardly generalizes to the case of more than
two orbitals. The free-energy density reads

f � ∑
α�1,2

(rα|zα|2 + uα|zα|4) + v|z1|2|z2|2, (14)

in which the quadratic terms rα|zα|2 arise from the kinetic energy
of the saddle-point Hamiltonian in Eq. 11 [as well as in Eq. 10].
The biquadratic coupling v term comes from the kinetic
hybridization in Eq 13. The biquadratic nature of this
intraorbital coupling—as opposed to the bilinear form—is
crucial to the stabilization of an OSMP. This can be seen by
taking the derivatives of Eq. 14 with respect to |zα|. Besides the
conventional metallic phase with |z1|≠ 0, |z2|≠ 0 and the MI with
|z1| � |z2| � 0, Eq. 14 supports a third solution with |z1| � 0,
|z2| �

��������−(r2/2u2)
√

(or |z2| � 0, |z1| �
��������−(r1/2u1)

√
), which

corresponds to an OSMP.

2.3 Orbital-Selective Mott Physics in FeSCs
We now turn to microscopic studies of the MIT. A realistic
microscopic model for FeSCs is described in Eq. 1. Owing to its
multiorbital nature, the MIT in this model shows unique features.
First, the parent compound corresponds to n � 6, containing an
even number of electrons per Fe ion. Since Mott transition is
more readily defined in systems with an odd number of electrons
per unit cell, this makes it a nontrivial question whether the
model generally supports a MI in the strong correlation limit.
Second, besides the Coulomb repulsion U, the Hund’s rule
coupling JH also plays a very important role in settling the
ground states of the model and, as we will see, plays an
important role in realizing an OSMP.
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TheMIT in the multiorbital model for FeSCs at n � 6 has been
studied by using the slave-spin methods introduced in Section
2.1. In the following, we present the resulting phase diagram for
alkaline iron selenides. As shown in Figures 2A, a MI is generally
stabilized in the phase diagram when the Coulomb repulsion U is
sufficiently strong. The critical value Uc for the Mott transition
displays a nonmonotonic dependence on the Hund’ coupling JH .
This is a general feature of the MIT of the multiorbital Hubbard
model away from half-filling and can be understood as follows
[63]: naively the MIT takes place when the Mott gap at the atomic
limit GA approaches the bare bandwidth of the tight-binding
model D. In the weak JH limit, the MI is dominated by the low-
spin S � 1 configuration and correspondingly GA ∼ U + JH . This
leads to Uc ∼ D/(1 + JH/U); namely, Uc decreases with JH/U . On
the other hand, for large JH/U , the high-spin S � 2 configuration
dominates in the MI state and GA ∼ U − 3JH . Consequently,
Uc ∼ D/(1 − 3JH/U) increases with JH/U .

Importantly, the Hund’s coupling already strongly affects the
properties of the metallic state. For JH/Ua0.1, the system
undergoes a crossover from a weakly correlated metal (WCM)
to a bad metal with increasing U [shown as the dashed line in
Figure 2A]. As illustrated in Figure 2B, the orbital resolved
quasiparticle spectral weight Zα in each orbital α rapidly drops
across this crossover. Inside the bad metal phase, Zα becomes
strongly orbital dependent. This large orbital-selective correlation
is rather surprising given that the strength of the onsite
interaction is identical for each orbital. To understand the
strong orbital selectivity, note that the Hund’s coupling
suppresses interorbital correlations. For large Hund’s coupling,
this causes an effective orbital decoupling between any two
nondegenerate orbitals and hence promotes the S � 2 high-
spin configuration in the bad metal regime. As a result of the
orbital decoupling, the correlation effect in each nondegenerate
orbital depends on its filling factor nα. This is clearly seen in
Figures 2B,C: the dxy orbital experiences the strongest correlation
effect and nxy is the closest to 1/2; while the least correlated 3z2 − r2

orbital has the largest filling away from 1/2.
Further increasing U in the bad metal phase, the system

undergoes a transition to the OSMP. In this phase the dxy
orbital is fully Mott localized (Zxy � 0) whereas the electrons
in other Fe 3d orbitals are still itinerant (Zα > 0). Besides the
aforementioned orbital decoupling effect, several other factors are
also important for stabilizing the OSMP. First, the bare
bandwidth projected to the dxy orbital is smaller than that of
the other orbitals. Second, the orbital fluctuations in the
degenerate dxz and dyz orbitals make the threshold interaction
needed for their Mott localization larger than that for the
nondegenerate dxy orbital, although the filling factors of these
three orbitals are all close to 1/2. Taking into account all these
factors, the dxy orbital has the lowest interaction threshold for the
Mott transition, at which the OSMP takes place. Because only the
dxy orbital is Mott localized, the OSMP survives nonzero doping,
while the MI can only be stabilized as a ground state at
commensurate fillings. It is worth noting that, for a particular
system, whether an OSMP is stabilized depends on the
competition of the above factors. For example, the OSMP is
stabilized in the model for KxFe2−ySe2 but not that for LaOFeAs

[62, 63]. (However, the OSMP-proximate SCM regime, which
displays strong orbital selectivity in the quasiparticle weight, does
exist in the model for LaOFeAs [63].) This is mainly because the
bare bandwidth of the dxy orbital is sufficiently smaller than that
of the other orbitals in KxFe2−ySe2, but the difference in the bare
bandwidths is less pronounced in the case of LaOFeAs. Even
though an OSMP is not stabilized as the true ground state for this
iron pnictide, it is energetically competitive [63]. As such, the
OSMP can be viewed as the anchoring point for the strong
orbital-selective correlation effects and the associated bad
metal behavior both in the case of the iron selenides and iron
pnictides.

The OSMP is supported by additional theoretical studies.
Orbital differentiation in KxFe2−ySe2 has also been analyzed in
DFT + DMFT calculations [117]. Besides the case of the
multiorbital models for KxFe2−ySe2 and related iron
chalcogenides and LiFeAs, strong orbital-selective correlations
and OSMP have been evidenced in several other multiorbital
models for FeSCs [40, 118, 119]. Additionally, the conclusions of
the U (1) slave-spin analysis, regarding both the rapid crossover
into the OSMP-proximate SCM regime and the development of
the OSMP phase, are confirmed by studies of the multiorbital
Hubbard models for the FeSCs based on a Gutzwiller
approximation [120]. Note that there has also been theoretical
efforts to feed the results of the mechanistic studies on the orbital-
selective correlations into the weak-coupling approaches, by
incorporating the orbital selectivity in the weak-coupling
calculations via phenomenological parameters [100, 101].
Experimentally, ARPES measurements provide clear evidence
[29, 30] for OSMP in iron chalcogenides. As temperature goes
above about 100 K, the spectral weight for the dxy orbital vanishes,
while that for the dxz/yz orbitals does not change much [30]. The
behavior is similar for all the iron chalcogenides studied as well as
for the alkaline iron pnictide [121], which suggests a universal
crossover to the OSMP in FeSCs [30]. Additional evidence for the
OSMP has come from THz spectroscopy [122], Hall
measurements [123], pump-probe spectroscopy [124], and high-
pressure transport measurements [125]. Moreover, a variety of
other Fe-based systems have been studied for the orbital-selective
Mott behavior [82–87, 98]. We note in passing that related orbital-
selective correlation effects have recently been discussed in the
multiorbital 5f -based actinide systems [126, 127].

2.4 Orbital Selectivity in the Nematic Phase
of FeSe
In most iron pnictides, lowering the temperature in the parent
compounds gives rise to a tetragonal-to-orthorhombic structural
transition at Ts. Right at or slightly below Ts, the system exhibits a
transition to a collinear (π, 0) AFM state [12]. The origin of the
nematicity below Ts has been widely discussed [18, 36, 47–49],
and a likely explanation is an Ising-nematic transition of
quasilocalized magnetic moments, described by an effective
J1 − J2-like model [18, 36, 47, 48].

Experiments in bulk FeSe do not seem to fit into this
framework. Under ambient pressure, a nematic phase without
an AFM long-range order is stabilized in the bulk FeSe below the
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structural transition at Ts ≈ 90 K. This suggests an unusual type
of magnetism in the ground state [128, 129]. The nematic order
parameter linearly couples to the splitting between the dxz and dyz
orbitals, which can be experimentally detected. In the nematic
phase of FeSe, ARPES measurements find this splitting to be
momentum dependent, and the splittings at both the Γ and M
points of the Brillouin zone (BZ) [130–137], ΔEΓ and ΔEM,
respectively, are relatively small (less than 50 meV).
Meanwhile, recent scanning tunneling microscopy (STM)
experiments have revealed a strong orbital selectivity [138,
139]. Especially, the estimated ratio of the quasiparticle
spectral weights between the yz and xz orbitals is very large:
Zyz/Zxz ∼ 4. Given the small splitting between these two orbitals
[131, 136], such a strong orbital selectivity is surprising [140].

To resolve this puzzle, we examine the electron correlation
effects in a multiorbital Hubbard model for the nematic phase of
FeSe using theU(1) slave-spin theory. To generate a momentum-
dependent orbital splitting, besides the momentum-independent
ferro-orbital order (δf ), we have also taken into account a d- and
an s-wave bond nematic order (δd and δs), which corresponds to
the nearest-neighboring hopping anisotropy [141]. We add the
Hamiltonian Hnem that describes the effects of these nematic
orders in the dxz and dyz orbital subspace (α � 1, 2) into Eq. 1. In
the momentum space

Hnem � ∑
k

[ − 2δd(cos kx − cos ky)(nk1 + nk2) − 2δs(cos kx
+ cos ky)(nk1 − nk2) + δf (nk1 − nk2)]. (15)

By solving the saddle-point equations, we show that the OSMP
is promoted by any of these nematic orders, as illustrated in

Figure 4A. This effect is delicate, because we also find that the full
Mott localization of the system depends on the type and strength
of the nematic order [142]. Remarkably, we find that, by taking a
proper combination of the three types of nematic order, the
system can exhibit a strong orbital selectivity with Zyz/Zxz ∼ 4
while, at the same time, shows a small band splittings at the Γ and
M points of the BZ (with ΔEΓ, ΔEM(50 meV) as a result of a
cancellation effect (see Figures 4B,C) [142]. These results
reconcile the seemingly contradictory ARPES and STM results.
The explanation of the unusually large orbital selectivity in the
nematic phase of FeSe [138, 139] further shed light to the
understanding of the superconductivity in this compound,
which we will discuss in Section 3.3.

3 ORBITAL-SELECTIVE
SUPERCONDUCTING PAIRING

In Section 2 we have discussed the orbital-selective electron
correlations in the normal state of FeSCs. It is natural to ask
whether the strong orbital selectivity can affect the pairing
symmetry and amplitudes in the superconducting states. The
effects of orbital selectivity on superconductivity are two-fold.
The orbital selectivity modifies the band structure from its
noninteracting counterpart. This has been verified by ARPES
measurements [30, 65, 121]. In addition, the orbital selectivity
influences the effective interactions projected to the pairing
channel. In the following, we study these effects in a frustrated
multiorbital t-J model. We show that any interorbital pairing has
a negligible amplitude; the structure of the pairing state is then
reflected in the pairing amplitude being orbital dependent, which

FIGURE 4 | (A) Ground-state phase diagram of the five-orbital Hubbard model for FeSe with a ferro-orbital order δf at JH/U � 0.25. (B) The orbital-selective
quasiparticle spectral weights in the nematic phase with a combined nematic order δf /4 � δd � δs � 0.2 eV and with JH/U � 0.25. (C) Band splittings at Γ (ΔEΓ ) and M
(ΔEM) points of the 2-Fe BZ in the nematic phase with the same set of parameters as in (B), adapted from [142].
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is denoted as orbital-selective pairing. In FeSCs, this may give rise
to superconducting gaps with unexpectedly strong anisotropy as
well as new type of pairing states that has no single-orbital
counterpart; we will discuss how both types of effects play an
important role in several iron pnictide and iron chalcogenide
compounds [72, 143, 144].

3.1 Superconducting Pairing in the
Multiorbital t-J Model
The bad metal behavior in the normal state implies strong
electron correlations in FeSCs. In strongly correlated systems,
the effective superconducting pairing has to avoid the penalty
from the Coulomb repulsion. Even though the parent compound
is not a MI, the superconducting phase in most cases is in
proximity to an AFM phase. This suggests that the AFM
exchange interaction plays a very important role for
superconductivity. It has been shown theoretically that the
AFM exchange interaction is enhanced in the bad metal
(0<Z≪ 1) regimes near the Mott transition [145]. In a
multiorbital correlated system, similar enhancement is
anticipated when the system is close to an OSMP. We
therefore proceed to study the superconducting pairing within
the framework of a multiorbital t-J model, such that the orbital
selectivity in the normal state is taken into account.

The effective Hamiltonian of the model has the following
form [144].

Heff � ∑
ij,αβσ

( ����
ZαZβ

√
tαβij − ~λαδαβ)f †i,α,σ fj,β,σ − ∑

ij,αβ

Jαβij f
†
j,β,↓f

†
i,α,↑fi,α,↓fj,β,↑.

(16)

Here, the bands are renormalized by the quasiparticle spectral
weights Zα’s; as we described in the previous section, the orbital
(α) dependence of this weight reflects the orbital selectivity in the
normal state. In addition, ~λα is the effective energy level that takes
into account the correlation effect (see Eq. 10); Jαβij refers to the
orbital-dependent AFM exchange couplings, which can be
obtained by integrating out the incoherent single-electron
excitations via either the slave-rotor [145] or slave-spin [146]
approach. It is generically a matrix in the orbital space. However,
the interorbital interactions have been found to generate
negligible interorbital pairing [143]. Thus, the most important
terms to the pairing are the diagonal interactions in the t2g
(dxz , dyz , dxy) orbital subspace. We focus on these spin-
exchange interactions between the nearest (Jα1 ) and next-
nearest neighboring (Jα2 ) sites, where the index α enumerates
the dxz , dyz , dxy orbitals. We further introduce two ratios to
quantify the effects of magnetic frustration and orbital
differentiation, respectively, AL � J1/J2 and AO � Jxy/Jxz/yz. In
principle AL and AO can be determined from the procedure of
integrating out high-energy incoherent states [145]. In practice
we take them as model parameters, so that a comprehensive
understanding on the pairing states can be gained.

To study the superconducting pairing, we decompose the
interaction term in Eq. 16 in the pairing channel by
introducing the pairing fields in the real space:

Δα
e � 1/N∑ifi,α,↑fi+e,α,↓, where e ∈ {ex, ey, ex+y, ex−y} refers to a

unit vector connecting the nearest and next nearest
neighboring sites. Transforming to the momentum space we
obtain different pairing channels, each of which corresponds
to linear combinations of several pairing fields in the real space. In
general, the pairing function Δg,α,k � Δg,α(τi)g(k)(τi)α, where
Δg,α(τi) is the pairing strength of a particular pairing channel.
For the nondegenerate dxy orbital, the symmetry of the pairing
state is fully determined by the form factor g(k), and the four
channels are usually denoted as sx2+y2 � coskx + cosky ,
dx2−y2 � coskx − cosky , sx2y2 � coskxcosky , and dxy � sinkxsinky ,
respectively. In the tetragonal phase, the degeneracy of dxz and
dyz orbitals introduces additional pairing channels, and it is
necessary to use the 2 × 2 Pauli matrices τi in the orbital
isospin space to construct the various possibilities. The pairing
channels can be classified according to the one-dimensional
irreducible representations of the tetragonal D4h point group
to be A1g , B1g , A2g , and B2g . Note that different channels may
exhibit the same symmetry, by combining the structure in both
the form factor and the orbital structure. For example, both the
dx2−y2 wave channel in the dxy orbital and the sx2y2τ3 channel in
the dxz/yz orbitals have the B1g symmetry.

3.2 Orbital-Selective Pairing in FeSCs
Since the discovery of FeSCs, the pairing symmetry of the
superconducting state has been one of the most important
questions. The s-wave A1g channel has played a particularly
important role. In addition, various subleading—in some

FIGURE 5 | (A) Evolution of the leading pairing channels with J1/J2 in the
multiorbital t-J model for electron doped NaFeAs. All the channels have the
A1g symmetry. P.A. denotes pairing amplitude. (B), (C) Angular dependence
of the superconducting gaps (red circles) along the electron pocket
centered at (π, 0) in the same model at J1/J2 � 0.1 [in (B)] and J1/J2 � 0.8 [in
(C)], respectively. The blue dashed line is a fit to the single parameter gap
function Δ0coskxcosky . The deviation from this fit implies a multigap structure
arising from the orbital-selective pairing, adapted from [72].
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cases, nearly-degenerate—pairing channels with compatible
symmetry can coexist.

The notion of orbital-selective pairing was introduced [72]
in the multiorbital t-J model for electron-doped NaFeAs.
With the intraorbital pairing amplitudes being dominant,
this leads to a multigap structure, with different pairing
components coming from different orbitals. Because the
orbital composition varies along each pocket as shown in
Figure 1B, this orbital-selective pairing can give rise to an
anisotropic superconducting gap.

For simplicity, the exchange couplings have been assumed to
be orbital independent in the calculation, and the pairing state has
an A1g symmetry with a full gap along the Fermi surfaces. The
different bandwidths and electron fillings of the dxy and dxz/yz
orbitals still make the pairing to be orbital selective. As shown in
Figure 5A, the pairing amplitude of the leading channel, the sx2y2
channel in the dxy orbital, is much larger than those of the
subleading channels in the dxz/yz orbitals. This orbital-selective
pairing is reflected in an anisotropy of the superconducting gap
along the electron pocket, as shown in Figure 5B. It turns out that
the superconducting gap strongly depends on the magnetic
frustration. For J1/J2 � 0.8 as illustrated in Figure 5C, the gap
becomes almost isotropic. Here, several competing channels
become active, which makes the overall contributions to the
gap from the dxz/yz and dxy orbitals comparable. In
experiments, an almost isotropic superconducting gap has
been reported for the optimally electron doped NaFeAs, but
the gap becomes strongly anisotropic along the electron pocket
in the underdoped compound [147]. This behavior is understood
by the strong orbital-selective pairing [72], which also splits into
two the neutron resonance peak as a function of energy in the
superconducting state [73, 148]. The orbital-selective pairing is
also being explored in other FeSCs [149].

Besides the gap anisotropy, strong orbital selectivity may give
rise to novel pairing states. In a multiorbital t-J model for the
electron-doped alkaline iron chalcogenide compounds with only
electron Fermi pockets, with orbital independent exchange
couplings, the dominant pairing symmetry has been found to

be either an s-wave A1g channel when J2 is dominant or a d-wave
B1g channel for dominant J1 coupling [150, 151]. In the regime
where the two types of pairing states are quasidegenerate, a novel
orbital-selective pairing state, sτ3 pairing, with s-wave form factor
but B1g symmetry in the dxz/yz orbital subspace can be stabilized as
the leading pairing channel [143] (see Figure 6A). However, its
nontrivial orbital structure makes it distinct from the other two
pairing channels, and this successfully explains the
unconventional superconductivity in alkaline iron
chalcogenides [143]. It produces a full gap but the pairing
function has a sign change between the two electron pockets,
which causes a spin resonance around the wave vector (π, π/2), as
shown in Figures 6B,C. These features are compatible with both
the ARPES and neutron scattering measurements [152–156].

Importantly, the sτ3 pairing corresponds to an irreducible
representation of the crystalline point group. Nonetheless, in the
band basis, this multiorbital superconducting state has the form
of amultiband d + d pairing. The latter allows the state to contrast
with the more familiar d + id pairing in a way that the 3He-B
superfluid state contrasts with 3He-A state [157]. This
understanding elevates the d + d pairing to the status of a
natural multiorbital pairing state. We note in passing that an
analogous sτ3 pairing has been constructed for the first
unconventional superconductor CeCu2 Si2 [157], which
provides a natural understanding of the recently discovered
low-temperature behavior in this heavy fermion
compound [158].

3.3 Orbital-Selective Pairing in the Nematic
Phase of Iron Selenide
As we discussed in Section 2.4, recent STM measurements in the
nematic phase of FeSe have uncovered not only a surprisingly
large difference between the quasiparticle weights of the dxz and
dyz orbitals, but also an unusually strong anisotropy of the
superconducting gap [138, 139]. These experimental findings
provide evidence for a strongly orbital-selective
superconducting state.

FIGURE 6 | (A) Pairing phase diagram of the multiorbital t-Jmodel for alkaline iron selenides. The blue shaded area corresponds to dominant pairing channels with
an sx2y2 form factor while the red shading covers those with a dx2−y2 form factor. The continuous line separates regions where the pairing belongs to the A1g and the B1g

representations, respectively. The orbital-selective sτ3 pairing occurs for AO < 1, AL near 1. (B) The Fermi surface (solid line) and the sign-change intraband pairing
function of the corresponding band for the alkaline iron selenides. The dashed arrow indicates the q � (π, π/2) wave-vector associated with the spin resonance
found in experiment. (C) Superconducting gap along the electron pocket. In (B) and (C) the dominant sτ3 pairing state is stabilized with parameters J2 � 1.5, AO � 0.3,
and AL � 0.9, adapted from [143].
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Theoretically, the pairing structure in the nematic phase of
FeSe has been investigated within the framework of the
multiorbital t-J model in Eq. 16. The slave-spin calculation
[142] produces Zxz : Zyz : Zxy � 1 : 4 : 0.5; an orbital-selective
pairing was shown, with the leading pairing channel in the dyz
orbital. Taking into account the mixed orbital character of both
hole and electron pockets, such an orbital-selective pairing
naturally leads to a large gap anisotropy as shown in Figure 7.
This orbital-selective pairing not only provides the understanding
of the experimental observations [133–135, 138], but also sheds
new light on the interplay among the pairing state, Mott physics,
and the nematic order, all of which appear to be important
ingredients for the unconventional superconductivity in FeSCs.
Experimentally, other signatures of orbital-selective
superconductivity in nematic FeSC are also being explored [159].

4 SUMMARY AND OUTLOOK

Since the discovery of superconductivity in FeSCs, clarifying the
underlying microscopic physics of these materials has been the
goal of extensive research, and considerable progress has been
achieved. By now it has become abundantly clear that electron

correlations play a key role. This includes both the Hubbard and
Hund’s couplings, which combine to cause the normal state of the
FeSCs to be a bad metal in proximity to a Mott transition.
Theoretical studies on the pertinent microscopic models for
the FeSCs not only confirm the existence of the bad metal in
the phase diagram, but also reveal a strong orbital selectivity in
this phase, which is anchored by an orbital-selective Mott phase.
In this manuscript we have reviewed recent theoretical progress
on the orbital selectivity. It has been found that the orbital
selectivity not only is a universal property of the normal state
of FeSCs, but also shows intriguing interplay with the nematicity.
Equally important, it can strongly affect the superconducting
states of the system.

It is worth reiterating that the FeSCs consist of a large family of
materials, and superconductivity has been found over a broad
range of tuning parameters, such as pressure and electron filling.
For example, many electron-doped iron chalcogenides have a
simpler Fermi surface, with only electron pockets, and the
electron filling is n ∼ 6.1 − 6.2. Even so, superconductivity is
also discovered and, indeed, it is in this category of materials
that the highest-Tc FeSC belongs. Here, the strong orbital
selectivity is shown to be universal in these systems and has
been extensively studied.

Also of note is the case of extremely hole-doped iron pnictides,
which likewise displays superconductivity. A prototype class of
materials in this category is AFe2As2 (A � K, Rb, Cs), which
contains hole pockets only, and the electron filling is at n � 5.5.
As illustrated in Figure 8, they are far from both the n � 6 and
n � 5 MIs. Although the superconducting Tc observed in these
systems is much lower than that of the other iron-based systems, a
number of recent experiments prompt the consideration of a
completely different type of antiferromagnetism and nematicity
[161–167], which are possibly associated with the Mott physics in

FIGURE 7 | (A) Overall (blue symbols) and orbital resolved
superconducting gaps along the Mx electron pocket. (B) Weight distributions
of the dxy and dyz orbitals along the Mx electron pocket, adapted from [144].

FIGURE 8 | Schematic phase diagram as a function of U/W (the ratio of
the Coulomb interaction to bandwidth) and the electron filling $n$. Here the
red lines denote the MIs at electron filling n � 6 and n � 5, respectively. AFM
marks the (π,0) AFM order near the n � 6 MI, while AFM′ represents the
AFM order near the n→ 5 limit [64]. SC and SC′ denote two superconducting
states near the two AFM phases, adapted from [160].
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the n � 5 limit. In particular, the dxy orbital is shown to be closer
to the Mott localization with reducing the total electron filling.
Therefore, a systematic study on the evolution of orbital-selective
correlations with doping from n � 6 to n � 5 would be important
in clarifying the underlying physics and the connection to
superconductivity in these heavily hole-doped materials.

A topic of considerable recent interest in the area of FeSCs
is the indication for a topologically nontrivial band structure
and the possible Majorana zero mode in the superconducting
iron chalcogenides [168]. This highlights the important role
of spin-orbit coupling in these systems. Given the
compelling evidence for the strongly orbital-selective
correlations we have discussed here, it would be highly
desirable to clarify how the interplay between the
correlation effects and the spin-orbit coupling affects the
topological properties of the electronic band structure. Such
efforts promise to elucidate the extent to which the
topological band structure develops in the various families
of FeSCs.
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