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We propose a scheme to realize the storage and retrieval of optical Peregrine solitons in a
coherent atomic gas via electromagnetically induced transparency (EIT). We show that
optical Peregrine solitons with very small propagation loss, ultraslowmotional velocity, and
extremely low generation power can be created in the system via EIT. We also show that
such solitons can be stored, retrieved, split, and routed with high efficiency and fidelity
through the manipulation of control laser fields. The results reported here are useful for the
active control of optical Peregrine solitons and promising for applications in optical
information processing and transmission.
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1 INTRODUCTION

Rogue waves, first observed in ocean surfaces, are highly isolated spatial-temporal wave packets with
very large amplitudes when some special conditions are attained [1]. Such waves are ubiquitous in
nature and quite intriguing, since they “appear from nowhere and disappear without a trace” and
have extremely destructive power [2]. Except for ocean waves, the study on rogue waves has been
extended to many other different physical contexts, including atmosphere [3], superfluid helium [4],
capillary waves [5], water waves [6], photorefractive ferroelectrics [7], plasmas [8], ferromagnetic
materials [9], and so on [10, 11].

Peregrine soliton, firstly suggested by D. H. Peregrine in the early 1980s for nonlinear
dynamics of deep waters [12], is commonly taken as a prototype of rogue waves [13, 14]. Such
soliton, i.e., localized rational solution of nonlinear Schrödinger equation, can be taken as a
limiting case of the one-parameter family of Kuznetsov–Ma breathers [15] or Akhmediev
breathers [16]. There have been considerable interests on Peregrine solitons occurring in a
variety of physical systems [17–39]. Many efforts have also been devoted to the new
understanding of Peregrine solitons through the analysis of other types of nonlinear partial
differential equations [40–51].

Among various rogue waves, optical rogue waves have received much attention due to their
interesting properties and promising applications [10, 11, 25–39, 52–54]. However, the creation of
the optical rogue waves is not an easy task in conventional optical media (such as optical fibers and
waveguides). The reason is that the nonlinear optical effect in such media is very weak, and hence a
large input optical power is needed to obtain a significant optical nonlinearity required for the
formation of rogue waves. Although some resonance mechanisms may be exploited to enhance
nonlinear effects, near resonances significant optical absorptions occur, which result in serious
attenuation and distortion of optical pulses during propagation.
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In recent years, many efforts have been focused on the
investigation of electromagnetically induced transparency
(EIT), a typical quantum interference effect occurring in three-
level atomic systems, by which the light absorption due to
resonance may be largely suppressed and giant Kerr
nonlinearity may be obtained simultaneously [55]. By means
of EIT, it has been shown that weak-light solitons and their
storage and retrieval can be realized [56–58]. Recent works [59,
60] have demonstrated that it is possible to generate optical
Peregrine solitons with low generation power in EIT-base atomic
systems.

In this work, we suggest a scheme to realize the memory of
optical Peregrine solitons in a Λ-shaped three-level atomic gas
via EIT. We show that such solitons may have very small
propagation loss, ultraslow motional velocity, and extremely
low generation power; they can be stored, retrieved, split, and
routed with high efficiency and fidelity through the
manipulation of control laser fields. The results reported here
are helpful for the active control of optical Peregrine solitons
and promising for practical applications in optical information
processing and transmission.

The article is arranged as follows. In Section 2, the physical
model and ultraslow weak-light Peregrine solitons and their
propagation are described. In Section 3, the storage, retrieval,
splitting, and routing of such solitons are presented. Finally,
Section 4 gives a summary of the main results obtained in
this work.

2 MODEL AND ULTRASLOW WEAK-LIGHT
PEREGRINE SOLITONS

2.1 Model
We start to consider a cold three-state atomic gas with Λ-shaped
level configuration, interacting with a weak, pulsed probe laser
field (center wavenumber kp and center angular frequency ωp)
and a strong, continuous-wave (CW) control laser field
(wavenumber kc and angular frequency ωc). The probe
(control) field drives the transition |1〉↔ |3〉 (|2〉↔ |3〉); see
Figure 1A.

The total electric field in the system reads
E � Ep + Ec � ∑

l�p,c
elE lexp[i(klz − ωlt)] + c.c., where el (El) is

the unit polarization vector (envelope) of the electric field El .
To suppress Doppler effect, both the probe and control fields are
assumed to propagate along z direction.

The Hamiltonian of the system in the interaction picture reads
Ĥint � −Z(∑​ 3

j�2Δj

∣∣∣∣ j〉〈 j∣∣∣∣ + Ωp|3〉〈1| + Ωc|3〉〈2| +H.c.), where
Δ3 � ωp − (E3 − E1)/Z (Δ2 � ωp − ωc − (E2 − E1)/Z) is one-
(two-) photon detuning; Ej is the eigenvalue of the atomic
state

∣∣∣∣j〉; Ωp � (ep · p13)Ep/Z (Ωc � (ec · p23)Ec1/Z) is the half
Rabi frequency of the probe (control) field; pij is the electric-
dipole matrix element associated with levels |i〉 and

∣∣∣∣j〉. The
atomic dynamics is described by a 3 × 3 density matrix σ, obeying
the optical Bloch equation

zσ

zt
� − i

Z
[Ĥint, σ] − Γ[σ], (1)

where Γ is a relaxation matrix characterizing the spontaneous
emission and dephasing [61]. The explicit form of Eq. 1 is
presented in Section 1 of the Supplementary Material.

The evolution of the probe field Ep is governed by the Maxwell
equation ∇2Ep − (1/c2)z2Ep/zt2 � (1/ε0c2)z2Pp/zt2, where Pp �
Na{p13σ31exp[i(kpz − ωpt)] + c.c.} is the electric polarization
intensity, with Na the atomic density. Under slowly varying
envelope and paraxial approximations, the Maxwell equation
is reduced into the form

i( z

zz
+ 1
c
z

zt
)Ωp + κ13σ31 � 0, (2)

with κ13 � Naωp

∣∣∣∣p13∣∣∣∣2/(2ε0cZ). Note that we have assumed that
the probe field has a large transverse size so that its diffraction
effect is negligible. The model described here may be realized, e.g.,
by a cold 87Rb atomic gas [62], with the levels selected by
|1〉 � ∣∣∣∣52S1/2, F � 1, mF � 0〉, |2〉 � ∣∣∣∣52S1/2, F � 2, mF � 0〉,
and |3〉 � ∣∣∣∣52P1/2, F � 1, mF � 0〉. Thus we have
ωp � 2.37 × 1015 Hz,

∣∣∣∣p13∣∣∣∣ � 2.54 × 10− 27 C cm. If the atomic
density Na � 8.8 × 1011cm− 3, κ13 takes the value of
2.4 × 1010cm− 1s−1. This set of parameters will be used in the
following analysis and calculation.

2.2 Ultraslow Weak-Light Peregrine
Solitons and Their Propagation
We first investigate the linear propagation of the probe field.
When a very weak probe pulse is applied, the system undergoes a
linear evolution. In this case, the Maxwell–Bloch (MB) (Eqs. 1
and 2) admit the solution Ωp � F exp[i(Kz − ωt)], where F is a
constant,

K(ω) � ω

c
− κ13

ω + d21
(ω + d21)(ω + d31) − |Ωc|2 (3)

is linear dispersion relation, and dαβ � Δα − Δβ + icαβ (with
cαβ ≡ (Γα + Γβ)/2 + c

dep
αβ , Γβ ≡ ∑

ωα <ωβ

Γαβ, and c
dep
αβ is the

dephasing rate associated with the states |α〉 and
∣∣∣∣β〉).

Shown in Figure 1B is the imaginary part Im(K) and the real part
Re(K) of K as functions of ω. Due to the quantum interference effect
induced by the control field, an EIT transparencywindow is opened in
Im(K) (dashed line), which implies that the probe field can propagate
in this resonant atomic gas with a very small absorption. Parameters
used for plotting the figure are Δ2 � −2π × 0.64MHz,
Δ3 � −2π × 9.6MHz, c21 � 2π × 1.09 kHz, c31 � 2π × 2.5MHz,
and Ωc � 2π × 31.8MHz.

From the MB Eqs. 1 and 2 and using the method of multiple-
scales [63], we can derive the controlling equation governing the
nonlinear evolution of the probe-field envelope F (see Section 2
of the Supplementary Material), which reads

i
z

zz
F − 1

2
K2

z2

zτ2
F +W|F|2F � 0, (4)

where τ � t − z/ ~Vg [~Vg ≡ (z~K/zω)− 1 is the group velocity of the
envelope; here and in the following, the quantity with a tilde
represents the corresponding real part]; K2 � z2K/zω2 is the
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coefficient describing group-velocity dispersion; W is the
coefficient (describing self-phase modulation) proportional to
Kerr nonlinearity. The explicit expression of W is given in
Section 2 of the Supplementary Material.

If the imaginary parts of K andW are much smaller than their
corresponding real parts, Eq. 4 admits the Peregrine soliton
solution, which can be expressed by the half Rabi frequency

Ωp(z, t) � U0
⎡⎢⎢⎢⎢⎣1 − 4

1 + 2iz/LNon

1 + 4z2/L2
Non + 4(t − z/ ~Vg)2/τ20

⎤⎥⎥⎥⎥⎦eiK0z+iz/LNon ,

(5)

where K0 ≡ K|ω�0, U0 and τ0 are respectively the characteristic
half Rabi frequency and time duration of the probe field, and
LNon ≡ 1/(U2

0

∣∣∣∣ ~W∣∣∣∣) is the characteristic nonlinearity length
(which has been assumed to equal the dispersion length
defined by LDis ≡ τ20/

∣∣∣∣~K2

∣∣∣∣ for simplicity). One sees that the
Peregrine soliton consists of a CW background and a bump in

its envelope that first grows and then decay rapidly on the
background. The physical reason for the formation of such
optical Peregrine soliton can be understood as follows. When
a plane-wave probe field with a finite amplitude is applied to
and propagates in the atomic gas, the Kerr nonlinearity brings
a modulational instability and a phase modulation to the
probe field; due to the role played by the group-velocity
dispersion, the phase modulation is converted into
amplitude modulation and peak amplification. Because of
the joint phase and amplitude modulations, the probe field
reorganizes its spatial distribution and hence the Peregrine
soliton is generated in the system.

As an example, we take τ0 � 2.36 × 10− 7 s,
U0 � 2π × 8.0MHz, and other system parameters which are the
same as those used in Figure 1B. Then we obtain
K0�−1.70+i0.02 cm− 1,K1�zK/zω ≈(4.5 − i0.05) × 10− 7 cm− 1 s,
K2 ≈ (−1.5 − i0.1) × 10− 14 cm− 1 s2, and W ≈ (1.05 − 0.004) ×
10− 16 cm− 1 s2 (estimated at ω � 0). We see that the imaginary
parts of Kj (j � 0, 1, 2) and W are much smaller than their
corresponding real parts, which is due to the EIT effect that
results in the suppression of the optical absorption in the system.
Based on these results, we obtain LNonxLDisx3.8 cm and

~Vgx7.34 × 10− 5c. (6)

Thus, the propagation velocity of the optical Peregrine soliton
is much slower than the light speed c in vacuum. If the transverse
cross-section area of the probe pulse takes the value
S � 8.0 × 10− 3 cm2, the generation power of the soliton (which
can be estimated by using the Poynting vector [56]) reads

Pmaxx1.8 μW, (7)

i.e., very small power needed for creating such soliton.
Consequently, the Peregrine solitons given here are different
from those obtained in conventional optical systems [25, 27,
28, 31].

We now investigate the propagation of the ultraslow Peregrine
soliton by exploiting Runge–Kutta method based on solving the
MB Eqs. 1 and 2 numerically. Since solution (5) has an infinite

FIGURE 1 | (A) Energy-level diagram and excitation scheme of the Λ-shaped three-level atomic system for realizing EIT. The probe field (with center angular
frequency ωp and half Rabi frequency Ωp) couples the atomic levels |1〉 and |3〉; the CW control field (with angular frequency ωc and half Rabi frequencyΩc) couples the
atomic levels |2〉 and |3〉; Γ13 (Γ23) is the decay rate from |3〉 to |1〉 (|3〉 to |2〉); Δ3 (Δ2) is one-photon (two-photon) detuning. (B) The imaginary part Im(K) and real part
Re(K) of the linear dispersion relation K as a function of ω (ω � 0 corresponds to the central frequency of the probe pulse).

FIGURE 2 | Propagation of ultraslow weak-light Peregrine solitons.
(A)

∣∣∣∣Ωpτ0
∣∣∣∣ as a function of t/τ0 and z. The solid blue line in the upper part is the

input temporal shape of the probe field with the dashed vertical lines
representing the temporal boundaries. The orange line in the lower part is
the input Peregrine soliton at z � 0. The red line represents the Peregrine
soliton propagating to z � 4.3 cmwith the maximum intensity

∣∣∣∣Ωpτ0|maxx15.2
at t � 16.9τ0 (B) The contour map for the propagation of the Peregrine soliton
(the red dashed circle) on the t-z plane. The upper color bar shows the
intensity of the probe field.
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energy due to the existence of the CW background, it cannot be
generated in a real experiment. To avoid this, we assume the
probe field at z � 0 has the form

Ωp(0, t) � Ωp0(t)⎡⎣12 tanh(t − Tp
on

Tp
s

) − 1
2
tanh(t − Tp

off

Tp
s

)⎤⎦. (8)

Here Ωp0(t) � 6.67[1 − 3.2/(1 + 4t2/τ20)] is chosen to match
the analytical solution (5); the hyperbolic tangent function is used
to impose temporal boundaries on both sides of CW background
(far from the pump part), which can make the soliton have finite
energy and also have a clear illustration on its waveshape (similar
to the case for generating dark solitons [64, 65]); Tp

s � 3.0τ0 is the
switching time when switching on and off the probe field; Tp

on �
−80τ0 and Tp

off � 4τ0 are parameters characterizing the two
temporal boundaries, respectively. The waveshape of the input
probe field at z � 0 is shown by a solid blue line in the upper part
of Figure 2A, where the dashed vertical lines represent temporal
boundaries.

The lower part of Figure 2A illustrates the result of a
numerical simulation on the propagation of the Peregrine
soliton (with Δ3 � −2π × 95.5MHz, τ0 � 1.5 × 10− 7 s, and
other parameters the same as those used in Figure 1B), by
taking

∣∣∣∣Ωpτ0
∣∣∣∣ as a function of t/τ0 and z. The orange line is the

input Peregrine soliton at z � 0; the red line denotes the
Peregrine soliton propagating to z � 4.3 cm; the maximum
value (

∣∣∣∣Ωpτ0|maxx15.2) of the soliton along the trajectory
appears sharply around z � 4.3 cm at t � 16.9τ0. Figure 2B
shows the contour map for the propagation of the Peregrine
soliton, which can be taken as a projection of Figure 2A onto
the t-z plane. One sees that the Peregrine soliton (indicated by
the red dashed circle in Figure 2B) appears sharply and
disappears suddenly; a secondary peak (soliton) emerges at
longer distance, as a result of phase modulation when the first
soliton is excited.

3 STORAGE, RETRIEVAL, SPLITTING, AND
ROUTING OF THE OPTICAL PEREGRINE
SOLITONS
We now turn to consider the memory of the optical Peregrine
solitons and related applications in optical splitting and routing
through the manipulation of the control fields.

3.1 Storage and Retrieval of the Optical
Peregrine Solitons
We first consider the storage and retrieval of optical Peregrine
solitons obtained above, which can be implemented by switching
off and on the control field described by the following switching
function:

Ωc � Ωc0[1 − 1
2
tanh(t − Tc

off

Tc
s

) + 1
2
tanh(t − Tc

on

Tc
s

)], (9)

where Ωc0 is a constant, Tc
s is the time interval for switching off

and switching on the control field (switching time), and Tc
off (T

c
on)

is the time when the control field is switched off (on).
As an example, we take Ωc0 � 2π × 31.8 MHz, Tc

off � 10.0τ0,
Tc
on � 20.0τ0, Tc

s � 3.0τ0 (τ0 � 1.5 × 10− 7s), and other system
parameters are the same as those used in Figure 2. The upper
part of Figure 3A shows the time sequences of the control field
(black line) and the probe field (blue line); the red dashed vertical
line (black dashed vertical line) represents the time Tp

off (T
c
off ).

Symbols I, II, and III denote the CW background, the Peregrine
soliton, and the low-intensity component of the probe field,
respectively. The lower part of the figure shows the result of a
numerical simulation on the storage and retrieval of the Peregrine
soliton by taking

∣∣∣∣Ωpτ0
∣∣∣∣ as a function of t/τ0 and z. Here the

orange line is the input Peregrine soliton at z � 0; the purple line
represents the Peregrine soliton at the storage period; the red line
represents the retrieved Peregrine soliton propagating to z �
4.1 cm with the maximum intensity

∣∣∣∣Ωpτ0|maxx15.4 at
t � 30.3τ0. Shown in Figure 3B is the contour map of the
storage and retrieval of the Peregrine soliton in the t-z plane

FIGURE 3 | Storage and retrieval of optical Peregrine solitons. (A) Upper
part: the black line (blue line) is the time sequence of the control (probe) field,
the red dashed vertical line is Tp

off , and the black dashed vertical line is Tc
off .

Symbols I, II, and III denote the CW background, the Peregrine soliton,
and the low-intensity component of the probe field, respectively. Lower part:∣∣∣∣Ωpτ0

∣∣∣∣ vs. t/τ0 and z with Tp
off <Tc

off ; i.e., the switching-off time of the input
probe field is before the time when the control field is switched off. The orange
line represents the input Peregrine soliton at z � 0; the purple line represents
the probe field at the storage period; the red line represents the retrieved
Peregrine soliton propagating to z � 4.1 cm with the maximum intensity∣∣∣∣Ωpτ0

∣∣∣∣maxx15.4 at tx30.3τ0. (B) The contour map of the storage and
retrieval of the Peregrine soliton in the t-z plane with Tp

off <Tc
off . The red dashed

circle denotes the retrieved Peregrine soliton (i.e., “Retrieved PS”). The upper
color bar shows the intensity of the probe field. (C) The same as panel (A) but
with Tp

off >Tc
off . (D) The contour map of the Peregrine soliton in the t-z plane

with Tp
off > Tc

off . The unstored component of the probe field is marked by the
white circle.
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with Tp
off <Tc

off . The retrieved Peregrine soliton is indicated by the
red dashed circle (i.e., “Retrieved PS”). From the figure we see that
the Peregrine soliton can be stored and retrieved some time later
in the medium.

The steps of the storage and retrieval of the Peregrine soliton
can be described as follows:

• Firstly, the control field Ωc is switched on (to establish EIT)
and the probe field (Peregrine soliton) of the form Ωp0τ0 �
6.67[1 − 3.2/(1 + 4t2/τ20)]{0.5[(t/τ0 + 80)/3.0] − 0.5tanh
[(t/τ0 − 4)/3.0]} is incident into the system (i.e., the orange
line in the lower part of Figure 3A).

• Then, the control field is switched off at time
t � Tc

off � 10.0τ0, with the switching time of the control
and probe fields setting to be Tc

s � Tp
s � 3.0τ0. The probe

field (the Peregrine soliton) is thus stored in the system
(i.e., it is converted into the atomic coherence σ21 [66, 67]).

• Lastly, the control field is switched on again at
t � Tc

on � 20.0τ0. The atomic coherence σ21 is converted
back to the probe field, and hence the probe pulse is
retrieved. Particularly, at time tx30.3τ0, the retrieved probe
field manifests as a Peregrine soliton with the maximum
intensity

∣∣∣∣Ωpτ0
∣∣∣∣maxx15.4 at the position zx4.1 cm.

The efficiency of the Peregrine soliton memory can be
characterized by the parameter η � ∫​ +∞−∞∣∣∣∣∣EPere

p (t)
∣∣∣∣∣2dt/∫​ +∞−∞∣∣∣∣∣Ein

p (t)
∣∣∣∣∣2dt [57, 67], where Ein

p (t) � Ein
p (0, t) (i.e., the input

Peregrine soliton) and EPere
p (t) � EPere

p (LPere, t) (i.e., the retrieved

Peregrine soliton), with LPere (x4.1 cm) as the position where the
Peregrine soliton is retrieved. Based on the result of
Figure 3A, we obtain η � 85.9%.

The fidelity of the Peregrine soliton memory can be described
by the parameter ηJ2, where J2 describes the degree of coincidence
of the wave shapes for the input and retrieved solitons, defined by
the overlap integral J2 � ∫​ T1

−T1

∣∣∣∣∣Ein
p (t)EPere

p (t − ΔT)
∣∣∣∣∣2dt/

[∫​ T1

−T1

∣∣∣∣∣Ein
p (t)

∣∣∣∣∣2dt∫​ T1

−T1

∣∣∣∣∣EPere
p (t − ΔT)

∣∣∣∣∣2dt] [57, 67], where T1 is a
coefficient related to the temporal width of the Peregrine soliton
(i.e., corresponding to symbol II in Figure 2A), andΔT is the time
interval between the peak of the input soliton pulse Ein

p and the
peak of the retrieved soliton pulse EPere

p . Here we take ΔT �
30.3τ0 and T1 � 10τ0. We obtain ηJ2 � 84.3%. We see that the
efficiency and fidelity of the storage and retrieval of the Peregrine
soliton are quite high.

The numerical result shown in Figure 3C is similar to that of
Figure 3A but for Tp

off >Tc
off . In this case, the storage and retrieval

of the Peregrine soliton can also be implemented; however,
compared with Figure 3A (which is for Tp

off <Tc
off ), the

retrieved waveshape is little more distorted. Figure 3D
illustrates the contour map of the Peregrine soliton in the t-z
plane with Tp

off >Tc
off . One sees that the probe field has a nonzero

value in the region indicated by the dashed white circle, which
means that some parts of the probe field are not stored when the
control field is switched off. We obtain the efficiency and fidelity
of the Peregrine soliton memory for Tp

off >Tc
off are η � 77% and

ηJ2 � 65%, respectively. Based on these results, we conclude that

FIGURE 5 | Routing of optical Peregrine solitons. (A) The energy-level
diagram and excitation scheme of the double-Λ-type four-level atomic
system. In this configuration, two probe laser fields Ωp1 and Ωp2 drive the
transitions |1〉↔|3〉 and |1〉↔|4〉, respectively; two CW control laser
fieldsΩc1 andΩc2 drive the transitions |2〉↔|3〉 and |2〉↔|4〉, respectively; Δ3

and Δ4 are one-photon detunings, and Δ2 is two-photon detuning. (B) Time
sequences of the two control fields Ωc1, Ωc2 and the probe field Ωp1 for
realizing the soliton routing. The vertical red dashed line denotes the time
t � Tp

off ; the vertical black dashed lines denote the times when switching off
and on the control fields. (C) Contour maps for the routing process of the
Peregrine soliton, where the upper panel is for Ωp1 and the lower panel is for
Ωp2. The Peregrine soliton is input as the probe field Ωp1, but it is retrieved as
the probe fieldΩp2 (i.e., “retrieved PS” indicated by the red dashed circle in the
lower panel of the figure).

FIGURE 4 | Splitting of optical Peregrine solitons. (A) Energy-level
diagram and excitation scheme of the tripod-type four-level atomic system.
Here, a probe laser fieldΩp drives the transition |1〉↔ |3〉; the two CW control
fields Ωc1 and Ωc2 drive the transitions |2〉↔ |3〉 and |4〉↔ |3〉,
respectively; Γj3 is the decay rate from |3〉 to |j〉 (j � 1,2, 4); Δ3 and Δl (l � 2, 4)
are respectively one-photon and two-photon detunings. (B) Time sequences
of the control and the probe fields for realizing the optical splitting. The vertical
red dashed line is for t � Tp

off ; the vertical black dashed lines represent the
times when switching off and on the two control fields. For detailed meanings
of the symbols Tc1

off1, etc., see text. (C) The contour map of the splitting
process of the Peregrine soliton in the t-z plane. The intensities of two split
Peregrine solitons are

∣∣∣∣Ωpτ0
∣∣∣∣max � 15.4 when t � 23.0τ0 at the position z �

3.7 cm (first retrieved Peregrine soliton, i.e., “1st retrieved PS” indicated in the
figure) and

∣∣∣∣Ωpτ0
∣∣∣∣max � 14.0 when t � 61.5τ0 at the position z � 5.5 cm

(second retrieved Peregrine soliton, i.e., “2nd retrieved PS” indicated in the
figure), respectively.
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in order to get a high memory quality, the choice of Tp
off <Tc

off is
better than that of Tp

off >Tc
off .

3.2 Splitting of the Optical Peregrine
Solitons
To realize an optical splitting [67] of the Peregrine soliton, we
generalize the system into a four-level one with a tripod-type level
configuration. Here a probe field Ωp drives the transition
|1〉↔|3〉; two CW control fields Ωc1 and Ωc2 drive respectively
the transitions |2〉↔|3〉 and |4〉↔|3〉; Γj3 is the decay rate from
|3〉 to

∣∣∣∣ j〉 (j � 1, 2, 4), Δ3 and Δl (l � 2, 4) are respectively one-
photon and two-photon detunings (see Figure 4A). The
Hamiltonian of the system and the optical Bloch equations
controlling the dynamics of the atoms have been presented in
Section 5 of the Supplementary Material.

The timing sequences of the switching-off and -on ofΩcj(t) for
obtaining a Peregrine soliton splitter are shown in Figure 4B, with
Tp
off <Tc1

off1 � Tc2
off1 <Tc1

on <Tc1
off2 <Tc2

on. For jth control field Ωcj

( j � 1, 2), Tcj
s (Tcj

on) is its switching-off (switching-on) time. The
corresponding switching functions have been given in Section 5 of
the Supplementary Material. When plotting the figure, we have
set Ωc1(0) � Ωc2(0) � 2π × 31.8MHz, Tc1

off1 � Tc2
off1 � 6.0τ0,

Tc1
on � 15.0τ0, Tc1

off2 � 35.0τ0, Tc2
on � 45.0τ0, and Tc1

s � Tc2
s � 3.0τ0.

Shown in Figure 4C is the numerical result on the simulation
for obtaining the Peregrine soliton splitter by taking Ωpτ0 as a
function of t/τ0 and z (with τ0 � 1.5 × 10− 7 s). The operation
steps can be described as follows: 1) Firstly, the two control fields
Ωc1 and Ωc2 are applied and a probe field with the waveform
Ωp0(0,t)�6.67[1−3.2/(1+4(t+5)2/τ20)]{0.5tanh[(t/τ0+80)/3.0]−
0.5tanh[(t/τ0−4)/3.0]} is incident to the system. 2) Then, both
control fields are simultaneously switched off at time
t�Tc1

off1�Tc2
off1�6.0τ0. Thus the probe field is stored in the two

atomic coherences σ21 and σ41 simultaneously 67. 3) Later on,
switching on Ωc1 at t�Tc1

on�15.0τ0 (but Ωc2 is remained to be
switched off), the atomic coherence σ21 is converted back into the
probe field, and hence a new probe pulse is retrieved. At time
tx23.0τ0, this retrieved probe pulse turns into a Peregrine soliton
(i.e., “1st retrieved PS”, indicated by a red circle in Figure 4B)
with the maximum intensity

∣∣∣∣Ωpτ0
∣∣∣∣maxx15.4 at the position

z�3.7 cm. 4) By switching off Ωc1 at t�Tc1
off2�35.0τ0 and

switching on Ωc2 at t�Tc2
on�45.0τ0, the atomic coherence σ41

converts back into the probe field; this retrieved probe field turns
into another Peregrine soliton (i.e., “2nd retrieved PS”, indicated
by another red circle in Figure 4B) with the maximum intensity∣∣∣∣Ωpτ0

∣∣∣∣maxx14.0 at the position z�5.5 cm at tx61.5τ0 .
In the simulation, we have taken Δ2 � Δ4 � −2π × 0.64 MHz,

c21 � c41 � 2π × 1.09 kHz, with the other parameters the same
as those used in Figure 3A. The reason for taking Δ2 � Δ4 and
c21 � c41 is to keep the symmetry of the tripod level
configuration, which gives two nearly degenerated EITs in the
system; for details, see [67]. The splitting efficiency and fidelity of
the first (second) Peregrine soliton are η1 � 89.8% and η1J

2
1 �

85.4% (η2 � 89.3%, η2J
2
2 � 84.9%), respectively.

3.3 Routing of theOptical Peregrine Solitons
To realize all-optical routing [67, 68] of optical Peregrine solitons,
we consider a four-level atomic system with a double-Λ-type level

configuration. Here, two probe laser fields Ωp1 and Ωp2 drive the
transitions |1〉↔|3〉 and |1〉↔|4〉, respectively; two CW control
laser fields Ωc1 and Ωc2 drive the transitions |2〉↔|3〉 and
|2〉↔|4〉, respectively; Δ3 and Δ4 are one-photon detunings,
and Δ2 is two-photon detuning (see Figure 5A).

The Hamiltonian of the system and the MB equations
governing the dynamics of the atoms and light fields have
been given in Section 6 of the Supplementary Material.

For simplicity, here we consider a frequency routing process,
i.e., the probe field Ωp1 is converted into the Ωp2 (which has
different frequency from Ωp1). The time sequence of the
switching off and on of Ωcj for obtaining routing of Peregrine
soliton is shown in Figure 5B, with Tp

off <Tc1
off <Tc2

on, where T
c1
off is

the switching-off time of Ωc1 and Tc2
on is the switching-on time of

Ωc2. The corresponding switching functions have been given in
Section 5 of the Supplementary Material. Without loss of
generality, the system parameters are set to be
Ωc1 � Ωc2 � 2π × 31.8MHz, Tc1

off � 10.0τ0, Tc2
on � 25.0τ0, and

Tc1
s � Tc2

s � 3.0τ0 (switching time).
The implementing procedure of the Peregrine soliton routing

is as follows. First, by switching on the control fieldΩc1, the input
probe field Ωp1 with the initial condition Ωp0(t/τ0) � 6.67[1 −
3.2/(1 + 4t2/τ20)]{0.5tanh[(t/τ0 + 80)/3.0] − 0.5tanh[(t/τ0 − 4)/
3.0]} propagates in the system, as shown in the upper panel of
Figure 5C as a function of propagation distance t/τ0 and z. One
sees that a trajectory of the soliton shows up before its storage.
Second, by switching off Ωc1 at time t � 10τ0, the probe field Ωp1

is stored in the atomic coherence σ21. Third, by switching on the
control field Ωc2 at t � 25τ0, another probe pulse Ωp2 appears
from the atomic coherence σ21, i.e., “retrieved PS” in the lower
panel of Figure 5C. We stress that during this routing process, the
Peregrine soliton in the probe field Ωp1 is annihilated and a new
Peregrine soliton in the probe field Ωp2 (which has no input) is
created. Since the frequency of Ωp2 is different from that of Ωp1,
the system performs as a frequency router of the Peregrine
soliton.

4 CONCLUSION

We have proposed a scheme for realizing the storage and retrieval
of optical Peregrine solitons in a coherent atomic gas via EIT. We
have shown that the optical Peregrine solitons with very small
propagation loss, ultraslow motional velocity, and extremely low
generation power can be generated in the system via EIT. We
have demonstrated that such solitons can be stored, retrieved,
split, and routed with high efficiency and fidelity through the
manipulation of control laser fields.

The scheme can also be generalized to cases with more optical
output channels through the use of more control fields, and hence
the two-channel splitting and routing processes can be
generalized to multiple channel ones. Furthermore, the storage
and retrieval of the optical Peregrine solitons can be extended to
solid materials, like on-chip optical resonator systems [69]. The
research results reported here may be useful for the active control
of optical Peregrine solitons and promising for potential
applications in optical information processing and transmission.
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