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A class of generalized homoclinic solutions of the nonlinear Schro ̈dinger (NLS) equation in
1+1 dimensions is studied. These are homoclinic breathers that are shown to be derivable
from the ratio of Riemann theta functions for the genus-2 solutions of the nonlinear
Schro ̈dinger equation. We discuss how these solutions behave in the homoclinic limit for
which a fundamental parameter ε goes to zero, ε→ 0 (such that two points of simple
spectrum converge to double points at some particular lambda-plane eigenvalue). The
homoclinic solutions cover the entire lambda plane (the Riemann surface of the NLS
equation) and are given in terms of simple trigonometric functions. When the spectral
eigenvalues converge to the carrier amplitude in the lambda plane we have the Peregrine
breather. While the Peregrine solution is often called a soliton, it is in reality a breather, albeit
occurring at the “singular point” corresponding to the carrier eigenvalue in the lambda
plane and consequently “breathes” only once in its lifetime. The Peregrine breather
separates small-amplitude modulations below the carrier from large amplitude
modulation above the carrier. This fact means that the Peregrine breather has a
“central” role in the lambda plane characterization of the NLS nonlinear spectrum. The
Akhmediev breather occurs somewhat below the carrier (and is therefore a small-
amplitude modulation) and the Kuznetsov-Ma breather occurs above the carrier (and is
therefore a large-amplitude modulation). The general homoclinic solutions can be
constructed everywhere in the lambda plane and are shown to be a useful tool to
interpret the nonlinear Fourier spectrum of space and time series recorded in the
laboratory and ocean environment. Nonlinear filtering is suggested as a way to extract
breather trains from experimental time series. The generalized homoclinic breathers can be
thought of as “extreme wave packets” or “rogue wave” solutions of water waves for
scientific and engineering applications in various fields of physics including physical
oceanography and nonlinear optics.
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INTRODUCTION

The nonlinear Schrod̈inger equation in one-space and one-time
dimensions (1+1) has been a useful, but simple model for the
study of nonlinear waves in many fields of study, including
physical oceanography, ocean engineering and nonlinear optics
[1–6]. The general periodic/quasiperiodic solutions of NLS
equation consist of ratios of Riemann theta functions that
have differing phases [7–9]. The general Riemann (nonlinear)
spectrum is described parametrically by the Riemann matrix. The
diagonal elements of the Riemann matrix are the Stokes wave
solutions of NLS and the off-diagonal elements describe the
interactions among Stokes waves. When spectral components
have a Benjamin-Feir parameter greater than one, then two
Stokes modes will phase lock with one another, thereby
creating a breather, i.e., a wave packet that “breathes” up and
down during its evolution. The maximum amplitude of a breather
during its nonlinear motion has a central enhanced carrier wave
that is often referred to as a “rogue” or “freak” wave. The work of
Peregrine identified one particular breather of exceptional
simplicity: The ratio of two low degree polynomials. Peregrine
called such solutions “sudden steep events” although the field of
nonlinear waves has chosen the term “breathers” instead, due
to the naming convention used in early theoretical work (see
for example [10]). The field has grown tremendously in the
past 30 years because it has captured the imagination of a large
number of investigators interested in freak wave behavior in
ocean waves and in nonlinear optics.

There are a large number of “coherent structures” in the
nonlinear Schrödinger equation. For example in shallow water
there are Stokes waves, dark solitons and “ghost” or “fossil” wave
packets. In deep water there are also Stokes waves, bright solitons
and breathers. Deep-water breathers are essentially phase-locked
Stokes waves or solitons. The general solutions of the Schrödinger
equation are determined from the ratio of multidimensional
Riemann theta functions and these solutions contain all of the
special cases of coherent structures just mentioned. Furthermore,
it is known that the multidimensional theta function solutions
can be reduced to the so-called N-soliton limit of NLS equation.
How then does the Peregrine breather fit into all of this
mathematical physics? The answer is that the above
multidimensional solutions can be reduced to the so-called general
homoclinic solutions, which occur in the soliton limit, by introducing
periodic/quasiperiodic boundary conditions. The general homoclinic
solutions can then be reduced to the Akhmediev, Peregrine and
Kuznetzov-Ma breathers as special cases. Of course there is a
continuous range of homoclinic solutions that provide a broad
spectrum of breathers. Experimentally, if one is studying a
quasiperiodic, multidimensional simulation or space/time series
measurement of ocean waves, then it is not easy to pick out by
eye from a seemingly random wave train what the actual coherent
modes are. This has lead to a guessing game of trying to decide what
particular modes are present in a selected time series measurement.
This conundrum has led to the implementation of nonlinear Fourier
methods for analyzing data [5], [11–13]. While details of this latter
topic are treated elsewhere, the main goal of the present paper is to
discuss the role that coherent structures play in solutions of the NLS

equation and in the analysis of data. In this way one is able to identify
their particular spectral signature in the nonlinear Fourier scheme,
thus enabling experimentalists to better understand the physics of
coherent structures in measured ocean waves.

The goal of this paper is to investigate a large general class of
rogue wave breather solutions previously studied by [14, 15] and
how they can be derived from Riemann theta functions. Herein I
describe a simple breather solution that parametrically depends
on a single eigenvalue that lies on the imaginary axis of the
Riemann spectrum or so-called lambda plane (the Riemann
surface) of the 1+1 NLS equation. Three particular eigenvalues
give the most well known breathers used in the field today and
due to [16, 17]; and [14, 18].

The results given herein have implications on the modern
theoretical and experimental study of coherent structures and
breather trains in both one and two dimensions. Recent exciting
studies of nonlinear waves and their coherent properties for the
ocean and laboratory have been made by a number of authors,
including [5], [11], [19–26]. A central goal of this paper is to show
how to use generalized homoclinic solutions to analyze space/
time series data together with the Zakharov-Shabat eigenvalue
problem, as described by Osborne and co-workers [5], [11], [12].

INTEGRABILITY AND COHERENT
STRUCTURES FOR 1D WATER WAVES

We consider water wave solutions of the nonlinear Schrödinger
(NLS) equation

iut + uxx + 2σ|u|2u � 0 (1)

The parameter σ sigma can be ± 1. The plus sign (σ � +1)
occurs for deep-water waves such that kh> 1.363 where the
modulational instability exists and the Benjamin-Feir
instability governs the nonlinear wave dynamics. In shallow

FIGURE 1 | (A) A deep water envelope or bright soliton of the NLS
equation (the thin line is the surface wave elevation and the thick line is the
modulus of the envelope of NLS equation) and (B) a shallow water dark soliton
(where the thin line is the surface elevation and the thick line is the
modulus of the envelope of NLS equation).
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water (σ � −1, where kh< 1.363) the wave solutions are always
stable. Detailed discussions of the NLS equation in terms of the
theory of the inverse scattering method are given elsewhere [27],
[9] (applications to ocean waves are given in [5]).

NLS equation has well-known coherent structures including
Stokes waves, bright solitons, dark solitons and breathers.
From the point of view of the mathematical physics a single
Stokes wave or soliton is a genus-1 solution of the nonlinear
Schrödinger equation. Cases for bright and dark solitons are
shown in Figure 1. The bright soliton solutions are associated
with infinite line boundary conditions, while the dark solution
solutions are related to a finite condition at infinity (or periodic
boundary conditions). Thus Stokes waves are single-degree of
freedom solutions and for the increasing nonlinear limit they
morph these into soliton solutions (for the periodicity
requirement often used in the study of water waves means
that soliton trains are a feature of the method). Breathers are
formed from the phase locking of two Stokes waves in the
genus-2 case, an example of which is shown in Figure 2.

Of course a great deal of effort has been made to determine if
the methods of soliton physics can be useful in the study of
coherent structures in ocean waves. This is an important issue
because the usual paradigm for nonlinear ocean waves is that for
the 4-wave interactions where ocean waves are assumed to be
weakly interacting sine waves. Thus a new approach, which is
able to determine the behavior of nonlinear ocean waves from
the point of view of their coherent structures, is a significant
step beyond current understanding of quasilinear methods. Of
course one has to extend the approach beyond one dimension
to the two-dimensional equations such as NLS and its
subsequent orders of approximation [28–31] equations. We
are focused here on the 1D case where we attempt to bring
together the complete set of ideas with regard to both infinite-line
boundary conditions and periodic boundary conditions for the NLS
equation.We are interested in the Stokes waves, soliton and breather

solutions of the equation. Thus considerations with regard to
infinite-line inverse scattering theory and the periodic solutions of
inverse scattering theory are addressed. Why study IST? Because it
provides one approach to study methods that allow one to
nonlinearly Fourier analyze data to understand the role of
coherent structures in ocean wave data [5], [11], [12].

SPECIAL AND GENERAL SOLUTIONS OF
THE NLS EQUATION

We discuss the special solution of the NLS equation, which are
known to have homoclinic solutions. These include soliton
solutions for both the shallow and deep-water NLS equations
and for the deep-water theta function solutions.

Dark Soliton Solutions in Shallow Water
Given the nonlinear Schrödinger equation in shallow water, with
complex solution u(x, t)

iut + uxx − 2|u|2u � 0 (2)

[32] first wrote down the Dark soliton solutions of Eq. 2. This
is written as the ratio of two functions:

u(x, t) � a
g(x, t)
f (x, t) e

−2ia2t (3)

where

f � ∑1
μ1�0

∑1
μ2�0

e
∑N
j> k

μiμjAij+∑N
i�1

μi(kix−Ωi t+ci)

g � ∑1
μ1�0

∑1
μ2�0

e
∑N
j> k

μiμjAij+∑N
i�1

μi(kix−Ωi t+ci+2iϕi)
(4)

where

FIGURE 2 | Breather solution of the nonlinear Schrödinger equation at the moment when it reaches maximum amplitude.
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Aij � ln⎡⎢⎢⎣sin(12 (ϕj − ϕk))
sin(12 (ϕj + ϕk))⎤⎥⎥⎦

2

kj � 2asinϕj

Ωj � ± kj(4a2 − k2j )1/2
Here cj are arbitrary constants.

A dark, or more correctly a gray, soliton is shown in
Figure 1B. These are the single soliton solutions modes of the
above multisoliton solution, which individually have the form:

|u(x, t)|2 � ρ2 − k2/4

cosh2[12 (kx − Ωt)]
Bright Soliton Solutions in Deep Water
The nonlinear Schrödinger equation for deep water, with
complex solution ψ(x, t)

iut + uxx + 2|u|2u � 0 (5)

[33] derived the brightN-soliton packet solutions of Eq. 5. We
seek a solution as the ratio of two functions:

u(x, t) � G(x, t)
F(x, t) (6)

At this stage we can “separate the variables” and set

i(GtF − GFt) + μ(GxxF − 2GxFx + GFxx) � 0
2(FFxx − F2

x) − |G|2 � 0
(7)

From the second of Eq. 7 get∣∣∣∣ψ∣∣∣∣2 � GGp

F2
� 2zxx ln F (8)

At this point the N-soliton solution arises as before by suitable
exponential expansions:

F � ∑1
μ1�0

∑1
μ2�0

... ∑1
μN�0

D1(μ1, μ2)e ∑1≤ i< j μiμjAij+∑2N
i�1

μi(kix−Ωi t+ϕi)
(9)

G � ∑1
μ1�0

∑1
μ2�0

... ∑1
μN�0

D2(μ1, μ2)e ∑1≤ i< j

μiμjAij+∑2N
i�1

μi(kix−Ωi t+ϕi)

where

ki+N � kpi Ωi+N � Ωp
i ϕi+N � ϕp

i ; Ωi � −ik2i i � 1, 2...N

Aij � ln[1
2
(ki + kj)−2] for � 1,2 . . .N and j �N + 1,N + 2 . . .2N

Aij � ln[1
2
(ki − kj)−2] for � N + 1,N + 2...2N and

j � N + 1,N + 2...2N

and

D1(μ1, μ2) � ⎧⎪⎨⎪⎩ 1 when ∑N
i�1

μi �∑N
i�1

μi+N

0 otherwise

D2(μ1, μ2) � ⎧⎪⎨⎪⎩ 1 when 1 + ∑N
i�1

μi+N � ∑N
i�1

μi

0 otherwise

This formulation gives the multisoliton solutions of the NLS
equation for bright solitons on the infinite line.

A single bright soliton packet solution that has the form:

u(x, t) � a sech[a∣∣∣∣∣∣∣∣ ]2μ∣∣∣∣∣∣∣∣1/2(x − Vt)]ei(V
2μ x−V

2
4μ t+12 ]a2t)

Here V is an arbitrary group speed and a is an arbitrary
amplitude. This solution can be seen in Figure 1A above.

Stokes Wave Solutions With Riemann Theta
Functions for Periodic Boundary Conditions
The Riemann theta function solution of the NLS equation for
deep water Eq. 5 is given by [9], [5]:

u(x, t) � A
θ(x, t|τ, δ−)
θ(x, t∣∣∣∣τ, δ+) e2iA2t (10)

The θ(x, t|τ, δ) are generalized Fourier series known as
N-dimensional Riemann theta functions:

θ(x, t∣∣∣∣τ, δ ± ) �
� ∑∞

m1�−∞
∑∞

m2�−∞
. . . ∑∞

mN�−∞
exp i⎡⎢⎢⎣∑N

n�1
mnKnx +∑N

n�1
mnΩnt

+∑N
n�1

mnδ
±
n +∑N

j�1
∑N
k�1

mjmkτ jk⎤⎥⎥⎦
(11)

where the Kn are wavenumbers, the Ωn are frequencies, the δ ±
n

are phases and τmn is the Riemann matrix, in which the diagonal
elements correspond to Stokes waves and the off-diagonal
elements refer to nonlinear interactions amongst the
Stokes waves.

An important case is for the 2 × 2 period matrix, τ, which
implies that N � 2, a case considered in detail by [8]. For N � 2
the theta function has the form:

θ(x, t∣∣∣∣τ, δ ± ) � ∑∞
m1�−∞

∑∞
m2�−∞

expi ⎡⎢⎢⎣∑2
n�1

mnKnx +∑2
n�1

mnΩnt

+∑2
n�1

mnδ
±
n +∑2

j�1
∑2
k�1

mjmkτ jk⎤⎥⎥⎦ (12)

The parameters in the theta function are given by [5]:

• Expansion Parameters and Riemann Sheet Indices

ε1 � εoe
iθ ε2 � εp1

σ1 � 1 σ2 � −1 (13)

• Spectral Eigenvalue
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λ1 � λR + iλI λ2 � λp1 (14)

• Spectral Wavenumber

K1 � −2
������
A2 + λ21

√
K2 � −2

������
A2 + λ22

√
(15)

• Spectral Frequency

Ω1 � 2λ1K1 Ω2 � 2λ2K2 (16)

• Period Matrix

τ11 � 1
2
+ i
π
ln(K2

1

ε1
) τ12 � i

2π
ln(1 + λ1λ2 + 1

4K1K2

1 + λ1λ2 − 1
4K1K2

) (17)

τ21 � τ12 τ22 � 1
2
+ i
π
ln(K2

2

ε2
) (18)

• Phases

δ+1 � π + i ln(λ1 − 1
2
K1) + i ln(σ1λ1 + 1

2
K1)

δ−1 � π + i ln(λ1 + 1
2
K1) + i ln(σ1λ1 + 1

2
K1)

δ+2 � π + i ln(λ2 − 1
2
K2) + i ln(σ2λ2 − 1

2
K2)

δ−2 � π + i ln(λ2 + 1
2
K2) + i ln(σ2λ2 − 1

2
K2) (19)

Use of the above formulas in the theta function provides a
simple way to compute the breather trains for the particular case
of a modulated plane wave carrier.

Homoclinic Solutions
There are several ways the general homoclinic solutions can be
derived. These are listed below:

1) The general methods of [14, 17, 18] and [16]. These are the
classical approaches, are well known and will not be discussed
further here.

2) From dark 2-soliton solutions (2)–(4). This has been discussed
by [34] in considerable detail (see also [15]). The method
begins with the dark N-soliton solutions as discuss above (3),
(4). This approach provides an important connection between
the dark solitons and homoclinic solutions.

3) From Stokes wave solutions with Riemann Theta Functions
for periodic boundary conditions. These solutions can be used
to determine the homoclinic solutions by letting the
parameter ε→ 0, as given by [35]. Likewise we can take the
theta function solutions in the soliton limit to determine the
deep-water N-soliton solution (5)–(9).

4) From bright 2-soliton solutions (5)–(9), by invoking periodic
boundary conditions for the deep-water NLS Eq. 5 we can
directly compute the homoclinic solution.

All of the above methods provide keen insight into the
generalized homoclinic solutions (see Generalized Homoclinic
Solution below) and their relationship to the inverse scattering

transform. Why however do we care about homoclinic solutions
from a physical standpoint?

• (a) For large oceanic wave fields the breathers tend to
have spectral components clustered about the peak of
the spectrum, and hence are homoclinic. Homoclinicity
is a found in Mother Nature for extreme sea states and
the homoclinic solutions are good physical
approximations for the Fourier components in time
series data.

• (b) Homoclinic solutions are simple, i.e., they are written in
terms of trigonometric functions, not in terms of theta
functions.

• (c) The simple homoclinic formulas are the “nonlinear
Fourier modes” that are associated with each of the
largest modes in the nonlinear spectrum. Since these
modes have parameters that can be determined from
time series by solving the Zakharov-Shabat eigenvalue
problem for periodic boundary conditions [5], we know
that the homoclinic modes uniquely describe each breather
train in the measured time series. Therefore one might think
of locating each measured breather train and comparing it
with the homoclinic solution for the appropriate nonlinear
Fourier component.

Let us now look at the generalized homoclinic solution of 1+1
NLS and discuss some of its properties.

GENERALIZED HOMOCLINIC SOLUTION

The nonlinear Schrod̈inger equation in deep water is given by
Eq. 5. Herein, we are interested in spatially periodic
boundary conditions (u(x, t) � u(x + L, t)) for which a
large class of homoclinic solutions whose derivations
are discussed above in Integrability and Coherent Structures for
1D Water Waves, and which are given by [14, 15, 34]:

u(x, t) � a(1 − 2cos(Kx)eΩt−2iϕ+c + Ae2Ωt−4iϕ+2c

1 − 2cos(Kx)eΩt+c + Ae2Ωt+2c
)e2ia2t (20)

where

Ω � K
�������
4a2 − K2

√ (Frequency) (21)

K � 2asinϕ(Wavenumber) (22)

L � 2π
K

� π

asinϕ
(Wavelength) (23)

A � sec2ϕ � 1
cos2ϕ

(24)

Here a is the amplitude of the carrier wave. Notice that the
parameter cmay be interpreted as just a temporal phase shift and
could just as well be omitted. However, I use c to keep the
maximum of the waveform at the origin, umax � u(0, 0). The
presence of the parameter ϕ is the only difference between the
numerator and denominator and is fundamental for describing
modulational solutions of the NLS equation.
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Some observations are in order here with respect to relating the
above solution to the inverse scattering transform (IST) that I discuss
further inComments onData Analysis. Clearly ϕmust be related to the
periodic IST eigenvalue1 in the so-called λ-plane, where the Floquet
problem for the Zakharov-Shabat eigenvalue problem is solved. Recall
that thewavenumber is related to λ by the following relation (this is just
the IST loop integral to leading order in the parameter ε [5]):

K � 2
������
a2 + λ2

√
(25)

Here the eigenvalue has real and imaginary parts, so that λ � λR +
iλI where

λI � acosϕ, λR � 0 (26)

Then

K � 2
������
a2 − λ2I

√
� 2a

��������
1 − cos2 ϕ

√
� 2asinϕ (27)

So we have the wavenumber in the λ-plane eigenvalue and the
relation λI � a cosϕ results. The frequency can be written

Ω � K
�������
4a2 − K2

√ � 2a2sin(2ϕ) � 2KλI (28)

Then

A � 1
cos2ϕ

� ( a
λI
)2

L � 2π
K

� π

asinϕ
� 2π

2
������
a2 − λ2I

√ (29)

Also

tanϕ � K
2λI

� 2
������
a2 − λ2I

√
2λI

(30)

A graph of the λ-plane below the carrier amplitude ia is given
in Figure 3.

Assume Ωt + c � Ω(t + c/Ω) � Ωτ, where τ � (t + c/Ω),
we find

u(x, τ) � a(1 − 2cos(Kx)eΩτ−2iϕ + Ae2Ωτ−4iϕ

1 − 2cos(Kx)eΩτ + Ae2Ωτ
)e2ia2t (31)

Thus the parameter c introduces only a temporal phase shift
that can be removed.

The most general form for the homoclinic solution below the
carrier is then given by:

u(x, t) � a⎡⎣1 − 2ec−2iϕ+2a
2sin(2ϕ)t cos(2asinϕx) + sec2ϕe2c−4iϕ+4a

2sin(2ϕ)t
1 − 2ec+2a

2sin(2ϕ)t cos(2asinϕx) + sec2ϕe2c+4a
2sin(2ϕ)t ⎤⎦e2ia2 t

(32)

Note that ϕ is the IST phase and c is seen in the role of an
amplitude-multiplying factor in the initial modulation. Now use

θ(t) � 2a2 sin(2ϕ)t (33)

The primordial time is given by the following (set
ε � e2a

2 sin 2ϕ t , then expand as a Taylor series in ε as t→ −∞):

u(x, t) ≃ a[1 + 4εec sinϕe
i(π2−ϕ)

cos(2asinϕx)]e2ia2t (34)

This corresponds to a small-amplitudemodulationback at the “initial”
time or initial condition where the motion is generated. Equation 34 is
useful as an initial condition for the motion of a wave maker in a
laboratory experiment. The subsequent wave motion evolves into a
breather train as the waves propagate down the wave tank.

The higher genus solutions of theNLS equation found byMatveev
and colleagues [36][37] correspond to the case N � 4, and have a
four-by-four Riemannmatrix. Similar solutions have been developed
by [15]. I will address these “multi component” solutions in detail
with relation to the periodic IST in a later paper. These solutions are
very important because they constitute homoclinic “superbreathers”
in the solutions of the NLS equation.

It is worthwhile noting that the generalized homoclinic
solutions of the NLS equation are wonderful in their own
right and can be easily applied to problems in the physics of
nonlinear wave propagation, to engineering, etc. However, when
we analyze complex oceanic time series we are generally faced
with hundreds or thousands of nonlinear modes. Thus the
methods of Fourier analysis from inverse scattering theory
must be applied to obtain the full nonlinear spectrum. In the
case where the time series is described by a “rogue sea” then most
of the energy in the spectrum will be “clustered” about the peak of
the spectrum, and these modes consequently will be homoclinic.
This means that we can combine generalized homoclinic
solutions with the breather modes from time series analysis
using the Zakharov-Shabat eigenvalue problem.

FIGURE 3 | The λ-plane in the inverse scattering transform for solutions of
the NLS equation. This is the spectral domain in which homoclinic breathers live.
Here the eigenvalue λi lies on the interval between the origin and the carrier (0, ia).

1Associated with the Floquet problem for the Zakharov-Shabat eigenvalue
problem.
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THE AKHMEDIEV BREATHER SOLUTION

To obtain the Akhmediev breather we set λI � ia/
�
2

√
where

ϕ � π

4
, c � 1

2
ln(1

2
) (35)

Equation 32 then reduces to the Akhmediev breather [16]:

u(x, t) � −ia[cos( �
2

√
a x) sech(2a2t) + �

2
√

i tanh(2a2t)�
2

√ − cos( �
2

√
a x)sech(2a2t) ]e2ia2t

(36)

The primordial form is given by as t→ −∞:

u(x, t) ≃ − ia[1 + �
2

√
ε(1 + i)cos( �

2
√

ax)]e2ia2t (37)

This is the small amplitude Cauchy initial condition
for a particular solution. The factor −i is an arbitrary,
non-physical, phase shift for the NLS equation, give by −π/2.

THE EXTREME FREAK WAVE

The largest wave happens for ϕ ∼ Δϕ< < 1, which occurs at
x � t � 0, hence we compute from Eq. 32:

|u(0, 0)|(ϕ, c) � �������������������������
1 + 4ec sin22ϕ

1 + 2e2c − 4ec cos2ϕ + cos2ϕ

√
(38)

A graph of this function is given in Figure 4: |u(0, 0)|(ϕ, c) as a
function of ϕ, c. The maximum value is found at c � 0∣∣∣∣ψ(0, 0)∣∣∣∣(ϕ, 0) � ����������

5 + 4 cos 2ϕ
√

(39)

This is shown in Figure 5. Note that themaximumvalue occurs at
the coordinate values c � ϕ � 0. Furthermore, an important
observation is that Eq. 32 is indeterminate for ϕ � 0. This
singularity occurs for the Peregrine breather, where the maximum
amplitude is 3 and therefore we hereafter assume ϕ> 0.

THE PEREGRINE BREATHER

The Peregrine breather happens in the limit that the spatial
periodicity tends to infinity L→∞, at the same time the
wavenumber tends to 0. The infinite period limit occurs for
ϕ→ 0. We then obtain

u(x, τ) � a⎡⎣1 − 2e−2iϕ+2a
2 sin(2ϕ)τ cos(2asinϕx) + sec2ϕe−4iϕ+4a

2 sin(2ϕ)τ
1 − 2e2a

2 sin(2ϕ)τ cos(2asinϕx) + sec2ϕe4a
2 sin(2ϕ)τ ⎤⎦e2ia2t

(40)

Here we have used

τ � (t + c

Ω) � (t + c

2a2sin(2ϕ)) � t + co (41)

The shift in time occurs on both c and ϕ:

co �
c

2a2sin(2ϕ) (42)

For the limit c→ 0 we can expand both the denominator and
numerator to second order in ϕ. After simplifying we get the
standard form for the Peregrine breather:

u(x, t) � a[1 − 4(1 + 4ia2t)
1 + 16a4t2 + 4a2x2

]e2ia2t (43)

THE KUZNETSOV-MA BREATHER

We now look at the plane region which lies above the carrier, as
depicted in Figure 6. Therefore Eq. 6 becomes (use λ � iλI ,
ia≤ λI <∞, and λI � acos(iϕ) � acoshϕ):

FIGURE 4 | Graph of the rogue wave maximum, umax � |u(0, 0)|(ϕ, c), as
a function of ϕ, c.

FIGURE 5 | Graph of the largest freak waves as a function of the
parameter ϕ, umax �

∣∣∣∣ψ(0,0)∣∣∣∣(ϕ,0), for c � 0.
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K→ 2
������
a2 + λ2
√

� 2i
������
λ2I − a2

√
� 2iasinh ϕ (44)

This means further:

Ω→K
�������
4a2 − K2

√ � 2ia2sinh(2ϕ) (45)

We make the following transformation ϕ→ iϕ, K→ iK and
Ω→ iΩ to obtain the solution above the carrier in the lambda
plane. This solution corresponds to a large amplitude
modulation:

u(x, t) � −ia(1 − 2 cosh(Kx)eiΩt+2ϕ+c + Ae2iΩt+4ϕ+2c

1 − 2 cosh(Kx)eiΩt+c + Ae2iΩt+2c )e2ia2t (46)

The Kuznetsov-Ma breather [18], [14] occurs for λI � ia
�
2

√
and is

given by:

u(x, t) � a[1 + 2(cos[4 �
2

√
a2t] + i

�
2

√
sin[4 �

2
√

a2t])
cos[4 �

2
√

a2t] + �
2

√
cosh[2ax] ]e2ia2t (47)

The maximum value of the Kuznetsov-Ma waveform is
umax(0, π/(4

�
2

√
a2)) � 1 + 2

�
2

√ � 3.828. The period in time T is
given by

T � π

2
�
2

√
a2

(48)

We now consider the interval ( − π/(2
�
2

√
a2), 0) in time, where

the initial waveform occurs, leading to a:

u(x, t) � a[1 + 2
1 + �

2
√

cosh[2ax]]e2ia2t (49)

For a � 1, x � 0 we see that this large amplitude initial condition
has amplitude 1.828. In a wave tank experiment we thus have a
large amplitude initial condition for all waves with spectral
parameters above the carrier. This contrasts to the cases below
the carrier, which have small amplitude initial conditions.

COMMENTS ON DATA ANALYSIS

We have seen how the homoclinic solutions of the NLS equation
are constructed and further how these reduce to the particular
forms for the Akhmediev, Peregrine and Kuznetsov-Ma
breathers. The general formula for the homoclinic solution
Eqs 20–24 describes a single nonlinear Fourier component of
the inverse scattering method for some complete “potential” of
the NLS equation. This statement means: Given a space or time
series that describes an energetic sea state in which there are many
large breather packets, each packet is then approximately
homoclinic and is therefore given in the space/time domain by

FIGURE 6 | Parameters for the homoclinic solution of the NLS equation above the carrier in the lambda plane, i.e., where λI can be seen to lie on the interval (ia, i∞).
This diagram makes clear the regions of small-amplitude modulations below the carrier and the region of large-amplitude modulations above the carrier.
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Eqs 20–24. This provides a simple alternative to Riemann theta
functions to describe, in an experimental context, the actual
space/time dynamics of each breather train in the nonlinear
spectrum in the absence of the other breathers. Consequently
one can think of the homoclinic breather Eqs 20–24 as a simple
road to an approximate filtering algorithm in which single
breathers can be extracted from a measured wave train and
then subsequently graphed as a single component. We now
give an experimental overview of how one then interprets the
spectrum for a particular time series.

Structure of the Nonlinear Spectrum
One strong point of the nonlinear Fourier analysis approach is
that the solutions of the nonlinear wave equations are given
very generally by Riemann theta functions. This means that
one can “least squares fit” theta functions to measured time
series to determine the Riemann spectral parameters,
essentially in a fashion similar to that for ordinary periodic
Fourier analysis. In the present case however one solves the
Floquet problem for the Zakharov-Shabat eigenvalue problem
to determine the spectral parameters [5]. The nonlinear
parameters to be determined include the Riemann matrix,
frequencies and phases of the nonlinear spectral components.
Nonlinear Fourier analysis has coherent structures, so that the
data can be analyzed in terms of Stokes waves, solitons,
breathers and superbreathers. The Stokes waves constitute
the diagonal elements of the Riemann matrix and the off-
diagonal elements are the nonlinear interactions. The Stokes
waves may be small enough that they are essentially sine
waves, or they may be so large that they form solitons. If the
Stokes waves are large enough (such that the Benjamin-Feir
parameter is greater than 1), they nonlinearly couple or phase
lock to each other to become breathers. This perspective
contrasts with the usual assumption that ocean waves
consist of weakly interacting sine waves, which we now
know is valid only for very small ocean waves [5]. In
modern times, however, we have the option of using
nonlinear Fourier analysis to describe ocean waves as they
really are, i.e., as huge numbers of nonlinearly interacting
coherent structures.

Understanding the full physical behavior of coherent
structures on the many aspects of ocean wave dynamics
therefore plays an important role in modern research. The
influence of coherency on wind wave modeling, data analysis,
and computation of wave forces on ships and offshore structures
are some of the reasons for improving our knowledge of the
nonlinear dynamics of ocean waves with coherent structures.

It is worthwhile discussing briefly the structure of the
spectrum of the NLS equation in deep-water ocean waves,
primarily because deep water constitutes most (over 99%) of
the ocean. In deep water the NLS equation coherent structure
solutions consist of Stokes waves, (bright) soliton wave packets,
breather wave trains and superbreathers. A typical ocean wave
train in terms of these structures is given in Figure 7. This simple
representation of a nonlinear spectrum has arisen from a large
number of time series measurements and subsequent analysis by
nonlinear Fourier methods [5], [11], [12]. Thus we see in Figure 7

a nonlinear spectrum that is generated by wind on waves in a
generic fashion: The shape of the spectrum consists of nonlinear
wave components that are solutions of the NLS equation that are
generated by Mother Nature in the real world environment. To
interpret the spectrum it is worthwhile noting that the larger the
spectral components are the more nonlinear they are. The larger
components generally occur about the peak of the spectrum. The
continuous black line in Figure 7 is a typical ocean wave
spectrum such as that described by the Pierson-Moskowitz or
JONSWAP power spectra. The points (black and red dots) are the
components of the nonlinear ocean wave spectrum. The dots are
“points of simple spectrum” from the Zakharov-Shabat
eigenvalue problem [38]. The larger the components are, the
greater is the nonlinearity.

Referring to Figure 7 the character of the nonlinear
components is given by a mathematical object called a spine,
which is a line of spectrum that either descends to the frequency
axis from a point of spectrum, or connects two points of simple
spectrum above the frequency axis. The components with spines
that descend to the frequency axis are sine or Stokes waves. The
low amplitude tails of the spectrum typically contains small-
amplitude sine waves while slightly larger components (slightly
nearer the peak of the spectrum) are Stokes waves. The frequency
band about the peak of the spectrum has the components that are
most nonlinear: Here the spines are seen to connect two points of
simple spectrum, corresponding to small or medium amplitude
breathers. The red dots are “double points”, i.e., two points of
simple spectrum that nearly coincide and thus the spines are too
short to be visible: These are the homoclinic breathers in the
spectrum. In a large sea state these homoclinic breathers are
clustered about the spectral peak and energetically dominate the
nonlinear wave motion [39], [12]. Sea states of densely packed

FIGURE 7 | Schematic of typical nonlinear wavenumber spectrum for
deep-water ocean waves. For a large amplitude sea state the spectral energy
is dominated by the largest breathers, which are essentially homoclinic (red
dots).
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breathers are referred to as “breather turbulence” and
consequently characterize a “rogue sea” condition.

The double lobed curves, shown at the bottom of the graph on the
frequency axis, are centered about the peak of the spectrum at the
carrier wavenumber ko. This double lobe constitutes the “instability
diagram” of the Benjamin-Feir instability region: Spectral points
within this band of spectrum are breathers. Once again the red
dots are the homoclinic breathers. They are the biggest and
baddest of the breather packets and are sources of rogue waves in
the sea state. When the largest breather packets reach their
maximum amplitudes during their breathing cycles the
central wave is often viewed as a rogue wave. The wave
trains that characterize the nonlinear waves for each red dot
are the homoclinic solutions of Eqs 20–24 discussed above in
this paper. Therefore, for anyone wanting to study nonlinear
waves these homoclinic solutions can be very important for a
full understanding of the most energetic coherent structures in
the spectrum, i.e., those that are sources of rogue waves in a
“rogue sea.” Breathers consist of two phase locked Stokes
waves with a 2 × 2 Riemann spectrum and we see they have
a homoclinic limit, Eqs 20–24. Superbreathers consist of three
or four (or more) phase locked Stokes waves and they too have
a homoclinic limit. Up to now breathers are ubiquitous
spectral components in measured ocean wave time series
[40], [11], [12]. Superbreathers have yet to be found in
ocean wave measurements up to now.

How can a spectrum of wind waves of the type shown in
Figure 7 be generated by wind in the ocean? Beginning with a
calm sea state the wind starts to blow and the initial small
amplitude waves have the form of a random sea state that has a
rough spectral shape similar to the solid curve in Figure 7. At
this stage it is found that the nonlinear wave components are
essentially sine waves. After the wind brings up the sea state
slightly more we find the spectrum consists of sine waves that
interact weakly with one another. Further injection of wind
energy into the sea state we find that the nonlinear components
near the peak of the spectrum become Stokes waves. Further
energy input forces couples of Stokes waves near the peak to
phase lock with each other creating breather trains. For a fully
“nonlinearly saturated” sea state most of the energy near the
peak of the spectrum is dominated by breather trains. We have
found that in Currituck Sound the breathers are quite dense
and 30-min time series have over 200 breathers, suggesting
that “breather turbulence” might be a proper way to describe
these types of energetic sea states which might also be called
“rogue seas.”

It might be tempting to try and describe ocean waves in terms
of a few simple breather trains and it would seem reasonable
to think of large breathers as rare events. However, for ocean
waves it has been found that for extreme sea states the
breathers are highly dense and each breather has its own
shape and dynamical properties. For example their
maximum heights are random statistical variables, and so
to are their rise times. Thus breathers as nonlinear Fourier
modes are drastically different from simple weakly
interacting sine waves. It is also worthwhile noting that
while the nonlinear Schrödinger equation has many

complex types of nonlinear Fourier modes, it is unclear
how those modes might be distributed in a particular
physical situation. Only through experimental
measurements and their subsequent analysis by nonlinear
Fourier analysis, can we begin to understand the true
physical behavior of nonlinear ocean waves and what
their nonlinear spectra are. We now understand that the
old paradigm of weakly interacting sine waves is no longer
tenable. However, the full consequences of large sea states
dominated by coherent structures are still to be fully
understood. The implications of such a new scenario on
all aspects of living and working in the ocean will only slowly
become better understood as the new paradigm is exploited
to better understand nonlinear stochastic wave motion with
coherent structures.

Fossil Breathers and Ghost Packets in
Shallow Water
We would like to briefly discuss the possible existence of
“fossil” breathers in shallow water. What are these special
solutions of the shallow water NLS equation? Suppose that
one has a deep-water breather that is propagating toward
shore over decreasing water depth. At some point it will pass
the depth where Kh � 1.363 and the breather train will no
longer be Benjamin-Feir unstable. What happens physically
to the breather packet if it is placed in shallow water, where
the sign of the nonlinear terms of NLS equation changes?
One still, momentarily, has a wave packet that has essentially
the same shape as the precursor deep-water breather.
However, in shallow water the packet now has a real
frequency, not the imaginary frequency for BF unstable
dynamics in deep water. This new shallow water packet,
still phase locked as in the deep-water case, will therefore
propagate shoreward with a fixed shape, i.e., it no longer
breathes. The packet will undergo wave transformation
(changes in shape) as it propagates into even shallower
water. Under the right conditions each of the large waves
in the packet will roll over and break and possibly create good
conditions for surfing. We call this shallow water packet
(before roll over and breaking) a “fossil” breather because it
contains in its nonlinear Fourier parameters all the
information necessary to compute the properties of the
original breather back in “primordial” time far offshore,
perhaps even in terms of a far away storm. Thus shallow
water measurements of fossil breathers should provide
understanding of the incoming flux of breathers from
deep water. The fossil breathers are “ghosts” of the past
breathers, which are now dead and gone once the BF
instability no longer dominates their dynamics.
Figuratively speaking their breathing has been switched
off at the transition from deep to shallow water,
at Kh � 1.363, where they effectively die and propagate
shoreward as ghost breathers out of the past. Theoretically
the simplest way to understand how this happens is to study
the theta function solution of the NLS equation for the case
N � 2, the topic of a future paper.
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CONCLUSION

A discussion of the general homoclinic solutions of the 1+1 NLS
equation is given and a several ways to derive them are discussed.
This work sets the stage for using the homoclinic solution to help
analyze and understand experimental data from laboratory and
oceanic measurements of nonlinear waves. Analysis of space/time
series data using the Zakharov-Shabat eigenvalue problem are
given elsewhere. What has been found in these data analyses is
that for high amplitude sea states the spectrum is energetically
dominated by breather states that are very nearly in the
homoclinic limit. This experimentally determined idea then
provides motivation for this paper in which we treat the
homoclinic spectral components as being represented by Eqs
20–24, expressions which are valid for any mode anywhere in the
lambda plane. This provides a heuristic interpretation of
experimental data for energetic sea states as being a linear
superposition of homoclinic breathers plus interactions
amongst these breathers. Such an interpretation suggests that
new filtering procedures could be used to extract individual
breather modes from time series. Details of the application of
this procedure to data will be given in future papers.
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