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Optimal control theory is usually formulated as an indirect method requiring the solution of
a two-point boundary value problem. Practically, the solution is obtained by iterative
forward and backward propagation of quantum wavepackets. Here, we propose direct
optimal control as a robust and flexible alternative. It is based on a discretization of the
dynamical equations resulting in a nonlinear optimization problem. The method is
illustrated for the case of laser-driven wavepacket dynamics in a bistable potential. The
wavepacket is parameterized in terms of a single Gaussian function and field optimization
is performed for a wide range of particle masses and lengths of the control interval. Using
the optimized field in a full quantum propagation still yields reasonable control yields for
most of the considered cases. Analysis of the deviations leads to conditions which have to
be fulfilled to make the semiclassical single Gaussian approximation meaningful for field
optimization.
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1 INTRODUCTION

“Teaching lasers to control molecules” has been a long-standing goal in molecular physics [1].
Among the various methods of the early days [1–5], optical control theory (OCT) emerged as a
versatile tool. Originally developed by Rabitz et al. [6, 7] and Kosloff et al. [8], numerous
methodological extensions have been developed over the years (for reviews, see e.g., [9–12]). In
terms of practical realizations of chemical reaction control, the feedback strategy [1, 13, 14] as well as
straightforward resonant excitation schemes [15–17] have been most successful.

In quantum optimal control theory the goal of optimizing the expectation value of a target
operator such as a projector onto a certain state, is formulated as a variational problem for a cost
functional subject to certain constraints. The latter includes, for instance, some penalty for high field
intensities or that the wavepacket should fulfill the Schrödinger equation. This control problem is
usually solved using an indirect approach, i.e., the cost functional is not minimized directly. Instead,
the stationarity condition for the cost functional is converted to a two-point boundary problem for
two coupled Schrödinger equations. A numerical solution is obtained by iterative forward and
backward propagation of the actual wavepacket and an auxiliary wavepacket, respectively (e.g., [18]).
This procedure is sometimes referred to as the optimize and then discretize paradigm [19]. Indirect
methods for optimal control are in use in other areas of physics, e.g., stochastic control [20], but also
in engineering and biology [21].

Direct optimal control, in contrast, follows the discretize and then optimize paradigm, i.e. the cost
functional is minimized directly using methods from nonlinear optimization. Although being
popular, for instance, in applied mathematics [22], engineering [23], and biology [21], there
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have been no applications to quantummolecular dynamics so far.
The present paper is devoted to fill this gap.

Indirect optimal control requires to solve iteratively two time-
dependent Schrödinger equations where the numerical effort
scales exponentially with the number of degrees of freedom.
To cope with this situation the Multi-Configurational Time-
Dependent Hartree (MCTDH) approach is most suited [24,
25]. An OCT implementation has been reported in Ref. [26],
for an application see also Ref. [27]. The solution of the time-
dependent Schrödinger equation requires a priori knowledge of
the potential energy surface. But, when driving the wavepacket
into a particular region of configuration space using laser control,
a global potential might not be needed. Thus on-the-fly
approaches, e.g., in the context of MCTDH [28, 29] could be
of advantage. On the other hand, semiclassical approximations in
terms of Gaussian wavepackets play a prominent role in
molecular quantum dynamics [30] and indeed there has been
a semiclassical formulation of indirect OCT reported in Refs. [31,
32] (for related work using Wigner space sampling, see Ref. [33]).

In this paper we explore direct OCT using a representation of
the wavepacket dynamics in terms of a single Gaussian function.
Although this choice has been made for numerical convenience, it
also facilitates exploration of its limitations by comparison with
solutions of the time-dependent Schrödinger equation. Specifically,
for the considered problem of quantum particle motion in a
bistable potential we are able to identify conditions for which
the single Gaussian approximation is adequate.

2 THEORETICAL METHODS

2.1 Equations of Motion
The equations for the time evolution of a quantum mechanical
state can be obtained from the time-dependent variational
principle starting with the stationarity condition for the action
S, i.e. [34].

δS � δ∫t2

t1

L(Ψ,Ψ*)dt� 0 , (1)

where the quantum Lagrangian is given by (Note that atomic
units are used throughout)

L � 〈Ψ
∣∣∣∣∣∣∣i zzt −H(t)

∣∣∣∣∣∣∣Ψ〉 . (2)

In the following we will focus on one-dimensional systems
(coordinate x and momentum p) coupled to a radiation field,
E(t), in dipole approximation (dipole operator μ(x)). Thus
the Hamiltonian operator in the coordinate representation is
given by

H(t) � H0 +Hf(t) � − 1
2m

d2

dx2
+ V(x) − μ(x)E(t) . (3)

Equation 1 yields the condition [34].

Re[〈δΨ
∣∣∣∣∣∣∣i zzt−H(t)

∣∣∣∣∣∣∣Ψ〉] � 0 . (4)

Assuming that the time-dependence of the wavepacket is
implicitly parameterized by the set of time-dependent real
parameters a(t) � {a1(t), . . . , an(t)}, this yields

δΨ � ∑n
j�1
(zΨ
zaj

)δaj . (5)

Inserting Eq. 5 into Eq. 4 gives the equations of motion for the
general set of parameters used to describe the wavepacket

_ai � −∑n
j�1

Kij Re〈zΨ
zaj

∣∣∣∣∣∣∣∣HΨ〉 ∀i � 1, . . . , n , (6)

with Kij being the elements of the inverse of the matrix formed by
Im〈zΨ/zai

∣∣∣∣zΨ/zaj〉.
In order to connect to on-the-fly approaches and to reduce

the number of differential equations of motion (and thus the
computational cost) we assume that the wavepacket has the
following Gaussian form [30] at all times

Ψ(x, α, β, x0, p0) � (2α
π
)1/4

exp[ − (α + iβ)(x − x0)2

+ ip0(x − x0)] (7)

where α and β describe the width and tilt of the phase space
Gaussian. Further, x0 and p0 are the average position and
momentum, respectively. Hence, we identify a(t) �
{α(t), β(t), x0(t), p0(t)} and using Eq. 6 gives the following set
of coupled differential equations

_α � 4αβ
m

, (8)

_β � −2(α2 − β2)
m

− 4α2 z

zα
U(t) , (9)

_x0 � p0
m

, (10)

_p0 � − z

zx0
U(t) (11)

subject to some initial conditions at time t0. Here, we defined the
time-dependent expectation value of the potential

U(t) � 〈Ψ(t)∣∣∣∣V(x) − μ(x)E(t)∣∣∣∣Ψ(t)〉 (12)

In the next section we will focus on the control problem
assuming that these equations of motion can be solved, which
implies that the expectation value of the potential and its
derivatives are available.

2.2 Statement of the Control Problem
Let us start with a brief summary of optimal control theory [9, 10,
35]. Given a functional of the form

J [a, u, k] � T [a(tf), k, tf] + ∫ ​ tf

t0

R[a(t), u(t), k, t] dt . (13)

where T and R are the terminal and running cost, respectively,
the task is to find the state trajectory a(t), external control u(t)
(where the time t ∈ [t0, tf ]) and the set of static parameters k that
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minimize the functional J [a, u, k]. The minimization is
performed subject to the following differential constraints

_a(t) � f [a(t), u(t), k, t] , t ∈ [t0, tf ]. (14)

Further, there can be path constraints

hL ≤ h[a(t), u(t), k, t]≤ hU , (15)

and event constraints such as

eL ≤ e[F[a(t), u(t)], k, t0, tf ]≤ eU . (16)

Here, the subscript L and and U denotes the lower and upper
boundary, respectively, defining the constraints. Notice that in
contrast to path constraints, event constraints are not time-
dependent, but could include a functional, F, of, e.g., the state
trajectory or the external control (see below).

Next, we specify this general control problem to the model
introduced in Section 2.1. The state is characterized by the set
a(t) � {α(t), β(t), x0(t), p0(t)} and the external control is given
by the laser field u(t) � E(t). Additional time-independent
parameters, k, will not be used. The differential constraints
(14) are given by Eqs. 8–11.

The goal of the optimization can be stated as follows. Given
some initial quantum state |Ψ(t0)〉, parameterized by
ai � {αi, βi, xi0, pi0}, find a laser field E(t) such that the overlap
is maximized between the time-evolved final state at t � tf ,∣∣∣∣∣Ψ(tf )〉, and some target state

∣∣∣∣Φt〉. Thus, the terminal cost in
Eq. 13 is given by (notice the minus sign because the terminal cost
will be minimized and we want to maximize the overlap)

T (a(tf), tf) � −
∣∣∣∣∣〈Ψ(tf)∣∣∣∣∣Φt〉∣∣∣∣∣2 (17)

Here, for simplicity we will use the parametrization of Eq. 7 for
the target state as well, labeling the target parameters as at �
{αt, βt, xt0, pt0}.

The running cost will be chosen as follows

R[E(t), t] � κ
[E(t)]2
s(t) , s(t) � sin2(π

tf
t) + ϵ . (18)

Besides the field intensity we have included a factor κ scaling
the penalty for high field strengths as well as a shape function s(t),
which ensures that the field increases(decreases) slowly when
turned on(off) [36]. Note that ϵ is a small parameter introduced to
avoid division by zero and numerical problems at times t � 0 and
t � tf . Throughout the text we have used ϵ � 0.005.

For the application presented below we don’t use any path
constraints, but event constraints. Given the event

e[F[E(t)], a(t0)] �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(t0)
β(t0)
x0(t0)
p0(t0)

∫ ​ tf

t0

E(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19)

upper and lower bounds will be chosen equal as follows

eL � eU �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αi

βi

xi0
pi0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (20)

Hence, the parameters of the initial state are fixed and not
subject to optimization. Further, we enforce the zero-net-force
condition by demanding that F[E(t)] � ∫​ tf

t0
E(t)dt � 0 [37].

The optimization problem will be solved using a direct
method, i.e. by means of discretization of the differential
equations. Details will be specified in the next section.

2.3 Model System and Computational
Details
The direct optimal control approach will be applied to the
problem of particle dynamics in a bistable potential. This
could represent, for instance, proton or hydrogen atom
transfer in a tautomerization reaction [38, 39]. The following
potential will be used

V(x) � VB(( x
xB
)2

− 1)2

. (21)

Here, xB is the distance between the minimum of the potential
and the top of the barrier, and VB is the barrier height.

The system-field interaction is treated in semiclassical
approximation, taking the polarization of the field in the same
direction as the dipole, and assuming a linear model for the latter
(q is the charge)

μ(x) � qx . (22)

Specific parameters for the numerical simulations have been
chosen to mimic typical situations in proton transfer reactions
[38, 39], i.e. xB � 2a0 ( ≈ 1.06 Å), VB � 0.01Eh ( ≈ 6.3 kcal/mol),
and q � 1 (� 1e). The particle’s mass, m, will be used to tune the
‘quantumness’ of the dynamics. Exemplary, we show potential
and eigenstates for two choices of the masses in Figure 1.
Comparing the two cases we note that in particular the
number of eigenstates below the barrier is 8 and 16 for masses
of 1mH and 5mH respectively (where mH is the hydrogen mass).

Using Eqs. 21, 22 together with Eq. 7 one can calculate the
time-dependent expectation value of the potential, Eq. 12, and its
derivatives with respect to α and x0 required for the equations of
motion (Eqs. 9, 11). Although in the present case the required
expectation value could have been calculated analytically, we have
used a more general prescription. To this end the potential is
globally approximated by a sum of Gaussians of the form

V(x) ≈ ∑g
p�1

gpe
−bp(x−xp)2 . (23)

We have used g � 5 which gives gp �
{31.000,−1.529,−1.529, 31.000, 1.348} (in units of VB),
bp � {1.397, 1.658, 1.658, 1.397, 0.} (in units of x−2B ),
and xp � { − 2.981,−1.142, 1.142, 2.981, 0.} (in units of xB).
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Using Eq. 23 one obtains for Eq. 12

U(t) � ∑5
p�1

gpe
−Bp( 2α(t)

2α(t) + bp
)1/2

− qx0(t)E(t) , (24)

z

zα
U(t) � ∑5

p�1
Dp

⎛⎝ 1

4α(t)2 −
bp

α(t)(2α(t) + bp)(x0(t) − xp)2⎞⎠ ,

(25)

z

zx0
U(t) � −2∑5

p�1
Dp(x0(t) − xp) − qE(t) , (26)

where

Bp � 2α(t)bp
2α(t) + bp

(x0(t) − xp)2 (27)

and

Dp � gpbpe
−Bp( 2α(t)

2α(t) + bp
)3/2 .

(28)

For the solution of the control problem the software package
PSOPT has been used [40]. This package employs an
approximation for the state trajectory of the form

a(t) ≈ aN(t) � ∑N
k�0

a(tk)Lk(t) , (29)

where tk are the Gauss-Lobatto quadrature nodes (a(tk) �
aN(tk)) and Lk are the Lagrange basis polynomials. This
approximation allows to transform the performance functional
(Eq. 13) into the performance function

G(y) � T [a(tf ), k, tf ] +∑N
k�0

R[aN(tk), uN(tk), k, tk]wk , (30)

and the differential constraints into a set of holonomic
constraints for the decision vector
y � (u(t0), . . . , u(tN), a(t0), . . . , a(tN ), k, t0, tf ); wk are the
Gauss-Lobatto weights. For more details see Ref. [40]. The
performance function (30) is optimized using nonlinear
programming (NLP) algorithms, such as the ones
implemented in IPOPT [41]. PSOPT provides different

discretization schemes. The global pseudospectral Legendre
and Chebyshev discretization yield very slow convergence for
non-smooth functions [19], as it is the case for the solutions
found for α(t) and β(t) (see first and second row, (b) and (d)
columns of Figure 2 below). Increasing the number of nodes is
not an option for these discretization schemes because of the non-
sparsity of the Jacobian matrices which cannot be handled
properly by the implemented IPOPT NLP solver. This issue
translates into a disproportional increase of computational
time. The local methods available are trapezoidal and
Hermite-Simpson discretization. In order to check their
performance we simulated the case of a particle of mass of
1mH and a final time of tf � 20, 000 au. In doing so the
number of time discretization nodes has been scanned from
200 to 6,000. To evaluate the discretization error we use the
maximum relative local error, εdisc, defined in Ref. [40]. The
results are shown in Figure 3. If the number of nodes is below
1,000 the trapezoidal method has a smaller error εdisc compared to
Hermite-Simpson for the same number of nodes. Beyond 1,000
nodes, Hermite-Simpson outperforms the trapezoidal
discretization. However, this comes at the expense of an
increased computational time as can be seen in the lower
panel of Figure 3. For the simulations reported below we have
used Hermite-Simpson discretization with 2,000 nodes, which
offers a good balance between accuracy and speed.

In order to quantify the importance of quantum effects beyond
the simple Gaussian ansatz for the wavepacket, Eq. 7, MCTDH
simulations have been performed using the optimized field. For
this purpose the Heidelberg MCTDH package has been used [42].

3 RESULTS

3.1 Laser-Controlled Proton Transfer
In the following we present a proof-of-principle application of
direct OCT using the example of proton transfer in a bistable
potential. Specifically, the two cases (particle masses) given in
Figure 1 will be considered. For the initial state we choose the
parameters of a Gaussian in the left well, and as the target state we
choose a symmetrically located Gaussian in the right side well.
The Gaussian parameters have been optimized to the ground
state using a local harmonic approximation. Although direct

FIGURE 1 | Eigenstates for a particle of mass (A) 1mH and (B) 5mH in the potential given by Eq. 21 with xB � 2a0 and VB � 0.01Eh. Solid and dashed lines
correspond to even and odd eigenstates, respectively.
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control in principle allows to vary the final time, in the present
application the final time has been fixed to tf � 20, 000 au. The
penalty factor has been chosen as κ � 0.3 a20/Eh (cf. Eq. 18). To
solve the problem we also have to provide an initial guess for
states and control which is shown in Figures 2A,C. The rapid
oscillations have been chosen randomly; there is no correlation
between the different variables.

The optimal solutions for the two particle masses are
given in Figures 2B,D. Apparently, the optimal field is able
to drive the center of the wavepacket across the barrier into
the right minimum at t � tf . In this respect one should note
that the optimal fields have a relatively simple shape and
little resemblance with the initial guess. This is one of the
major advantages of the direct approach to optimal control
problems, i.e. the convergence region of the initial guess is
very broad. The dynamics is rather similar, i.e., in both cases
the trajectory passes the barrier coming from the turning
point at the left hand side. Just before and after the barrier
the wavepacket gets localized in coordinate and delocalized
in momentum space, whereas the position-momentum

correlation (β) vanishes. The wavepacket passes the top of
the barrier with large momentum.

The question now arises if the optimum field found for a single
Gaussian wavepacket is able to trigger the same particle dynamics
in the full quantum case. To this end the optimal field is used
within a quantum dynamics simulation. The results are compared
in Figure 4 in terms of coordinate and momentum expectation
values and the respective standard deviation. Until after the
barrier crossing, Gaussian and full quantum results are rather
similar. Indeed, if the goal would have been to trigger the
localization of the wavepacket somewhere in the region of the
right well at a particular time, the optimal field would still
perform this task also in the quantum case. Of course, the
agreement between classical and quantum propagation is
better in case of the heavier mass even though there is
considerable larger spread of the wavepacket in the quantum
case after reflection at the right turning point. For the lighter mass
the agreement after barrier crossing is less favorable due to the
larger spread and the structured character of the quantum
wavepacket which cannot be captured by a single Gaussian.

FIGURE 2 | Initial guess (A) and (C) and optimal solution (B) and (D) for state, a(t), and control field for two different particle masses (1mH – (A) and (B), 5mH –

(C) and (D)).
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3.2 Region of Validity of the Gaussian
Wavepacket Approximation
Single Gaussians cannot capture the dynamics of structured
wavepackets. Nevertheless, the agreement between Gaussian
and full quantum results is at least qualitative, even for the
lighter particle. This provides the motivation for the
investigation of the validity of the Gaussian approximation

over a wider range of parameters. Again the optimum field is
obtained following the procedure described in Section 3.1, but
now for different final times (ranging from 5, 000 au to 20, 000 au
in steps of 1, 000 au) and masses (ranging from 1 to 10 mH in
steps of 1mH). To evaluate the performance of the optimum field
to drive the wavepacket to the right well in the full quantum case
we choose the following error:

Err �
∣∣∣∣∣xt0 − 〈~Ψ(tf )|x|~Ψ(tf )〉∣∣∣∣∣

xB
, (31)

where ~Ψ(tf ) is the exact quantum wavefunction at the final time.
This error will be between 0 and 1 if the expectation value of the
quantum wavepacket crossed the barrier and greater than 1 if it
did not. Results are shown in Figure 5.

FIGURE 3 | Maximum relative local error (upper panel) and timing
(lower panel) for trapezoidal (blue) and Hermite-Simpson (orange) as a
function of the number of nodes.

FIGURE 4 | Comparison of the coordinate (top row) and momentum (bottom row) expectation values and their respective standard deviation (shaded area),
using the Gaussian approximation (blue) and the full quantum propagation (orange). Both trajectories are propagated under the influence of the optimal control field as
obtained for the Gaussian (A) 1mH (B) 5mH).

FIGURE 5 | Error according to Eq. 31 as a function of different final times
and masses. Green lines represent an odd number of half harmonic oscillation
periods for the corresponding mass (2n + 1)T/2 with n � 1, 2, 3 and red lines
represent an integer number of periods nT with n � 2, 3.
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In general, we can see from Figure 5 that the Gaussian optimal
control fields are able to drive the particle reaction on a broad
range of masses and final times. As expected the performance
deteriorates for the lighter masses. There are some features which
deserve closer attention. For example, there are regions where
the Gaussian wavepacket approach works exceptionally well
(characterized by stripes of intense blue color). In these
regions the final time is matching a total integer number of
well oscillations plus the barrier crossing time. Assuming that
these oscillations are harmonic with period T and taking the
barrier crossing time as being half of the harmonic period, these
final times can be estimated. The middle green line in Figure 5
corresponds to a final time of 5T/2. It nicely matches with the
dark blue region where the approach works well. Thus, in general
one would expect regions with (2n + 1)T/2 and nT where the
approximation works well and not so well, respectively. This is
roughly seen in Figure 5, although the deviation from the
harmonic approximation causes some quantitative
disagreement. This analysis points to the importance of the
final time tf for the effect of the quantumness of the dynamics

on the overlap with the target. In passing we note that in principle
direct optimal control offers the possibility to optimize the final
time as well, e.g., to fulfill some constraints with respect to the
spread of the wavepacket.

Another interesting feature apparent from Figure 5 are the
isolated “islands” of poor performance, e.g. at tf � 14, 000 au and
m � 7mH. To rationalize this behavior Figure 6 shows various
expectation values for tf � 14, 000 au and m � 6 and 7mH. The
first and second row compares Gaussian and quantum results and
we can notice that the corresponding trajectories diverge
considerably more for 7mH (b) than for 6mH (a), even
though a naive consideration would suggest that the
performance of the single Gaussian approximation is better for
the more massive particle. In general we observe that while in the
good performing cases the wavepacket essentially stays localized,
the opposite is true for the poor performing cases, which stands
out as a likely reason for the discrepancy between Gaussian and
quantum propagation in the later case. This holds irrespective of
the actual mass of the particle. From the second and fourth rows
of Figure 6 we notice that the cases m � 6 and 7mH differ in the
momentum and thus kinetic energy when crossing the barrier.
While in the former case the momentum is maximum at the
barrier top, in the latter the particle is slowed down when
reaching the barrier. As a consequence it becomes rather
delocalized in position space and thus the single Gaussian
approximation fails.

In principle one could expect that decreasing the penalty factor
κ would alleviate this problem, i.e. stronger fields would imply
higher momentum. However, after inspecting Figure 6, it is
apparent that for a given final time it depends on the initial
direction of momentum whether the wavepacket will pass
the barrier with high or low momentum. This idea supports
the conclusion that not only the mass of the particle, but also the
specific optimal path, are important for the validity of the single
Gaussian approximation. Controlling the initial direction in a
way which works in a black-box fashion for all cases covered in
Figure 5 has not been successfull. However, in contrast to indirect

FIGURE 6 | Expectation values of coordinate and momentum (shaded
areas indicate the standard deviation), optimal field, as well as total (Etot ),
potential (V) and kinetic (K) energy of the moving wave packet (rows from top
to bottom) for tf � 14, 000 au and (A) 6mH, (B) 7mH. In the bottom row
the expectation values are plotted at the respective positions of the Gaussian
wavepacket.

FIGURE 7 | Error according to Eq. 31 as a function of different final times
and masses. Running cost according to Eq. 32 has been used together with
Eq. 18. The penalty scaling factor was η � 0.003, except for a few cases
where lower or higher values has been used, ranging from 0.001 to
0.015.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6151687

Ramos Ramos and Kühn Direct Optimal Laser Control

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


control, where one would have to compute running cost
derivatives with respect to state variables to get coupling terms
between forward and backward Schrödinger equation, including
additional running costs is straightforward in direct control. To
demonstrate this we have added a second term to the running
costs of Eq. 18, which serves to maximize the kinetic energy, i.e.

R′[p0(t), t] � −η p
2
0(t)
2m

. (32)

Here, η is a penalty scaling factor and the minus sign ensures
that this term gets maximized. It is expected that this will lead to
barrier crossing with high momentum and thus a reduced error,
Eq. 31.

The results shown in Figure 7 clearly support our hypothesis,
i.e. adding the running cost functional Eq. 32 leads to the
elimination of the poor-performing islands. Hence, using the
flexibility of the direct optimal control approach the region of
validity of the single Gaussian approximation could be extended.

4 CONCLUSION

In this paper we have introduced a new tool for quantum optimal
control. In contrast to indirect methods, which require the
solution of a two-point boundary value problem, the present
direct method builds on the first discretize and then optimize
paradigm. Thus, by construction there is no need for explicit
propagation of a wavepacket. So far direct methods have found
application mostly in engineering [23, 40]. The performance and
capabilities of the direct method have been demonstrated for the
case of one-dimensional particle transfer in a bistable potential.
For simplicity the wavepacket has been approximated by a single
Gaussian function, but in principle other forms are possible, e.g.,
superposition of Gaussians [28] or even expansions in terms of an
eigenstate basis. Of course, Gaussians have the potential
advantage of being suited for on-the-fly simulations, which
brings OCT into the realm of the dynamics of complex
molecular systems, at least in principle. At this point it will be

required to explore the scaling of the numerical effort associated
with the direct method more thouroughly. Here, we merely
explored the dependence on the number of nodes. But the
number of parameters will be another limiting factor.
Preliminary calculations performed on regular hardware
showed that about 50 parameters and 500 nodes are feasible.

For a simple test system the question has been addressed
whether the quantumness of the dynamics influences the final
control yield, given a field which has been optimized for the single
Gaussian approximation. Interestingly, it turned out that nearly
complete particle transfer can be achieved for a wide range of
masses and final times. Here, the important point is whether the
wavepacket crosses the barrier with high or low momentum,
which for the given model is decided by the sign of the
momentum during the initial dynamics. As a consequence,
even the optimization based on a simple Gaussian wavepacket,
possibly using on-the-fly dynamics, may provide reasonable
control fields.
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27. Accardi A, Borowski A, and Kuḧn O. Nonadiabatic quantum dynamics and
laser control of Br2in solid argon†. J Phys Chem A (2009) 113:7491–8. doi:10.
1021/jp900551n

28. Richings GW, Polyak I, Spinlove KE, Worth GA, Burghardt I, and Lasorne B.
Quantum dynamics simulations using Gaussian wavepackets: the vMCG method.
Int Rev Phys Chem (2015) 34:269–308. doi:10.1080/0144235x.2015.1051354

29. Richings GW, and Habershon S. MCTDH on-the-fly: efficient grid-based
quantum dynamics without pre-computed potential energy surfaces. J Chem
Phys (2018) 148:134116. doi:10.1063/1.5024869

30. Heller EJ. The semiclassical way to dynamics and spectroscopy. Princeton, NJ:
Princeton University Press (2018).

31. Kondorskiy A, and Nakamura H. Semiclassical formulation of optimal control
theory. J Theor Comput Chem (2005) 04:75–87. doi:10.1142/
s0219633605001416

32. Kondorskiy A, Mil’nikov G, and Nakamura H. Semiclassical guided optimal
control of molecular dynamics. Phys Rev A (2005) 72:041401. doi:10.1103/
physreva.72.041401
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