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Restricted BoltzmannMachine (RBM) is an energy-based, undirected graphical model. It is
commonly used for unsupervised and supervised machine learning. Typically, RBM is
trained using contrastive divergence (CD). However, training with CD is slow and does not
estimate the exact gradient of the log-likelihood cost function. In this work, the model
expectation of gradient learning for RBM has been calculated using a quantum annealer
(D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo
(MCMC) used in CD. Training and classification results of RBM trained using quantum
annealing are compared with the CD-based method. The performance of the two
approaches is compared with respect to the classification accuracies, image
reconstruction, and log-likelihood results. The classification accuracy results indicate
comparable performances of the two methods. Image reconstruction and log-
likelihood results show improved performance of the CD-based method. It is shown
that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit
“bars and stripes” dataset with classification performance similar to an RBM trained with
CD. Though training based on CD showed improved learning performance, training using a
quantum annealer could be useful as it eliminates computationally expensive MCMC steps
of CD.

Keywords: bars and stripes, quantum annealing, classification, image reconstruction, log-likelihood, machine
learning, D-wave, RBM (restricted Boltzmann machine)

1 INTRODUCTION

Quantum computing holds promise for a revolution in the field of science, engineering, and industry.
Most of the R&D work related to quantum computing is focused on gate based approach [1–3], an
alternative to this is the adiabatic quantum computing (AQC) [4–7]. In AQC, a system of qubits
starts with a simple Hamiltonian whose ground state is known. Gradually, the initial Hamiltonian
evolves into a final Hamiltonian. The final Hamiltonian is designed in such a way that its ground state
corresponds to the solution to the problem of interest. According to the quantum adiabatic theorem,
a quantum system that begins in the non-degenerate ground state of a time-dependent Hamiltonian
will remain in the instantaneous ground state provided the Hamiltonian changes sufficiently slowly
[8–11]. It has been shown theoretically that an AQCmachine can give solutions that are very difficult
to find using classical methods [12].

Edited by:
Jacob D. Biamonte,

Skolkovo Institute of Science and
Technology, Russia

Reviewed by:
Marcos César de Oliveira,

State University of Campinas, Brazil
Soumik Adhikary,

Skolkovo Institute of Science and
Technology, Russia

*Correspondence:
Sabre Kais

kais@purdue.edu

Specialty section:
This article was submitted to

Quantum Engineering and
Technology,

a section of the journal
Frontiers in Physics

Received: 04 August 2020
Accepted: 17 June 2021
Published: 29 June 2021

Citation:
Dixit V, Selvarajan R, Alam MA,

Humble TS and Kais S (2021) Training
Restricted Boltzmann Machines With a

D-Wave Quantum Annealer.
Front. Phys. 9:589626.

doi: 10.3389/fphy.2021.589626

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 5896261

ORIGINAL RESEARCH
published: 29 June 2021

doi: 10.3389/fphy.2021.589626

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.589626&domain=pdf&date_stamp=2021-06-29
https://www.frontiersin.org/articles/10.3389/fphy.2021.589626/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.589626/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.589626/full
http://creativecommons.org/licenses/by/4.0/
mailto:kais@purdue.edu
https://doi.org/10.3389/fphy.2021.589626
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.589626


D-Wave’s quantum annealer has been investigated by several
researchers for machine learning and optimization problems.
Mott et al. [13] used D-Wave to classify Higgs-boson-decay
signals vs. background. They showed that the quantum
annealing-based classifiers perform comparably to the state-of-
the-art machine learning methods. Das et al. has used a D-Wave
for clustering applications [14]. Mniszewski et al. [15] found that
the results for graph partitioning using D-Wave systems are
comparable to commonly used methods. Alexandrov et al.
[16] used a D-Wave for matrix factorization. Lidar et al. [17]
used a D-Wave for the classification of DNA sequences according
to their binding affinities. Kais et al. have used D-Wave’s
quantum annealer for prime factorization and electronic
structure calculation of molecular systems [18, 19].

RBM is a widely used machine learning technique for
unsupervised and supervised tasks. However, its training is
time consuming due to the calculation of model-dependent
term in gradient learning. RBMs are usually trained using a
method known as Contrastive Divergence (CD). CD uses
Markov chain Monte Carlo (MCMC) which requires a long
equilibration time. Further, the CD does not follow the gradient
of the log-likelihood [20] and is not guaranteed to give correct
results. Therefore, better sampling methods can have a positive
impact on RBM learning. Among other works related to the
topic, Adachi et al. [21] used quantum annealing for training
RBMs, which were further used as layers of a two-layered deep
neural network and post-trained by the back-propagation
algorithm. The authors conclude that the hybrid approach
results in faster training, although the relative effectiveness of
RBM trained using a quantum-annealer vs. contrastive
divergence has not been documented. Benedetti et al. [22]
used a D-Wave quantum annealer to train an RBM on a 16-
bit bars and stripes dataset. To train the RBM effectively an
instance dependent temperature was calculated during each
iteration. Caldeira et al. [23] used a QA-trained RBM for
galaxy morphology image classification. Principal component
analysis was used to compress the original dataset. They also
explored the use of temperature estimation and examined the
effect of noise by comparing the results from an older machine
and a newer lower-noise version. Sleeman et al. [24] investigated
a hybrid system that combined a classical deep neural network
autoencoder with a QA-based RBM. Two datasets, the MNIST
and the MNIST Fashion datasets, were used in this study. Image
classification and image reconstruction were investigated. Winci
et al. [25] developed a quantum-classical hybrid algorithm for a
variational autoencoder (VAE). A D-Wave quantum annealer
was used as a Boltzmann sampler for training the VAE. Dymtro
et al. [26] performed a benchmarking study, to show that for
harder problems Boltzmann machines trained using quantum
annealing gives better gradients as compared to CD. Lorenzo
et al. [27] used RBM trained with reverse annealing to carry out
semantic learning that achieved good scores on reconstruction
tasks. Koshka et al. [28] showed D-Wave quantum annealing
performed better than classical simulated annealing for RBM
training when the number of local valleys on the energy
landscape was large. Dumoulin et al. [29] assessed the effect
of various parameters like limited connectivity, and noise in

weights and biases of RBM on its performance. Koshka et al.
explored the energy landscape of an RBM embedded onto a
D-Wave machine, which was trained with CD [30–33]. Dixit
et al. [34] used a QA-trained RBM to balance the ISCX
cybersecurity dataset, and training an intrusion detection
classifier. There has been growing interest in quantum
machine learning including Boltzmann machines [35–38],
however, training quantum machine learning models on a
moderate or large dataset is challenging. An RBM with 64
visible and 64 hidden units can be trained using a quantum
annealer which is very difficult to do using existing gate based
approaches.

In this work, our objective is to train an RBM using quantum
annealing (QA) via samples obtained from the D-Wave 2000Q
quantum annealer and compare its performance with an RBM
trained with CD. The model-dependent term in the gradient of
log-likelihood has been estimated by using samples drawn from a
quantum annealer. Trained models are compared with respect to
classification accuracy, image reconstruction, and log-likelihood
values. To carry out this study, the bars and stripes (BAS) dataset
has been used.

2 METHODS

2.1 Restricted Boltzmann Machine
A Restricted Boltzmann Machine is an energy-based model,
inspired by the Boltzmann distribution of energies for the
Ising model of spins. An RBM models the underlying
probability distribution of a dataset and can be used for
machine learning applications. However, an efficient method
of RBM training is still not discovered. An RBM is comprised
of two layers of binary variables known as visible and hidden
layers. The variables or units in the visible and hidden layers are
denoted as {v1, v2, . . . ., vn} and {h1, h2, . . . ., hm}, respectively. The
variables in one layer interact with the variables in the other layer,
however, interactions between the variables in the same layer are
not permitted. The energy of the model is given by:

E � −∑
i

bivi −∑
j

cjhj −∑
i,j

viwijhj, (1)

where bi and cj are bias terms; wij represents the strength of the
interaction between variables vi and hj. Let us represent the
variables in the visible layer collectively by a vector: v ∈ {0, 1}n,
similarly for the hidden layer: h ∈ {0, 1}m. Using this
representation Eq. 1 can be written as:

E(v, h) � −bTv − cTh − hTWv, (2)

where b and c are bias vectors at the visible and hidden layer,
respectively;W is a weight matrix composed of wij elements. The
probability that the model assigns to the configuration {v, h} is:

P(v, h) � 1
Z
e−E(v,h), Z � ∑

v

∑
h

e−E(v,h), (3)

where Z is the partition function. Substituting value of E(v, h),
from Eq. 2, we get:
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Z � ∑
v

∑
h

eb
T v+cTh+hT ·W·v � ∑

h

ec
Th∑

v

eb
Tv+hT ·W·v (4)

Z � ∑
h

ec
Th∑

v

e(bT+hT ·W)v � ∑
h

ec
Th∑

v

es·v, (5)

where s is:

s � bT + hTW � [s1, s2, . . . , sn]; (6)

n is the number of variables in the visible layer. Now, Z can be
written as:

Z � ∑
h

ec
Th ∏n

j�1
(1 + esj ) (7)

From Eq. 7, we notice that the calculation of Z involves
summation over 2m configuration, where m is the number of
variables in the hidden layer. On the contrary, we need 2m+n
configurations to evaluate Z using Eq. 3.

2.2 Maximization of the Log-likelihood Cost
Function
The partition function, Z, is hard to evaluate. The joint
probability, P(v, h), being a function of Z is also hard. Due to
the bipartite graph structure of the RBM, the conditional
distributions P(h|v) and P(v|h) are simple to compute,

P(h|v) � P(v, h)
P(v) (8)

where P(v) is given by the following expression:

P(v) � ∑he
−E(v,h)

Z
. (9)

Substituting values from Eq. 3 and Eq. 9 into Eq. 8 gives:

P(h|v) �
exp{∑jcjhj +∑j(vTW)jhj}

Z′ , (10)

where

Z′ � ∑
h

exp(cTh + hTWv). (11)

P(h|v) � 1
Z′ ∏

j

exp{cjhj + (vTW)jhj} (12)

Let’s denote

~P(hj∣∣∣∣v) � exp{cjhj + (vTW)jhj} (13)

Now, the probability to find an individual variable in the hidden
layer hj � 1 is:

P(hj � 1
∣∣∣∣v) � ~P(hj � 1

∣∣∣∣v)
~P(hj � 0

∣∣∣∣v) + ~P(hj � 1
∣∣∣∣v) �

exp{cj + (vTW)j}
1 + exp{cj + (vTW)j}

(14)

Thus, the individual hidden activation probability is given by:

P(hj � 1
∣∣∣∣v) � σ(cj + (vTW)j), (15)

Where σ is the logistic function. Similarly, the activation
probability of a visible variable conditioned on a hidden vector
h is given by:

P(vi � 1|h) � σ(bi + (hTW)i). (16)

An RBM is trained by maximizing the likelihood of the training
data. The log-likelihood is given by:

l(W, b, c) � ∑N
t�1

logP(v(t)) � ∑N
t�1

log∑
h

P(v(t), h) (17)

l(W, b, c) � ∑N
t�1

log∑
h

e−E(v(t) ,h) − N · log∑
v,h

e−E(v,h). (18)

Where v(t) is a sample from the training dataset. Denote
θ � {W, b, c}. The gradient of the log-likelihood is given by:

∇θl(θ) � ∑N
t�1

∑he
−E(v(t) ,h)∇θ( − E(v(t), h))∑he

−E(v(t) ,h) − N

· ∑v,he
−E(v,h)∇θ(−E(v, h))∑v,he−E(v,h)

(19)

∇θl(θ) � ∑N
t�1

〈∇θ( − E(v(t), h))〉P(h|v(t)) − N

· 〈∇θ(−E(v, h))〉P(v,h), (20)

Where 〈 · 〉P(v,h) is the expectation value with respect to the
distribution P(v, h). The gradient with respect to θ can also be
expressed in terms of its components:

∇wl � 1
N

∑N
t�1

〈v(t) · h(t)〉P(h|v(t)) − 〈v · h〉P(v,h) (21)

∇bl � 1
N

∑N
t�1

〈v(t)〉P(h|v(t)) − 〈v〉P(v,h) (22)

∇cl � 1
N

∑N
t�1

〈h(t)〉P(h|v(t)) − 〈h〉P(v,h) (23)

The first term in Eq. 20 is the expectation value of ∇θ(−E(v(t), h))
with respect to the Boltzmann distribution, v(t) is a row vector
from the training dataset withN records, and h is a hidden vector.
Given v(t), h can be calculated via Eq. 15.

The second term in Eq. 20 is a model-dependent term, the
expectation value of ∇θ(−E(v, h)), v and h can be any possible
binary vectors. This term is difficult to evaluate as it requires all
possible combinations of v and h. Generally, this term is
estimated using contrastive divergence, where one uses many
cycles of Gibbs sampling to transform the training data into data
drawn from the proposed distribution. We used Eq. 15 and Eq.
16 to sample from hidden and visible layers repeatedly. Once we
have the gradient of log-likelihood (Eq. 18), weights and biases
can be estimated using gradient ascent optimization:

θnewj � θoldj + ϵ · ∇θj l(θj) (24)
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where ϵ is the learning rate.
Alternatively, the second term can be calculated using samples

drawn from the D-Wave quantum annealer, which is a faster
procedure than MCMC.

2.3 D-Wave Hamiltonian and Arrangement
of Qubits
The Hamiltonian for a D-Wave system of qubits can be
represented as:

hIsing � −A(s)
2

⎛⎝∑
i

σ̂ ix⎞⎠ + B(s)
2

⎛⎜⎜⎜⎝∑
i

hiσ̂
i
z + ∑

(i> j)
Jijσ̂

i
z σ̂

j
z
⎞⎟⎟⎟⎠ (25)

where σ̂(i)x,z are Pauli matrices operating on ith qubit. hi and Jij are
the qubit biases and coupling strengths. s is called the anneal
fraction. A(s) and B(s) are known as anneal functions. At s � 0,
A(s)≫B(s), while A(s)≪B(s) for s � 1. As we increase s from 0
to 1, anneal functions change gradually to meet these boundary
conditions. In the standard quantum annealing (QA) protocol, s
changes from 0 to 1. The network of qubits starts in a global
superposition over all possible classical states and after s � 1, the
system is measured in a single classical state.

The arrangement of qubits on the D-Wave 2000Q quantum
annealer forms a C16 Chimera graph with 16 × 16 unit cells (2048
qubits are mapped into 16 × 16 matrices of unit cells; each unit
cell has eight qubits). Figure 1A shows a C3 Chimera graph with
3 × 3 unit cells. Within each unit cell, there are two sets of four
qubits that are connected in a bipartite fashion. As shown in the
figure, each qubit in a unit cell is connected to four qubits of the
same unit cell and two qubits of other unit cells. Thus, each qubit
can be connected to a maximum of six qubits. This connectivity
can be enhanced by forming strong ferromagnetic couplings
between the qubits, which forces coupled qubits to stay in the
same state.

2.4 Restricted Boltzmann Machine
Embedding Onto the D-Wave QPU
Mapping an AQC algorithm on specific hardware is nontrivial
and requires creative mapping. Several algorithms can be used

to map a graph to the physical qubits on an adiabatic quantum
computer [39, 40]. However, it is nontrivial to find a simple
embedding when the graph size is large. Taking into
consideration the arrangement of qubits on the 2000Q
processor, we found a simple embedding that utilizes most
of the working qubits. In the present study, we investigated
RBMs in two configurations, one with 64 visible units and 64
hidden units, another with 64 visible units and 20 hidden units.
Here, we will discuss the embedding of the RBM with 64 units
in both layers. Each unit of the RBM is connected to 64 other
units, but in the D-Wave each qubit only connects to six other
qubits. To enhance the connectivity, qubits can be coupled
together or cloned by setting Ji,j � −1. This forces the two
qubits to stay in the same state. In our embedding, one unit of
RBM is formed by connecting 16 qubits. The D-Wave
processor has qubits arranged in 16 × 16 matrices of unit
cells. Each unit cell has two sets of four qubits arranged in
a bipartite fashion. Each qubit in the left column of the unit cell
can be connected to one qubit of the unit cell just above it and
one just below it. There are 16 unit cells along one side, so a
chain of 16 qubits can be formed. This chain forms one visible
unit of the RBM. Figure 1B shows the procedure to couple
three qubits to form a chain that represents a visible unit. The
qubits that are connected together to form a vertical chain
forming a visible unit are shown in red. Since there are four
qubits in the left column of the unit cell, four chains can be
formed resulting in four visible units of RBM. The four qubits
that form the right column of the unit cell can be connected to
form horizontal chains as shown in Figure 1B. These
horizontal chains form the hidden units. There are 16 unit
cells along the horizontal direction in a C16 Chimera graph,
therefore each horizontal chain is also composed of 16 qubits.
Utilizing the arrangement of qubits of the D-Wave QPU, 64
vertical and 64 horizontal chains can be formed representing
the 64 visible and 64 hidden units of RBM. Figure 1C shows
the scheme that we used to connect one visible unit (V1) to the
hidden units. In this fashion, one can embed an RBM with 64
visible and 64 hidden units on a C16 Chimera graph. Of course,
care must be taken for any inaccessible qubits to form a further
restricted RBM. In our experiments, we found that the absence
of a few qubits does not affect the performance of the resulting
network.

FIGURE 1 | (A) C3 Chimera graph of qubits. (B) Three vertical (red) and horizontal (blue) qubits are chained to form a visible and a hidden unit. (C) Connectivity of a
visible unit (V1) with 12 hidden units (H1 to H12). Here, each unit is formed by ferromagnetic couplings between three qubits.
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2.5 Classification and Image
Reconstruction
Each record of the bars and stripes dataset is made up of 64 bits.
The last two bits are for labeling the pattern: 01 for a bar and 10
for a stripes pattern–Figure 2A. If the last two bits are 00 or 11,
the prediction by RBM is incorrect. Once we obtained the weights
and biases of the RBM from the training step, RBM can be used
for classification or image reconstruction. To predict the class of a
test record we apply its first 62 bits at the visible layer Figure 2B.
We randomly input either zero or one for the last two classifying
bits (L1 and L2). We then run 50 Gibbs cycles, keeping the 62
visible units clamped at the values of the test record. At the end of
50 Gibbs cycles label units, 63 and 64 are read. L1 � 0 and L2 � 1
indicates a bar pattern, while L1 � 1 and L2 � 0 suggests a stripe
pattern. For the problem of image reconstruction, the goal is to
predict the missing part of an image. A similar procedure can be
applied for image reconstruction where a trained RBM is used to
predict the values of the missing units. In this case, we clamp the
visible units where values are given, and run 50 Gibbs cycles, at
the end, we sample from the units where values have to be
predicted.

3 RESULTS AND DISCUSSION

In the present work, we have used the bars and stripes (BAS)
dataset. An example of a bar and a stripe pattern is shown in
Figure 2A. BAS is a popular dataset for RBM training, it has been
used by several researchers [22, 41–43]. This is a binary dataset
consisting of records of 64 bits in length, with the last 2 bits
representing the label of the record: 01 for a bar and 10 for a stripe
pattern. Our dataset is comprised of 512 unique records. The
number of unique samples used for training is 400, with the
remaining 112 samples were held for testing. Classification of bars
and stripes, image reconstruction, and the log-likelihood values
are used to compare the performances of trained RBMs.

3.1 Restricted Boltzmann Machine Training
Equation 20 has been used to train the RBMs. The first term in
this equation is a data-dependent term which can be exactly
calculated using the conditional probabilities P(h|v) and P(v|h)
given by Eq. 15 and Eq. 16. The second term is a model-
dependent, which requires expectation value over all possible

hidden h and visible v vectors, which is clearly intractable.
Typically, the model-dependent term is approximately
estimated using a method known as contrastive divergence
(CD). In this approach, samples needed to calculate the
model-dependent term are obtained by running the Gibbs
chain starting from a sample from the training data
(Figure 3). If n Gibbs steps are performed, the method is
known as CD-n. It is shown by Hinton that n � 1 could be
sufficient for convergence (CD-1) [20]. In CD-1, first, a data
sample is applied at the visible layer, then Eq. 15 is used to
generate a corresponding hidden vector at the hidden layer. Now,
this hidden vector is used to generate a new visible vector using
Eq. 16, which is in turn used to generate a new hidden vector.
These new visible and hidden vectors are used to calculate the
model-dependent term. This process is repeated for each record
in the dataset. A detailed description of RBM training using CD is
given in a review article by Hinton [44]. The model-dependent
term can also be calculated using samples (v and h) obtained from
an RBM mapped on the D-Wave. From Eq. 19 we notice that in
the second term the expectation value should be calculated with
respect to e−E(v,h) distribution, while samples from the D-Wave
follow a distribution of e−

E(v,h)
kT . It should be noted as the RBM

training starts, the weights and biases are random, and samples
from the D-Wave are not expected to have a Boltzmann
distribution, however, as the training progresses the
underlying probability distribution moves toward the
Boltzmann distribution. Following the approach used by
Adachi et al. [21], we used a hyperparameter, S, such that for
the model-dependent term, we sample from e

−E(v,h)
SkT distribution.

Here, S is a hyperparameter, which is determined by the
calculation of the classification accuracy for various values of
S. The optimal condition corresponds to the case when SkT � 1.
A different approach was taken by Benedetti et al. [22]. They
calculated effective temperature during each epoch. Their
approach is difficult to apply in the present case of 64 bits
record length BAS dataset. The BAS dataset that they used
was comprised of just 16-bit records. A complex dataset leads
to a complicated distribution, which makes training with a
dynamical effective temperature difficult.

In order to train an RBM using D-Wave, model parameters
(wij, bi and cj) were initialized with random values, the first term
of Eq. 20 was calculated exactly using these weights and biases,
and the training dataset. The weights and biases were then used to
embed the RBM onto the D-Wave QPU, and quantum annealing

FIGURE 2 | (A) Example of the bars (left) and stripes (right) patterns of size 8 × 8. A blue cell represents a 0 while a yellow cell a 1. Last two bits (bottom right) are
labels; bar � 01, stripe � 10. (B)RBM for classification. Box with yellow units is the visible layer. The hidden layer is shown by a box with grey units. 8 × 8 bits of an image is
rearranged into a record of size 1 × 64 bits which is applied to the visible layer. Units L1 and L2 are the labels.
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was performed. Once annealing was complete, the D-Wave
returned low energy solutions. Based on the mapping of the
RBM, visible v and hidden h vectors were obtained from the
solutions returned from the D-Wave. These v and h samples were
used to calculate the model-dependent expectation value which in
turn gives the gradient of log-likelihood. The gradient was further
used to calculate new weights and biases (Eq. 24). The whole
process was repeated until some convergence criterion was
achieved. One of the several ways to monitor the progress of
model learning during the RBM training is by estimating the
reconstruction error for each training epochs. The reconstruction
error is defined as:

Reconstruction error � ∑n
i�1

∑N
t�1

(v(t) − v′)2 (26)

where v(t) is a data record and v’ is the reconstructed visible vector
(Figure 3). N and n are the number of records in the training
dataset and the number of units in the visible layer, respectively.
The plot of reconstruction error versus epoch is presented in the
left panel of Figure 4. An optimal value of the empirical
parameter S is important for a correct sampling of v and h
vectors. The effect of change in S on the classification accuracy is
shown in the right-side panel of Figure 4, a plot between accuracy
and epoch. The term epoch means a full cycle of iterations, with
each training pattern participating only once. Accuracy is
defined as:

Accuracy � Number of correct predictions
Total number of predictions

(27)

The classification accuracy is maximum for S � 4. The
performance of the model during the training process can be
visualized by plotting classification accuracy with epochs.
Figure 5 shows the plot of classification accuracy vs. epochs
for bars (left) and stripes (right) patterns. This calculation was
performed on the test dataset. As the number of epoch increases
from 0 to 400, the classification accuracy increases after that it
stays constant. Based on these results, we conclude that the
performance of QA-trained RBM is similar to CD-trained
RBM. However, from Figure 5 we notice that there are higher
fluctuations in the classification accuracy with CD-1 based
training.

3.2 Image Reconstruction
For classification tasks, both training methods (QA and CD-1)
showed similar results. Classification task requires the prediction
of target labels (only 2 bits) based on the features in the dataset.
An input data record is applied at the visible layer and the target
labels are reconstructed. A more difficult task would be the
reconstruction of not just the target labels, but also some
other bits of the record. We call this task - image
reconstruction. Here, we take a 64-bit record from the test
dataset, corrupt some of its bits, and then apply this modified
test record to the visible layer of a trained RBM. We follow the

FIGURE 3 | Illustration of the contrastive divergence algorithm for training a Restricted BoltzmannMachine (RBM). If sampling stops at nth Gibbs step of the Markov
Chain, the procedure is known as CD-n.

FIGURE 4 | (A) Reconstruction error versus epoch of the RBM training. (B) The plot of the classification accuracy versus epoch for different values of the
hyperparameter S.
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procedure explained earlier for the image reconstruction. The
results of image reconstruction are presented in Figure 6. In
Figure 6A, only target labels were corrupted/reconstructed. We
notice that both training methods correctly reproduced the
classifying labels. In the second case, Figure 6B, 16 bits of the
original data record were corrupted. The RBM trained using CD-
1 correctly predicted all the bit, while two bits were incorrectly
predicted by the RBM trained with QA. In the third case, Figure
6C completely random 64-bit input vector (all bits corrupted)
was fed to both RBMs. In the case of CD-1, the output is a bar
pattern, whereas QA trained RBM resulted in a stripes pattern
with many bits incorrectly predicted. Figure 6B shows a
particular case where 16 bits of a record were corrupted and
then reconstructed, histograms in the right panel of Figure 6
show the results when 16 bits of all the records of the dataset were
corrupted and then reconstructed. These histograms show the
plots between the number of instances of the dataset versus the
number of incorrectly predicted bits. Figure 6D and Figure 6E
show the results where CD-trained RBM was used for image
reconstruction. Figure 6D shows the case where the records of

the training data were corrupted and fed to a CD-trained RBM for
performing the reconstruction. The histogram shows that in over
350 cases all the bits were correctly predicted. In the cases where
some bits were not correctly predicted, the number of incorrectly
predicted bits was less than or equal to eight. Figure 6E shows a
similar histogram for the test dataset which had 112 records.
Around 100 records were correctly predicted. Figure 6F and
Figure 6G show the histogram for the cases where QA-based
trained RBM was used for image reconstruction. In Figure 6F
where records from the training dataset were used, for most of the
instances around 4 bits were incorrectly predicted. Figure 6G
shows the results for the case where the records from the test
dataset were used for image reconstruction. In this case, most of
the reconstructed images show about 6–7 bits incorrectly
predicted. From these plots, it is clear that the CD-trained
RBM performed better than the QA-trained RBMs.

3.3 Log-likelihood Comparison
The classification accuracy results indicated similar performances
of both methods (CD-1 and quantum annealing). However,

FIGURE 5 | Plots showing classification accuracy of individual classes with epoch. The gradient of log-likelihood was calculated using samples generated via
contrastive divergence and D-Wave’s quantum annealer. A comparison of classification accuracy for both methods is presented for bars (A) and stripes (B) patterns.

FIGURE 6 | Original data was first corrupted, then reconstructed. Left panel: The images in the left column are input data fed to the RBMs; output obtained from
the CD and QA-trained RBMs is shown in the middle and right column, respectively. The bits of the input images that were corrupted are enclosed in black boxes.Right
panel: Histograms showing the distribution of incorrectly predicted bits versus the number of instances; 16 bits of the records were corrupted and then reconstructed
using trained RBMs.
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image reconstruction suggests the improved performance of CD-
1. In order to further compare and quantify the performances of
these two methods, the log-likelihood of training data was
calculated. Several researchers have used “log-likelihood” in
order to compare different RBM models [45, 46]. The log-
likelihood has been computed using Eq. 18. It involves the
computation of the partition function Z. If the number of
units in the hidden layer is not too large, Z can be exactly
calculated using Eq. 7. To calculate the log-likelihood, the
number of hidden units was set to 20. The log-likelihood of
both models was computed at various epochs. The results are
presented in Figure 7. From the figure, we notice that the log-
likelihood is higher for RBM trained using CD-1 compared to
quantum annealing. A lower value of the log-likelihood for the
D-Wave trained model could be attributed to a restricted range of
allowed values for the bias field h and the coupling coefficients J.
Another reason could be an instance (each set of h and J)
dependent temperature variation during the RBM training
[22], which disturbs the learning of embedded RBM. Figure 7
also compares the log-likelihood values calculated using the new
lower-noise D-Wave 2000Q processor and an earlier 2000Q
processor. D-Wave’s lower-noise machine shows slightly
improved log-likelihood values over the entire training range.

3.4 Feature Reduction
Next, we compared the performance of a QA and CD-1 trained
RBM for features reduction applications. Both RBMs that were
used in this experiment had 64 visible and 20 hidden units. The
BAS dataset was comprised of 62 binary features and two target
labels. The target labels were removed and random 0 and 1s were
added before feeding the dataset to an RBM for feature reduction.
Input data vector from the training data was applied to the visible
layer of the RBM. Equation 15 was then used to obtain the
hidden variables. The compressed feature vector was sampled
from 20 hidden units of the hidden layer. This procedure was
used to extract features corresponding to 400 records of the

training data and 112 records of the test data. Several classifiers
were used to compare the effectiveness of feature reduction of QA
and CD-1 trained RBMs. The results are presented in Table 1.
Both feature reduction methods resulted in high classification
accuracy, with classifiers trained on data obtained from CD-
trained RBM showing slightly improved classification accuracy
than the classifiers trained on data from a QA-trained RBM.

Currently, quantum computers are in their developmental stage.
Therefore, the comparison of quantum annealing based RBM
training with a mature classical approach like CD is uneven.
However, such comparison is important as results from a CD
trained RBM provides a reference with respect to which
performance of QA based RBM training can be assessed.
Though a better performance of CD was expected, QA
performed satisfactorily. For classification and feature reduction
tasks both QA and CD performed comparably. For the image
reconstruction task, CD performed better than QA. The lower
performance of QA-based training could be attributed to two main
reasons. First, we obtain samples from the D-Wave assuming that it
operates at a fixed temperature. However, this is an approximation,
and one should calculate an effective temperature during each
epoch. This mismatch degrades RBM’s learning during the
training. Efforts have been made towards developing methods to
estimate this instance-dependent temperature for small datasets [22,
23], none of which have been shown to be efficient for bigger
datasets. Another reason for the lower performance of QA-trained
RBM could be hardware limitations like limited connectivity, lower
coherence time, noise, etc. These limitations will be removed as
quantum annealing technology matures. D-Wave’s new machine,
advantage, has higher connectivity, qubits and lower noise
compared to the older machine. In Figure 7 we have shown
that the new 2000Q machine performs better than the older
machine. We believe as technology evolves and a new algorithm
for calculation of effective temperature is developed QA based RBM
training will improve and will be able to deal with larger datasets.
Quantum annealing offers a fundamentally different approach to
estimate model-dependent term of the gradient of log-likelihood
compared to CD and PCD. Depending on the complexity of a
dataset, the CD might need hundreds of Gibbs cycles to reach the

FIGURE 7 | Plot showing variation in log-likelihood with training epochs.
Label CD-1 represents CD-based RBM training, while label 2000Q indicates
QA-based RBM training employing the D-Wave 2000Q.

TABLE 1 | Comparison of classifiers trained on compressed BAS dataset
obtained from CD-1 and QA trained RBMs. The classification accuracy was
estimated on the test data comprised of 56 bars and 56 stripes instances. The
label “No. of bars” (No. of stripes) indicates the number of correctly predicted bar
(stripe) instances. The labels CD-1 and QA indicate that the feature reduction
was performed using contrastive divergence and quantum annealing,
respectively.

Classifier Accuracy No. of bars No. of stripes

CD-1 QA CD-1 QA CD-1 QA

SVM 0.98 0.88 54 42 56 56
MLP 0.98 0.98 55 55 56 55
KNN 1.00 0.99 56 55 56 56
Decision tree 1.00 0.89 56 46 56 54
Gaussian process 0.99 1.00 55 56 56 56
Ada boost 0.82 0.79 50 43 42 45
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equilibrium to finally give one sample, while using a QA-based
approach one can obtain 10,000 samples almost instantaneously.

4 CONCLUSION

In this work, we present an embedding that can be used to embed an
RBM with 64 visible and 64 hidden units. We trained an RBM by
calculating the model-dependent term of the gradient of the log-
likelihood using samples obtained from the D-Wave quantum
annealer. The trained RBM was embedded onto the D-Wave
QPU for classification and image reconstruction. We also showed
that a new lower-noise quantum processor gives improved results.
The performance of the RBM was compared with an RBM trained
with a commonly used method called contrastive divergence (CD-1).
Though bothmethods resulted in comparable classification accuracy,
CD-1 training resulted in better image reconstruction and log-
likelihood values. RBM training using the samples from a
quantum annealer removes the need for time-consuming MCMC
steps during training and classification procedures. These
computationally expensive MCMC steps are an essential part of
training and classification with CD-1. QA-based RBM learning could
be improved by the calculation of an instance-dependent temperature
and incorporating this temperature in the RBM training procedure
though better methods to compute the effective temperature of the
D-Wave machine on large datasets is still an open problem.
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