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Low–frequency fluctuations in the interplanetary medium have been extensively
investigated and described in the framework of turbulence, and the observed universal
scaling behavior represents a clear signature of the underlying energy cascade. On the
contrary, the interpretation of observations of plasma fluctuations at high frequencies,
where wave–wave coupling, collisionless dissipation, and anomalous plasma heating play
a key role, still represents a challenge for theoretical modeling. In this paper the high
frequency fluctuations occurring in the interplanetary space are described through a
Brownian–like approach, where the plasma dynamics at small scales is described through
a stochastic process. It is shown that a simple model based on this framework is able to
successfully reproduce the main features of the spectrum of the observed magnetic
fluctuations. Moreover, the Fluctuation-Dissipation Relation, derived by our model, leads to
a power law between dissipation rate and temperature, which is compatible with the
occurrence of Landau damping, interpreted thus as the main mechanism of dissipation in
the solar wind plasma.
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1 INTRODUCTION

Since the first measurements of magnetic fluctuations in the interplanetary space [1], showing that
the spectral magnetic energy density decays with the frequency ω as E(ω) ∼ ω−5/3, it has been argued
that they can be described in the framework of turbulence [2]. This approach has been also
successfully applied to interpret anomalous scalings due to intermittency of fluctuations [3–6]
through multifractal models [7–11], and the nonlinear energy cascade, described by a Yaglom
relation for the mixed third–order moment of fluctuations [12–15]. The scale–free behavior breaks
down at a frequency fi, usually found in the range between 0.1 and 1 Hz [16, 17], beyond which fluid
or Magnetohydrodynamic (MHD) regimes are not valid anymore. Beyond this scale, a steeper power
spectrum is observed E(ω) ∼ ω−α [17–19], the slope being strongly dependent on the analyzed
sample. A statistical analysis of spectral slopes shows that α covers the range ∼ [2, 3], with a peak at
about αx2.8 [19]. The presence of fluctuations at high frequencies has been attributed to dispersive
phenomena generated by velocity–space effects and electron dynamics [20, 21, 22], and interpreted
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in terms of a further turbulent energy cascade driven by
wave–wave coupling, as for example a quasi two–dimensional
cascade of Kinetic Alfvén Waves (KAWs) [17] for which
E(ω) ∼ ω−7/3. However, a clear detection of single wave modes
in the frequency-wavenumber diagram is difficult due to the
presence of large scattering, sideband modes, sporadic
wave–trains as envelope solitons, and zero–frequency modes
[23, 24]. Moreover, the situation is complicated by the failure
of the Taylor hypothesis, implying that measurements in the time
domain cannot be simply translated into the wave-vector domain
[25]. Statistical analyses of many intervals of magnetic field data
from Cluster spacecraft (see e.g., [17, 18]) indicate the presence of
another breakpoint fe in the magnetic energy power spectrum at
higher frequencies, of the order of few tens of Hz, associated with
electron scales.

Contrary to the low frequency spectrum (ω<ωi, where
ωi � 2πfi), succesfully described in the nonlinear energy
cascade turbulence framework, the interpretation of the
spectrum at high frequencies (ω>ωi) is less clear. Indeed,
several models, which differs in their physical assumptions,
have been developed to reproduce the observed spectra. The
power spectrum for ω>ωi has been fitted either through a
function made by a combination of ω−8/3 decay and an
exponential decay, compatible with the proton Landau
damping of magnetic fluctuations [18], or by a combinantion
of two power laws [17, 19]. In the latter case, the statistical
distributions of the two slopes, as obtained by the analysis of a
large number of CLUSTER spectra, are narrow and centered
around αx2.8 (for ωi(ω(ωe, where ωe � 2πfe) and αx4 (for
ωTωe), respectively. In this paper we deal with the problem of
the origin of high frequency magnetic fluctuations in the
interplanetary medium through a novel approach, to
investigate whether the whole spectrum for ω>ωi can be
described by means of a single physical model.

2 MODEL AND RESULTS

At small scales (high frequencies), smaller than the ion gyro–radius
or inertial length, the plasma dynamics in the interplanetary space
is extremely complex. More specifically, the linear mode waves
become kinetic, exhibiting simultaneously a dispersive and
dissipative character due to wave–particle interactions such as
coherent scattering processes or incoherent processes (like pitch
angle scattering). The collissionless damping mechanisms include
cyclotron damping [26], Landau damping [27], energization
of particles at current sheets, that can be spontaneously
generated by an intermittent turbulent cascade [28–33], and
stochastic heating [34–38].

It is generally agreed that the nonlinear energy cascade, which
is surely active at the largest scales, transfers energy beyond the
ion–cyclotron frequency (see e.g., [2] and Refs. therein), mainly
exciting electric fluctuations [39], while the energy content in the
magnetic fluctuations is lower (see e.g., [40]. At the same time,
fluctuations are damped by plasma kinetic effects, thus providing
a mechanism for heating in the collisionless plasma. The

wave–particle mechanism involved in the dissipation acts as a
feedback for fluctuations, as it generates particle beams which, in
turn, are able to excite further fluctuations. The complex plasma
dynamics at small scales, well documented in literature, involves a
medium where random fluctuations and dissipation compete in
generating magnetic fluctuations. In a range of scales where
collisionless dissipation and plasma heating could take place
and the presence of a lot of characteristic frequencies and
lengths (e.g., cyclotron frequencies and inertial lenghts) breaks
the scale–free behavior, the role of dispersion and dissipation is
still poorly understood, and the origin of fluctuations is far from
being clearly established. This framework is rather diffrent, even if
compatible, from the “classical” turbulent dynamics where the
nonlinear cascade operates within a scale–free range which is well
separated from the smallest scales where dissipation occurs.

In order to provide a description of the high-frequency
dynamics of magnetic fuctuations, a novel scenario, based on
a stochastic Brownian approach, is introduced in the present
work. This approach allows an interpretation of the observed high
frequency magnetic spectra with no assumptions about
dispersion relations from plasma turbulence theory. Based on
the above considerations, we consider a simple framework where
magnetic fuctuations b(t) at small scales can be roughly described
by a Itô stochastic differential equation

db(t) � Γ[b(t), t]dt + Ψ[b(t), t]dW(t) (1)

Here, without loss of generality, we consider only the time
evolution of a single component of the fluctuations, but the
model can be easily generalized to three-dimensional
fluctuations or specific wavenumbers. In the simplest case, we
assume that the dynamics of the fluctuations is due to two
different contributions. The first contribution (first term in the
right hand side) is due to the collisionless dissipative processes,
which we parametrize with a linear damping term
Γ[b(t), t]x − cb(t), proportional to a constant damping rate
γ. The second contribution, which mimics all the complex
plasma wave dynamics, is described through the stochastic
process dW(t). For the sake of simplicity, Ψ[b(t), t] is
assumed to be constant, equal to the r.m.s of the fluctuations
Ψ[b(t), t] � F0 � < b2 >1/2. The random forcing is expressed as
dW(t) � ξ(t)dt, which is the natural physically acceptable choice
for an interpretation which assumes ξ(t) as a real noise, possibly
different from a white noise, with finite correlation times [41].
Moreover, we assume that ξ(t) is uncorrelated with the initial
values of magnetic fluctuations b(0), say < ξ(t)b(0)>� 0. With
these assumptions, Eq. (1) takes the following form:

db(t) � −cb(t)dt + F0ξ(t)dt
Under the hypotheses described above, the Itô equation can be
solved by Fourier transforms. This gives an obvious relation
between the correlations of the Fourier modes of the forcing
ξω and the power spectrum of magnetic energy modes bω

〈bωb+ω 〉 � F2
0〈ξωξ

+
ω 〉(c − iω)(c + iω) (2)
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where brackets denote time averaging and + stands for complex
conjugate. Using homogeneity, we can write the spectral
correlations of the forcing term as

〈ξωξω’〉 � 2πG(ω)δ(ω + ω’)
so that we can immediately write again Eq. (2) in terms of the
power spectrum E(ω) which can be compared to observations in
the solar wind plasmas

E(ω) � F2
0[ G(ω)
ω2 + c2

] (3)

The spectral energy is, therefore, related to the spectral shape
G(ω) of the external forcing. As a simple example, let us suppose
that magnetic fluctuations are generated by completely
uncorrelated stochastic wave trains, so that
〈ξωξω’〉 � 2πδ(ω + ω’). In this case the magnetic energy
spectrum is given by a Lorentzian function
E(ω)xF2

0 /(ω2 + c2) which, of course, does not describe the
magnetic energy density spectrum as observed in the
high–frequency solar wind plasma (see e.g., [17]).

As a further example, let us consider the case in which, close to
the ion breakpoint, a variety of waves takes part in the process
through wave–wave couplings, wave–particles interactions and
dispersive effects. In this situation we can expect that the
two–point correlations of the stochastic forcing term decay
exponentially in time

〈ξ(t’)ξ(t)〉 ∼ exp[ − λ0(t’ − t)] (4)

where λ−10 represents the correlation time. This means that ξ(t)
can be considered, in a rough approximation, as a Brownian
noise. The magnetic energy power spectrum E(ω) can be easily
calculated from Eq. (3) by using the inverse Fourier transform to
deduce G(ω) from Eq. (4), obtaining the following functional
shape

E(ω)x λ0F2
0(ω2 + λ20)(ω2 + c2) (5)

In our framework, the values of the correlation time λ−10 and of the
dissipation rate γ correspond to the low–frequency and
high–frequency breakpoints, respectively, that is λ0 ≈ ωi and
c ≈ ωe. In particular, it is reasonable to assume, for the solar
wind plasma, that the typical correlation time is represented by
the proton gyration period and corresponds, thus, to the first
breakpoint in our model. In the same way, the association
between the second breakpoint and the dissipation rate is
well-founded since the high frequency breakpoint, roughly
corresponding to the electron gyro frequency, has been
attributed to wave-particle interaction processes leading to the
dissipation of KAWs. Themain properties of the spectra observed
in the interplanetary space at high frequencies (ω>ωi) are
reproduced by Eq. (5). The power spectrum E(ω), as a
function of ω/λ0, is shown in Figure 1, where c/λ0 � 100 was
chosen, as this represents a typical value of the ratio ωe/ωi found
in the interplanetary space (see e.g., [17]).

Equation (5) is compatible with the presence of two power law
ranges, similarly to what is reported for observations in some
previous works [17, 19]: the first one, between the two
breakpoints, with a spectral slope αx2, and the second one,
beyond the second breakpoint, with a slope αx4. The separation
between the spectral breakpoints is fixed by the ratio c/λ0 but the
slopes of the two power law ranges are independent of the
parameters of the model.

Since the power law index reported in observations for the
range of scales between the ion and electron breaks varies in the
interval α ∈ [2; 3], we can consider a more realistic case in which
a continuous distribution of relaxation rates λ exists. In this case,
the power spectrum of the external forcing is calculated from the
superposition of all λ′s. If we assume, for instance, a distribution
with a probability of occurrence dP(λ) ∼ λ−μdλ (where μ is a free

FIGURE 1 | E(ω) vs. ω/λ0 as obtained from Eq. (5) for c/λ0 � 100 (red solid line) and from Eq. (7) for μ � 1.8 and c � 100 (green solid line). E(ω) ∼ ω−2.8 (blue dash-
dotted line) and E(ω) ∼ ω−4 (black dashed line) are shown as reference.
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parameter) in order to take into account phenomena with
different correlation ranges, we obtain

G(ω) � ∫c

λ0

λ−μdλ
ω2 + λ2

xA(μ)ω−(1+μ) (6)

where A(μ) � ∫∞
Δ/c x

− μ(1 + x2)−1dx is a smooth function of µ,
and Δ is a typical scale of the exponential decay rate of stochastic
two-points correlations. Assuming Δ ∼ c, a simple direct
numerical estimate gives A(μ)x(0.5 − 0.13μ). The magnetic
energy spectrum then becomes

E(ω)xA(μ)F2
0ω

−(1+μ)(ω2 + c2)− 1 (7)

The spectum E(ω) given by Eq. (7) is shown in Figure 1 for μ �
1.8 (green solid line). The same shape E(ω) was already used by
[19] to fit solar wind magnetic energy spectra measured by Cluster,
well reproducing the overall shape of the spectra. Also Eq. (7) is
compatible with a double power law, with a slope αx1 + μ for the
first range. Our approach provides a physical interpretation of Eq.
(7) as the result of a whole class of colored noises ξ(t), compatible
with the excitation of sporadic wave trains.

When comparing the power spectra obtained from solar wind
observations to those given by theoretical models, it is necessary, in
general, to take into account the possible failure of the Taylor
hypothesis. Measurements are obtained in the spacecraft reference
frame, which is in relative motion with respect to the plasma frame of
the solar wind. According to the Doppler shift formula, the measured
frequency ωsc (in the spacecraft frame), of a Fourier mode of
wavevector k and frequency ω, is given by ωsc � ω + k · vSW ,
where vSW is the solar wind velocity. In the high frequency range,
which represents the focus of the present work, two relevant situations
can occur [42], depending on the ratio between the two terms at the
right hand side. When the solar wind speed is slow enough,
|ω|T|k · vSW | and this leads to a constant shift of the frequency
spectrum to higher frequency, in the spacecraft-frame, without
changes in the scaling of the spectrum [42]. Therefore, the scaling
predictions of our model are still valid in this situation and the only
changewould be a shift of both low andhigh frequency breakpoints by
a constant value Ω0, namely ωi ≈ λ0 +Ω0 and ωe ≈ c +Ω0. The
other significant case is the dispersive regime, when the plasma-frame
frequency increases more rapidly than linearly and ωsc is eventually
dominated by the plasma-frequency term (ωsc ≈ ω). Also in this case,
since ωsc ≈ ω, the spectra of our model can be directly compared to
thosemeasured by spacecraft. Problems would arise only if we wanted
tomap frequency spectra to wavenumber spectra, but this is not a aim
of ourwork, as the nature of themodel proposed here is such that high
frequency magnetic fluctuations are described in the time/frequency
domains and the spectra given by the model are frequency spectra. In
other words, in our Brownian framework observations are not
interpreted in terms of turbulence and no assumptions about
dispersion relations, from plasma turbulence theory, are needed.

2.1 Statistical Properties
The statistical properties of the fluctuations can be related to the
properties of the macroscopic dissipation through the Sinai-
Ruelle-Bowen (SRB) measure [43]. To this purpose, Eq. (1)
can be reformulated as

dbj
dt

� −α(bj, ξ j)bj + F0ξj (8)

where bj denote the components of the magnetic field fluctuatons
and the dissipation parameter is replaced by some unknown
stochastic quantity. With a suitable choice of α(bj, ξj), which we
define as

α(bj, ξ j) � F0
∑jbjξ j

∑jb
2
j /2μ0 (9)

(μ0 being the vacuum permittivity) Eq. (8) conserves the energy

σ(t) � ∑
j

b2j
2μ0

According to the chaotic hypothesis [44, 45], in this case
it can be shown [43] that there exists a SRB measure Ω(dbj)
such that the statistical properties of Eqs. (1) and (8) are
the same, in the sense that for a smooth function F(bj) we
have

lim
M→∞

1
M

∑M−1

k�0
F(Skbj) � ∫

A

Ω(dbj’)F(bj’) (10)

where A is the contracting phase space and Sk represents the time
evolution operator, that is, the r.h.s of Eq. (1)with t � tk. The SRB
measure is proportional to

Ω(dbj) ∼ δ[b2j − σ(t)]dbj
and, as expected, the average of α defines the phase-space
contraction rate and is proportional to the damping rate
〈α〉xc.

For systems with reversible dynamics, as those described by
Eq. (8), the chaotic hypothesis and the SRB measure generally
imply the Onsager reciprocity and the fluctuation-dissipation
relation [46]. We consider, from the Itô equation, an equation for
the average energy of magnetic fluctuations ε(t) � 〈b2j /2μ0〉 in
the form

dε
dt

+ cε � F0〈b(t)ξ(t)〉 (11)

The relation between the magnetic fluctuations and the random
forcing term can be formally obtained, from the Itô equation, in
the following way

b(t) � F0 ∫t

0
dt’ξ(t’)exp[c(t’ − t)]

where we set b(0) � 0 for simplicity. By using this result in Eq.
(11), we obtain

dε
dt

� −2cε + 2F2
0G(t) (12)

where

G(t) � ∫t

0
〈ξ(s)ξ(t)〉ec(s−t)ds (13)
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A nearly–stationary solution Estat for the magnetic energy exists
and is finite if G(t→∞)→G0 constant. In this case Estatx〈σ〉
according to the chaotic hypothesis, so that we obtain the relation

EstatxF2
0g(c, λ, μ) (14)

where the unknown function g(c, λ, μ) involves the dissipation
rate γ, the correlation rates λ and the scaling exponent μ.

On the other hand, from the definition of the magnetic energy
power spectrum and using Eq. (3), we obtain

〈bωb+ω 〉 � F2
0G(ω)
ω2 + c2

� ∫∞

0
dt〈b(t)b(0)〉cosωt (15)

At equilibrium ωx0 and G(ω)x1, so that by eliminating F0
from Eqs. (15) and (14), we obtain

( B2
0

2μ0
)c2g(c, λ, μ)xEstat (16)

where B2
0 is the square modulus of the total magnetic field. This

last equation represents a kind of Fluctuation–Dissipation
Relation (FDR) [41, 47]. The use of the FDR for the
description of plasma fluctuations is known since a long time
(see e.g., [48]). In the context of space magnetized plasmas the
FDR approach has been utilized to study electromagnetic
fluctuations associated to different wave modes in various
configurations (see e.g., [49–52]). In the framework of the
model proposed in this work, the FDR can be used to
investigate the collisionless dissipation mechanism at work in
the solar wind. To this aim, the function g(c, λ, μ) can be
calculated from Eq. (11), which can be formally integrated,
thus obtaining, after some algebra,

ε(t) � (F2
0/μ0)e−2ct ∫

t

0
dse2cs ∫s

0
dt’ec(t’−s)〈ξ(t’) · ξ(s)〉

The last equation depends on the time correlations of the forcing.
For example, by using Eq. (4), we obtain g(c, λ, μ) � 1/2c(c − λ0),
and hence

( c

λ0
)x 2β

β − 1
(17)

where we defined β � (B2
0/2μ0)− 1Estat proportional to Estat . By

using the more refined hypothesis involving a distribution of
decorrelation times, we obtain the relation

( c

λ0
)xh(μ)( B2

0

2μ0
)

1/(μ− 1)
E
−1/(μ−1)
stat xh(μ)β−1/(μ− 1) (18)

where h(μ) � [∫∞
Δ/c x

−μ(x − 1)− 1dx]1/(μ− 1) and assuming as
before Δ ∼ c, a simple direct numerical estimate gives
h(μ)x(6 − μ/3)1/(μ− 1).

The FDR relation Eq. (18) is very interesting because it allows
us to obtain information about the physical mechanism
responsible for the dissipative term. If we conjecture that energy
equipartition is present, as in standard statisticalmechanics, we can
interpret Estat as due to a statistical equilibrium at some
temperature kBT corresponding to the second moment of the

velocity distribution function measured by a spacecraft. Therefore,
by using the value 1 + μ � 8/3, which roughly represents the center
of the peak of the observed distribution of slopes in the ionic scale
range, E−1/(μ−1)

stat � (kBT)− 3/2 and Eq. (18) gives

( c

λ0
) ∼ (kBT)− 3/2 (19)

which corresponds to the classical scaling for the electron Landau
damping. Therefore, according to our model the observed
spectral properties of magnetic fluctuations at ionic scales are
compatible with the occurrence of electron Landau damping. It is
worthwhile to remark that according to our approach, the
spectral properties of magnetic fluctuations are not necessarily
the result of a turbulent cascade process. Rather the spectrum is a
direct consequence of the FDR, which governs at the same time
both fluctuations and dissipation, which represent the two
ingredients of the same physical process. Of course, in a
classical turbulent environment [2] the fluctuations generated
by the cascade process are not subject to dissipation, which starts
beyond the Kolmogorov microscale breakpoint. Our approach
can be linked to kinetic turbulent cascades by using
nonequilibrium ensembles in turbulence models [53, 54].

Note that assuming that the β parameter in Eq. (18) is the
usual plasma-β parameter, the FDR (Eq. 18) suggests that the
high-frequency spectral breakpoint shifts toward higher
frequencies as the solar wind plasma-β decreases, in agreement
with observations. The electron break can be hardly or no
observable in the data because it can be located out of the
instrumental range or hidden by the high-frequency
instrumental noise (see e.g., [55]). Our approach enables, at
least, to obtain an estimate of the break position even when it
is out of the observable instrumental range. This is because the
FDR has a predictive meaning, as the spectral properties of
magnetic fluctuations depend on the parameter used to
describe the dissipation, so that by measuring the parameter µ,
through the magnetic power spectra at ionic scales, and the
plasma-β parameter, we are able to investigate the frequency
location of the electron break, even when it can not be observed.

3 DISCUSSION

In this paper we introduce a framework to describe the
high–frequency dynamics of magnetic fluctuations in the
interplanetary space. Our description is rather different from
the nonlinear energy cascade framework, successfully used to
describe low–frequency fluctuations. By using a Brownian–like
approach, we are able to describe the main properties of the
magnetic energy spectra observed at high frequencies in the solar
wind. We remark that the same kind of phenomenology was used
by [56] to describe the susceptibility of fluctuations under the
action of random forcing, within the Direct Interaction
Approximation of the complex nonlinear mode couplings
generated by the fluid turbulent cascade. Of course, our
approach does not rule out the importance of all the complex
dynamics coming from plasma physics. Kinetic plasma physics
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describes, indeed, all the microscopic features involved in the
dynamics of fluctuations, namely the birth of the many modes
involved, their nonlinear coupling, their dispersive properties,
and the collissionless dissipative processes which lead to
anomalous plasma–heating.

Using our approach, we describe, at the same time, both
fluctuations and dissipation in the high-frequency range of
solar wind plasmas, where high-frequency microphysical
plasma effects are modelled as a stochastic source, whose
details, in this framework, are unessential. Through the FDR,
we evidence the relationship between fluctuations and
dissipation in a way that, independently of the specific
microphysical plasma dynamics, we can account for the
main features of the spectral properties of high-frequency
fluctuations in the interplanetary space. In fact, as usual in a
Brownian-like approach [41], the FDR has a predictive
meaning for some microphysical quantities. In our case,
Eq. (18) opens a window on the high-frequency
fluctuations, allowing us to estimate the position of the
electron break as a function of fully measurable quantities
in the solar wind, similarly to the Einstein’s approach to
Brownian motion. Moreover, the scaling of the damping rate
results compatible with the presence of electron Landau

damping, which therefore can be identified as the main
dissipation mechanism in the collisionless solar wind plasma.
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