
ORIGINAL RESEARCH
published: 10 May 2021

doi: 10.3389/fphy.2021.617993

Frontiers in Physics | www.frontiersin.org 1 May 2021 | Volume 9 | Article 617993

Edited by:

Jean-Luc Gennisson,

Laboratoire d’imagerie biomédicale

Multimodale Paris-Saclay

(BioMaps), France

Reviewed by:

Stephen McAleavey,

University of Rochester, United States

Johannes Aichele,

INSERM U1032 Laboratoire therapies

et Applications ultrasonores, France

*Correspondence:

Maria Theodorou

maria.theodorou@npl.co.uk

Jeffrey C. Bamber

jeff.bamber@icr.ac.uk

Specialty section:

This article was submitted to

Medical Physics and Imaging,

a section of the journal

Frontiers in Physics

Received: 15 October 2020

Accepted: 23 March 2021

Published: 10 May 2021

Citation:

Theodorou M, Fromageau J,

deSouza NM and Bamber JC (2021)

On the Comparative Suitability of

Strain Relaxation and Stress

Relaxation Compression for

Ultrasound Poroelastic Tissue

Characterization.

Front. Phys. 9:617993.

doi: 10.3389/fphy.2021.617993

On the Comparative Suitability of
Strain Relaxation and Stress
Relaxation Compression for
Ultrasound Poroelastic Tissue
Characterization
Maria Theodorou 1,2*, Jeremie Fromageau 1,2, Nandita M. deSouza 2 and

Jeffrey C. Bamber 1,2*

1 Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London,

United Kingdom, 2Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden

NHS Foundation Trust, London, United Kingdom

Poroelastic tissue strain imaging measures the time-varying and spatially varying

deformation of a soft-tissue matrix during compression as the tissue fluid flows out of

the compartmental boundaries. With the help of ultrasound, it has been carried out by

observing the evolution of the images of the ultrasound echo strain over time, which

shows that, in a stress-relaxation experiment (constantly applied global axial strain), a

front of negative dilatation (volumetric strain) propagates slowly from the boundaries of a

sample toward the center of the compressed region. The fitting of equations that predict

this behavior to experimental data has earlier allowed quantitative imaging of the product

of aggregate modulus and permeability of a tissue phantom, HAk, and its Poisson’s

ratio, ν. An ability to image and measure such novel tissue characteristics is likely to

benefit biomedical research and have a wide range of clinical applications, including

the assessment of lymphoedema, the diagnosis of cancer, the prediction of anticancer

drug effectiveness, and monitoring of the tissue response to various treatments. This

method is problematic, however, for application in vivo because the calculation of the

volumetric strain requires the lateral and elevational strains, which are not easily measured

accurately with conventional ultrasound strain imaging. This paper investigates for the

first time whether the ultrasound observation in a strain-relaxation experiment (constantly

applied uniaxial stress) could be used to observe the same mechanical behavior and

provide the same information about the properties of a poroelastic sample as in a

stress-relaxation experiment. The analytical theory was used to demonstrate that the

propagation of dilatation shown in stress relaxation should also be observable in strain

relaxation and that it should be detectable using axial strain, which is relatively easily

measured in vivo. Finite element modeling (FEM) was employed to simulate all strain

components within a homogeneous poroelastic material first during strain relaxation and

then during stress relaxation, again demonstrating their equivalence for the observation

of the propagation of a dilatation. The validity of using the strain relaxation conditions
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as an alternative to stress relaxation for measuring a poroelastic material’s response was

further confirmed by a fitting of the analytical models to the results of FEM. This allowed

for an inversion of the time-varying volumetric strain, to recover the images of HAk and

ν, for either loading configuration. The strain-relaxation configuration offers not only an

opportunity to derive the same important quantitative poroelastic properties of the tissue

as stress relaxation but also the potential to avoid the difficulties and errors associated

with the estimation of strain along the axes perpendicular to the imaging axis, thus offering

opportunities for easier clinical translation.

Keywords: poroelasticity, stress relaxation, strain relaxation, ultrasound, material properties, interstitial fluid,

permeability

INTRODUCTION

Tissue physiology [1, 2] and the nature of the time-dependent
response to a sustained compression [3, 4] both indicate that
soft tissue is poroelastic. Poroelastic strain imaging measures
the time-varying and spatially varying deformation of the elastic
matrix as the tissue fluid flows out of the compressed region
of any soft tissue that is subjected to sustained compression.
Ultrasound tracking of the images of the echo strain over time
shows that, when a constant axial strain is applied on the
tissue, the dilatation (volumetric strain) decreases slowly from
the boundaries of a sample toward its center. An ability to image
and measure such a tissue behavior is likely to have diverse
clinical applications, including the assessment of lymphoedema,
the diagnosis of cancer, and the monitoring of the tissue response
to various treatments.

Soft tissue is multiphase in nature. As a result, in contrast
to linear viscoelastic models, poroelastic models describe more
closely the deformation that soft tissue experiences when
subjected to a sustained compressive force. The resulting local
volume reduction (equal to the amount of fluid that has
been forced away from the compressed volume [5]) allows
the spatially varying and time-varying strain to be related to
particular biomechanical properties, namely the permeability
k, Poisson’s ratio v, and Young’s modulus E, that describe
the microstructure of a poroelastic material. For practical
measurement and imaging, ultrasound echo-tracking techniques
employed in ultrasound elastography [6] may be used to
track the tissue displacement over time in response to the
applied force.

Previously published studies in experimental poroelasticity
have used a mathematical model of poroelasticity and a
finite element analysis to predict the strain evolution inside a
poroelastic cylinder subjected to a stress relaxation compression
under unconfined boundary conditions [7, 8]. Quantitative
images of the confoundedmaterial properties, aggregatemodulus
and permeability HAk, and of Poisson’s ratio ν were produced
in phantoms [9]. Clinical poroelasticity studies have also been
conducted by using stress relaxation conditions [10, 11]. The
poroelastic study of a homogeneous material using stress
relaxation conditions is conducted via time-varying strain ratio
imaging, which requires special measures to try to enhance the
lateral strain estimation because, when the compressor plates

are frictionless, axial strain does not vary. These measures
are not entirely successful and result in strain ratio images
that have a poor signal-to-noise ratio and, to date, have
been achieved clinically only in two dimensions [11], even
though a preliminary three-dimensional (3D) work has been
done in phantoms [12]. In specific clinical applications where
heterogeneity in poroelastic properties exists, the observation
of stress-relaxation via time-varying axial strain imaging only
may yield useful information [10, 13], but the interpretation
of the resulting images is complicated, and the results are not
quantitative for the tissue poroelastic characteristics. Strain-
relaxation (creep) experiments, however, may take advantage
of time-varying axial strain, which is estimated with a good
signal-to-noise ratio and has been very useful for the study
of the tissue viscoelastic characteristics, thus producing, for
example, diagnostically useful relaxation-time images of breast
tumors [14].

However, as strain relaxation (creep) and stress relaxation
offer different advantages and disadvantages in their application
to ultrasound poroelasticity imaging, in this paper, we
investigate for the first time whether a strain relaxation
compression experiment provides the same quantitative
and qualitative information about the poroelastic nature,
behavior, and properties of the studied sample as that seen
in Berry et al. [8] for the stress-relaxation experiment.
We use analytical theory and finite element modeling
(FEM) to demonstrate the qualitative equivalence of the
dilatation propagation seen for strain relaxation and
stress relaxation, and that the fitting of the analytical
model predictions to the strain-relaxation FEM results
allows the recovery of images of the poroelastic material
properties as it did for the stress-relaxation study in Berry
et al. [8].

In the absence of the ability to accurately estimate all
(three) components of strain, a strain relaxation compression
may be preferable clinically because it allows the relaxation
to be followed when imaging is such that an accurate strain
estimation is confined to an axial direction of the applied
and sustained force. The use of strain relaxation may offer
more suitable options for clinical translation, since it may
avoid the difficulties and errors associated with the ultrasound
measurement of lateral and elevational strain needed for
observing stress relaxation.

Frontiers in Physics | www.frontiersin.org 2 May 2021 | Volume 9 | Article 617993

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Theodorou et al. Ultrasound Poroelastic Tissue Characterization

MATERIALS AND METHODS

Based on the fundamentals of the biphasic theory of
poroelasticity, the stages that a cylindrical unconfined poroelastic
sample is going through during the relaxation should not be
dependent on the type of compression but only on the
biomechanical and geometrical properties of the sample and the
magnitude of the external mechanical stimuli [16]. The three
main stages of poroelastic response as illustrated and described
by Berry et al. [8] may be categorized as follows: (1) The elastic
stage: a sudden lateral expansion without a change in the volume
of a sample immediately after the application of the compression.
(2) The transient or biphasic stage: the radial tensile stress in the
porous matrix of the sample is decaying, while the hydrostatic
pressure gradient induces the fluid flow across the boundary
of the sample. (3) The steady-state stage: as time increases, the
material of the sample tends toward the equilibrium stage where
the fluid flow has ceased and the fluid pressure and radial stress
are zero.

The fluid flows radially in an outward direction. Initially,
only fluid at the boundary of the cylinder flows because only
there does a pressure gradient exist. This pressure gradient, and
therefore the annulus of moving fluid, moves slowly toward the
center, creating either the creep or the stress relaxation along the
direction of axial compression. In creep, the deformation changes
over time in the axial, radial, and circumferential directions,
whereas in stress relaxation, the axial strain remains constant but
the radial strain and circumferential strain vary.

The hypothesis tested in this work was that, by sustaining
either an external force or an equivalent axial strain on identical
poroelastic specimens during an unconfined compression, the
poroelastic effects are equivalent to the extent that, with
appropriate data processing, poroelastic property information
that is solely determined by the interstitial fluid flow within the
solid matrix may be extracted.

Theoretical Analysis
Poroelasticity
A perfectly elastic material deforms instantly under an applied
force and returns instantaneously to its original dimension
immediately after the force is removed. In contrast with the
fact that strain in a purely elastic material is time independent,
viscoelastic materials exhibit a viscous (as well as elastic) behavior
and are characterized by their time-dependent mechanical
behavior under an applied mechanical stimulus [4, 17, 18].

Viscoelastic materials behave in some ways as if they are
partly solid and partly fluid. The strain increases with time
when the stress is constant, which is known as strain relaxation
or creep. The stress decreases with time when the strain is
constant, which is known as stress relaxation. Finally, mechanical
energy is lost to the medium as heat, which is revealed by
cyclic loading in a phenomenon known as hysteresis. The elastic
moduli also depend on the rate of loading and the interval
between the loading cycles and the number of previous loading
cycles. The underlying physical mechanisms that are the causes
of such behaviors in a given material may often be unknown,
particularly in complex media such as biological tissues, and

indeed the mechanisms at work will often vary with the
strain rate.

Poroelastic materials are truly partly solid and partly fluid.
They have physically separated phases, for example, in the
form of a sponge-like elastic matrix that contains space (pores)
occupied by fluid, which is able to move through that space. Like
viscoelastic materials, poroelastic materials demonstrate stress
relaxation and strain relaxation although the mechanism is that
given time the fluid will flow down the pressure gradient caused
by applied stress. However, poroelastic materials exhibit time-
dependent phenomena with features that are additional to the
abovementioned features associated with viscoelastic matetials.
In particular, they experience volumetric strain (even when each
of the components is incompressible) and the propagation of
strain fronts [8, 9] described as follows.

For small strains, the equation that describes the time and
spatial dependence of volumetric strain in a poroelastic material
was established by Biot [19] and, with a modification that takes
into account the fluid viscosity [20], is written as follows:

∇2ε=
1

HAkη−1

∂ε

∂t
(1)

where ε is the strain, HA the aggregate modulus, k the
permeability’ η the dynamic viscosity of the pore fluid, and t the
time. The aggregate modulus HA can be expressed in terms of
the Young’s modulus E and the Poisson’s ratio ν. It is a measure
of the stiffness of the composite material at equilibrium after all
the fluid flow has stopped [16]. The Poisson’s ratio is defined as
the ratio of the lateral to axial strain and covers the range 0≤ ν ≤

0.5, for linear, isotropic materials.

ν = −
εl

εa
(2)

HA =
E(1− ν)

(1+ ν)(1− 2ν)
(3)

Permeability, asmentioned here, refers to theDarcy permeability,
whichmeasures the ability of a porousmedium to allowfluid, such
as interstitial fluid, to pass through its pores. It is a characteristic
of the matrix of a material and connects the fluid velocity to
the pressure gradient [2]. Permeability is defined in units of
area that are directly related to the pore space cross-section
perpendicularly to the direction of fluid flow. It depends solely on
the characteristics of the porous structure of a material, namely,
the pore size, density of pores, and interconnectivity of the porous
network. For large deformations (assuming not to occur here),
as the poroelastic material deforms, its permeability varies due
to the ensuing microstructural changes. This usage of the term
permeability is different from the other uses, such as when it
describes the “leakiness” of the capillary vascular endothelium,
although such phenomena do govern a fluid transport between
the extravascular and intravascular compartments and therefore
will influence the poroelastic behavior of tissues as described by
multiscale models (e.g., [13, 21]).

The mechanical behavior of the Biot poroelastic model is
controlled by three material properties: the permeability k of
the solid matrix to the pore fluid, the dynamic viscosity η of
the fluid flowing through the porous structure of a sample,
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FIGURE 1 | (A) A central cross-section through an unconfined cylinder of a poroelastic material subjected to a sustained uniaxial compression between two rigid,

frictionless impermeable and parallel plates. (B) The relaxation problem is solved on the cylindrical polar coordinate system using an axisymmetric finite element

modeling (FEM) simulation, on the indicated right half plane only. The solution that describes the behavior of the entire cylinder could be obtained by rotating the

solution plane through θ , the angle around the axis of symmetry of the cylindrical sample. The direction of the axial compression is defined to be along the z-axis and

the radial fluid flow along the r-axis.

and the Poisson’s ratio ν of the solid matrix and the aggregate
modulus HA.

A Poroelastic Sample Under Relaxation Compression
We consider here a homogeneous cylindrical poroelastic sample.
Even though this geometry is unlikely to occur naturally in the
body (apart from intervertebral discs), it suffices here purely
to permit a comparison of the qualitative and quantitative
information that may be obtained from the strain-relaxation and
stress-relaxation experiments. If such a sample of radius a is
axially compressed between two rigid impermeable compressor
plates (Figure 1A), immediately after the application of a
sustained compressive axial stress σ 0 or strain ε0 (time t = 0+),
it behaves like an incompressible elastic solid and, as illustrated
by Berry et al. [8], expands radially to conserve volume and
experiences an increased average stress or pressure. For t > 0,
the sample’s response is directed by its poroelastic nature as
follows [8, 16]. The pressure gradient between the sample and
its surroundings drives an exudation of interstitial fluid at its
unconfined (freely permeable) boundary (r= a). This radial fluid
flow, which takes time, releases the pressure at that radial position
and allows the radial elastic restoring force to pull the solidmatrix
toward the center (radial distance r = 0). In other words, stress,
radial strain, and volumetric strain all relax at that radial position.
As a result, the radial position of the pressure gradient moves
inward (r < a) and the process continues, producing a front of
relaxation, which travels radially inward until stability is reached
with a reduced sample volume when all fluid that is going to leave
the sample has escaped via its outer surface.

For the purposes of modeling the strain-relaxation loading
problem, it is assumed that an infinitesimal axial compressive
stress is applied instantaneously on the upper surface of the

sample and sustained thereafter:

σzz (t)=

{

0 t < 0
−σ0 t ≥ 0

(4)

where σ zz is the magnitude of the stress applied in the
axial direction.

Assuming that no shear forces exist on the compression plates
(i.e., no friction between the sample and the plates), the radially
averaged radial strain inside the sample, which is equal to the
global radial strain defined by the radial displacement of the
curved cylindrical surface at r = a, is given as [16]:

εrr (a,t) = (σ0)

[

ν

E
+

(

1− ν2
)

(1− 2ν)

E

∞
∑

n=1

4e
−α2nHAkη−1t

a2

{

9α2
n (1− ν)

2
−8 (1+ν) (1− 2ν)

}






(5)

Furthermore, the axial strain history at r = a is given as
follows [16]:

εzz (t)

= −
σ 0

E






1−

∞
∑

n=1

(1− ν2)(1− 2ν)4e
−α2nHAkη−1t

a2

{

9α2
n (1− ν)

2
− 8(1+ ν)(1− 2ν)

}






(6)

The evolution of the dilatation or volumetric strain, defined as the
relative change in volume 1V

V [22] within an element of a sample,

Frontiers in Physics | www.frontiersin.org 4 May 2021 | Volume 9 | Article 617993

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Theodorou et al. Ultrasound Poroelastic Tissue Characterization

is given as [16]:

εv (r, t)

= −
σ0

E






(1− 2ν) −

∞
∑

n=1

(

1− 2ν2
)

(1+ ν)
8J0(αnr)
aJ0(αn)

e
−α

2
nHAkη−1t

a2

{

9α2
n (1− ν)

2
− 8 (1+ ν) (1− 2ν)

}







(7)

where αn are the roots of the characteristic equation:

J0 (x)−
4 (1− 2v)

3 (1− v)

J1 (x)

x
= 0 (8)

where J0 (x) and J1(x) are the Bessel functions of the first kind of
order 0 and 1, respectively, and ν is the Poisson’s ratio.

For the purposes of modeling the stress-relaxation loading
problem, an infinitesimal compressive axial strain is assumed to
have been applied instantaneously on the upper surface of the
sample and sustained thereafter:

εzz (t)=

{

0 t < 0
−ε0 t ≥ 0

(9)

where ε0 is the magnitude of the strain applied in the
axial direction.

For all times, the radially averaged radial strain inside the
sample is given as [16]:

εrr (a,t)=ε0






ν+(1− 2ν)(1− ν)

∞
∑

n=1

e
β2nHAkη−1t

a2

{

β2
n (1− ν)2−(1− 2ν)

}







(10)

This equation for stress relaxation is equivalent to that for strain
relaxation (Equation 5). The evolution of the radial strain field
over radius and time is [8]:

εrr (r,t)=ε0













v+

∞
∑

n=1

J0 (βn)−
(

1−2ν
1−ν

)

{

J0(rβn)
a −

J1

(

rβn
a

)

rβn
a

+
J1(βn)

βn

}

1
(1−ν)

J0 (βn)−βnJ1 (βn)
e
−

β2nHAkη−1

a2
t













(11)

Finally, the radial and temporal variations of the dilatation or
volumetric strain during stress relaxation are [8]:

εv (r,t)=ε0



1− 2ν−

∞
∑

n=1

2J0 (βn)−
(

1−2ν
1−ν

) {

J0(rβn)
a +

2J1(βn)
βn

}

1
(1−ν)

J0 (βn)−βnJ1 (βn)
e
−

β2nHAkη−1

a2
t





(12)

where βn are the roots of the characteristic equation:

J1 (x)−
(1− ν)

(1− 2ν)
xJ0 (x) = 0 (13)

By setting t → ∞, the steady-state dilatation is equal to:

εv (r, t) = ε0 [(1− 2ν)] (14)

regardless of whether a stress relaxation or strain relaxation
compression is used.

In reaching this steady state, the dilatation equation describes
diffusion-like propagations of volumetric strain relaxation in a
radial direction across the whole volume of a cylinder, beginning
at the outer boundary and ending when it reaches the center
of a sample. This propagation was chosen to be a qualitative
and quantitative metric of comparison of the two loading
configurations. Time-varying images showing this propagation of
a volumetric strain relaxation were shown from the finite element
simulations in Berry et al. [8] and confirmed experimentally in
tissue mimicking poroelastic phantoms in Berry et al. [9]. In
addition, the accuracy and precision of the poroelastic material
characteristics,HAk and ν, recovered by fitting the predictions of
the above equations to the results of the experiments simulated by
FEM (see below), were used for further quantitative comparison
of the utility of the two loading configurations.

Finite Element Modeling
A commercial FEM program, MARC Mentat R© (MSC Software
Ltd., Frimley, UK), as used for poroelastic simulations by
Fromageau et al. [12, 15], was employed to predict the response
of an unconfined cylindrical sample to an externally applied stress
relaxation or strain relaxation compression using a structural and
diffusion-type simulation. The cylindrical geometry was used for
the reasons provided at the beginning of the Section entitled
The Poroelastic Sample Under Relaxation Compression. In both
strain and stress-relaxation scenarios, the material of a sample
was simulated to be a poroelastic fluid–solid mixture that obeys
the consolidation and biphasic theories [16, 19]. The sample was
compressed along its axis of symmetry between two frictionless,
rigid, impermeable, flat, parallel surfaces while immersed in a
fluid with a viscosity equal to that of water at room temperature.
The axisymmetric relaxation problem was solved in cylindrical
polar coordinates, for the right half of the z–r solution plane
(Figure 1B).

The FEM mesh was composed of 1,000 elements (type 33
MARC Mentat R©) and 29,209 nodes, arranged in consecutive
rows with a constant density throughout the homogenous
cylindrical model. The height of the simulated cylinder was
set equal to 30mm and its radius equal to 25mm, similar to
that employed in the ultrasound strain imaging of poroelastic
cylinders undergoing the stress-relaxation experiments of Berry
et al. [9]. The poroelasticity of the model was satisfied by setting
the porosity equal to 0.5 and the permeability of the simulated
biphasic sample to the pore fluid equal to 6.4e-16 m2. The
permeability value was chosen to reflect the value expected in
healthy soft tissue [13]. Other material properties are shown in
Table 1. Fluid flow was prevented along the z-axis but allowed
radially, conditions which allowed a good match to be achieved
between the results from simulation and experiment in a previous
study of poroelastic cylinders [8, 9]. The time step for sampling
the temporal evolution of the strain field was 0.5 s.

Strain relaxationwas simulated by loading the upper surface of
a sample with a compressive axial stress of 4 kPa, corresponding
to an axial force of 8N uniformly distributed across the sample
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TABLE 1 | The material properties specified for the simulated poroelastic sample.

Young’s Modulus

(Pa)

Poisson’s ratio Viscosity η of the

pore fluid (Pa s)

Permeability (m2)

8.00E+04 0.3 1.00E-03 6.40E-16

As a result, the aggregate modulus HA given by Equation (3) equals 8.9e+4 Pa.

cross-section, allowing the upper surface to move while ensuring
that the bottom plate was stationary.

Stress relaxation was simulated by moving the upper
compressor plate along the z-axis, to apply a displacement to the
upper surface of a sample with a magnitude equal to 3% of the
height of a sample.

The axial stress or strain was sustained for 180min. As
frictionless boundaries had been assumed, the resulting axial and
volumetric deformations of the sample were independent of the
z-axis component of their location.

All strain components were simulated for both strain-
relaxation and stress-relaxation experiments. Using the strain
components, the volumetric strain was calculated so that
the poroelastic sample behavior in strain relaxation could be
compared with that in stress relaxation. Inserting the material
properties (Table 1) into the strain equations of poroelasticity
[Equations (5)–(7) and (10)–(12)] the deformation of the
poroelastic sample was also analytically modeled during stress
relaxation or strain relaxation for the same boundary conditions,
time, and the applied compression as that employed in
the FEM.

Estimation of Poroelastic Characteristics
of a Material
The method previously employed by Berry et al. [8, 9], for
estimating the poroelastic characteristics of the material of
a cylinder under stress-relaxation loading, was applied again
here, but also for strain-relaxation loading. By examining the
poroelastic equations, it is straight forward to observe that not
only do all equations share the same exponential mathematical
form but also, importantly, their exponential decay is determined

by the same time constant sn
2

tr
, where sn (αn, βn) are the

eigenvalues of the characteristic equations (Equations 8 and 13)
and tr is the characteristic poroelastic relaxation time. This is
the characteristic strain diffusion time of the porous matrix,
determined as defined below by the square of the length of the
maximum fluid path (which in this case is equal to the radius
of a cylinder), the aggregate modulus HA (Equation 3), the
permeability k of the matrix, and the viscosity η of the pore fluid.

The parameterized form of the mathematical equations that
describe the imaged strain in a poroelastic relaxation experiment
may be written as follows:

strain (r,t)=Pi

[

Ai+

∞
∑

n=1

Bie
−

sn
2

tr
t

]

(15)

FIGURE 2 | The flow chart describing the steps of the Levenberg–Marquardt

(LM) optimization method.

The constants of Equation (15) that are related to the volumetric
strain εv in a strain relaxation compression experiment (Equation
7) are equal to:

P1 = −
σ0

E
A1 = (1− 2ν)

B1 = −

(

1− 2ν2
)

(1+ ν) 8J0(αnr)
aJ0(αn)

{

9α2
n (1− ν)

2
− 8(1+ ν)(1− 2ν)

}

tr =
a2

HAkη−1

and sn = αn, the roots of the characteristic equation
(Equation 8).

On the other hand, the constants related to the volumetric
strain εv in a stress relaxation compression experiment (Equation
12) are equal to:

P2 = ε0

A2 = 1− 2ν

B2 = −
2J0 (βn) −

(

1−2ν
1−ν

) {

J0(rβn)
a +

2J1(βn)
βn

}

1
(1−ν)

J0 (βn) − βnJ1 (βn)

tr =
a2

HAkη−1

Frontiers in Physics | www.frontiersin.org 6 May 2021 | Volume 9 | Article 617993

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Theodorou et al. Ultrasound Poroelastic Tissue Characterization

FIGURE 3 | The FEM predictions of the axial strain evolution over time, at the axial center, and across the radius of a cylindrical poroelastic sample subjected to a

constant axial stress (A) and an equivalent constant axial strain (B).

FIGURE 4 | The FEM predictions of the radial strain evolution over time, at the axial center, and across the radius of a cylindrical poroelastic sample subjected to a

constant axial stress (A) and an equivalent constant axial strain (B).

and sn = βn, the roots of the characteristic equation
(Equation 13).

For the cylindrical poroelastic phantom specified in Figure 1

and Table 1, the applied axial stress σ 0 or strain ε0, the radius
of the sample a, and the roots of the characteristic equations sn
are known. Thus, the parameters, determined by the poroelastic
characteristics of the material from which the phantom is made,

recovered by fitting the appropriate equation mentioned above
to the strain data acquired during stress relaxation or strain-
relaxation are:

p1 = v

p2 = p21 ∗ p22 = HA ∗ k (16)
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FIGURE 5 | The FEM predictions of the circumferential strain evolution over time, at the axial center, and across the radius of a cylindrical poroelastic sample

subjected to a constant axial stress (A) and an equivalent constant axial strain (B).

FIGURE 6 | The FEM predictions of the evolution of the volumetric strain or dilatation over time, at the axial center, and across the radius of a cylindrical poroelastic

sample subjected to a constant axial stress (A) and an equivalent constant axial strain (B).

There is only one equation in which the parameters p21 and

p22 are employed for the relaxation time tr = a2

HAkη−1 . Thus,

it is impossible to separate the parameters p21 and p22 directly
by model fitting without compromising the uniqueness of
the solution.

The Levenberg–Marquardt (LM) algorithm that is available in
the Matlab R© (Mathworks Inc., Natick, MA, USA) optimization

toolbox was employed in this work to fit the above poroelastic

equations to the FEM-predicted volumetric strain data. The
goodness of fit was computed on 10 by 10 matrices of the

simulated strain data produced by a forward analytical modeling

using the poroelastic volumetric strain equations for strain

relaxation (Equation 7) or stress relaxation (Equation 12). The

flow chart (Figure 2) describes the LM algorithm steps.
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FIGURE 7 | The FEM predictions of the spatially varying volumetric strain (“*”

symbols) inside a cylindrical poroelastic sample subjected to a constant

compressive axial force, undergoing strain relaxation, are plotted along with

the analytical predictions (Equation 7; solid lines). The volumetric strain

decreases more rapidly for large values of the radial position r, where the pore

fluid first leaves the sample, than for positions closer to the center of the

cylinder, where the fluid contained in the pores is the last to leave its original

location. The different colors represent different radial positions, r/a: cyan 0.95,

lime 0.85, purple 0.75, yellow 0.65, orange 0.55, blue 0.45, brown 0.35,

magenta 0.25, yellow 0.15, and olive 0.05.

A small percentage of random, uncorrelated noise with a
flat probability density function (white noise) was added to the
simulated strain data to mimic the random noise that exists in
experimentally acquired data sets. Computationally, the noise
was created by randomly varying each strain pixel within a range
equal to ±3% of the respective strain value. The flat probability
density functionwas chosen, instead of another function such as a
Gaussian, to render the results unbiased with respect to the noise
properties of any particular ultrasound acquisition system.

Starting from an arbitrary initial guess of the material
properties, p1 = [0.05 – 0.2], p2 = [1 – 7] × 10−10 Pa m2, the
LM algorithm attempted to converge on the values that result
in the best fit to the strain vs. time curves. The criteria used to
assess data fitting were (a) the final value of the minimization cost
function after an iteration had been stopped, and (b) the accuracy
and precision of the estimated values of thematerial properties by
comparing them with the predefined values (Table 1).

RESULTS

Previously published studies in the area of experimental
poroelasticity measurement using ultrasound have combined
the mathematical models of poroelasticity with a finite element
analysis to predict and validate the strain evolution inside a
poroelastic cylinder subjected to a stress relaxation compression
under unconfined boundary conditions [7, 8]. In this work, the
analysis was extended to compare the results with those for

FIGURE 8 | The FEM predictions of the spatially varying volumetric strain (“+”

symbols) inside a cylindrical poroelastic sample subjected to a constant

compressive axial strain, undergoing stress relaxation, are plotted along with

the analytical predictions (Equation 12; solid lines). Similar to the

strain-relaxation case in Figure 7, the volumetric strain decreases most

quickly at the larger values of the radial position r where the fluid path out of

the sample is shorter. The different colors represent different radial positions,

r/a: cyan 0.95, lime 0.85, purple 0.75, yellow 0.65, orange 0.55, blue 0.45,

brown 0.35, magenta 0.25, yellow 0.15, and olive 0.05.

an unconfined strain relaxation compression. The two types of
compression induce distinct fluid-flow-related effects along the
axial, radial, and circumferential axes.

In order to qualitatively and quantitatively compare the strain
relaxation with the stress-relaxation (of a poroelastic material
subjected to an unconfined compression), an objective metric
is necessary. For this purpose, the fluid-induced internal strain
behavior was simulated for both types of relaxation and the
results are shown in the figures. The diffusion-like propagation
of the volumetric strain across the whole volume of the cylinder,
and the accuracy, precision, and appearances of the images of
the poroelastic material characteristics, HAk and ν, recovered by
fitting the predicted time-varying strain to the measured time-
varying strain, were used as the qualitative and quantitative
metrics of comparison of the two loading configurations.

Comparison of Two Types of Poroelastic
Relaxation Behavior Using Finite Element
Analysis and Analytical Modeling
The strain across each polar coordinate was modeled by using
a finite element analysis. The behavior of the deformation of a
poroelastic cylinder was determined by subjecting it to an axial
stress and an equivalent axial strain sustained for 3 h. Figures 3–
6 show the evolution of the axial, radial, circumferential, and
volumetric strains, respectively, at the axial center and across the
radius of a poroelastic sample subjected to a constant axial stress
(strain relaxation, left figure) and a constant axial strain (stress
relaxation, right figure), determined by using a finite element
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FIGURE 9 | The FEM predictions (plotted symbols) of the volumetric strain

behavior over time, spatially averaged across all radial positions, compared

with the analytical predictions of Equations (7) and (12) (solid lines), in the strain

relaxation (olive lines and stars) and the stress relaxation (brown lines and

crosses) compressions of a sample.

analysis. The volumetric strain is the sum of the axial strain, the
radial strain, and the circumferential strain.

In Figures 7 and 8, for strain relaxation and stress relaxation,
respectively, the FEM predictions (plotted symbols) and the
analytical predictions (solid lines) of the time dependence of
the volumetric strain inside the simulated biphasic cylinder
are plotted throughout the radial extent of the phantom. The
boundary conditions were the same for the FEM and the
analytical calculations. Specifically, Figure 7 shows the spatial
and temporal dependence of the volumetric strain inside a
phantom in a strain relaxation compression. Figure 8 displays
the volumetric strain behavior of the same phantom during
stress relaxation.

Figure 9 compares the volumetric strain behavior, averaged
across the whole solution plane, computed by using an FEM and
analytically, for the two different types of axial compression.

Equivalence of Strain Relaxation and
Stress Relaxation for Using an Inverse
Method to Determine the Poroelastic
Material Properties
Table 2 shows the values of the extracted material properties
averaged over the whole region of interest inside a poroelastic
cylinder undergoing strain relaxation or stress relaxation. The
poroelastic properties (p1 and p2) were estimated by applying
an LM inverse method to the strain-relaxation and stress-
relaxation strain data, produced directly from the equations of
poroelasticity, for 10 realizations of the algorithm, employing
different initial parameters and white noise each time. The
estimated values and the true parameter values that were
predefined for the simulated poroelastic phantom may be

observed in Table 1. Table 2 shows the values for the cost
function that is a goodness-of-fit parameter.

Figure 10 displays, for both the strain and the stress relaxation
compressions, the material property and the cost function images
that were derived by applying an LM inverse method to fit the
analytically predicted time-varying volumetric strain to the FEM-
measured time-varying volumetric strain at each of the 10 × 10
pixel locations inside a poroelastic cylinder.

DISCUSSION

In this work, the fluid-induced strain within a poroelastic
phantom in a typical in vitro experimental relaxation scenario
was predicted by using both analytical and finite element
methodologies. Furthermore, biomechanical material property
images were created by recovering the poroelastic parameters
from the simulated strain data using an LM inverse method. In all
simulations, the experimental design, biomechanical properties,
and geometry of a sample were identical.

The central question that was being asked was, does a
strain relaxation compression experiment provide the same
quantitative and qualitative information about the poroelastic
nature, behavior, and properties of the studied sample as a stress-
relaxation experiment?

In order to compare the two loading configurations, both
relaxation experiments were simulated identically, with the only
difference being that in the strain relaxation, a constant axial
force was applied and in the stress relaxation an axial strain was
held constant. All strain components were simulated for both
strain relaxation and stress relaxation. The volumetric strain was
selected as an unbiased metric of comparison of the poroelastic
sample behavior in the two different types of relaxation.

There was a good agreement between the phantom dilatations
obtained using the strain relaxation and stress relaxation, and
this result was independent of the duration of the relaxation
(Figure 6).

The pixel-by-pixel dilatation data obtained by the FEM, from
the boundary to the center of the simulated phantom, were
in excellent agreement with the analytical predictions of the
equations of poroelasticity for the same biomechanical properties
and boundary conditions as simulated by FEM (Figures 7, 8).

The relative ability to use stress relaxation and strain
relaxation experiments to recover the poroelastic properties of
the simulated phantom was assessed by fitting the volumetric
strain produced directly from the equations of poroelasticity to
the “measured” data generated by the FEM simulation. The LM
inverse method successfully converged close to the correct values
of the material properties for both hypothetical strain and stress-
relaxation experiments, independent of the poor initial guess
of the material properties and the random noise added in the
simulated strain data. The LM algorithm located the minima of
the cost functions and converged precisely and accurately to the
parameter p1 (Poisson’s ratio) and the parameter p2 (product
of the aggregate modulus and permeability), with respective
mean values and SDs displayed in Table 1, just as well for
the strain relaxation loading as it did for the stress relaxation
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TABLE 2 | The performance of the inverse method was tested by using the strain data generated from FEM simulation of a poroelastic phantom undergoing a stress or

strain relaxation compression, with predefined biomechanical properties.

Biomechanical parameter or performance index Preset value Estimated parameter from strain

relaxation imaging

Estimated parameter from stress

relaxation imaging

Poisson’s ratio 0.3 0.2984 ± 0.0034 0.3072 ± 0.002

Product of aggregate modulus and Permeability (Pa m2 ) 5.7 × 10−11 (5.708 ± 0.144) × 10−11 (5.711 ± 0.121) × 10−11

Cost function, sum of squared errors (arbitrary units) – (7.071 ± 0.0986) × 10−4 (2.781 ± 0.0199) × 10−4

Means and SDs are given for 10 estimates, using different initial guesses for the values of the parameters and different random noise values each time.

FIGURE 10 | The images of the poroelastic model parameters such as the Poisson’s ratio (top row) and the product of aggregate modulus and permeability (middle

row), and the images of the cost function values per pixel (bottom row). The left column shows the images that were recovered from a simulated poroelastic phantom

subjected to a strain relaxation compression (an applied force of −8N), and the right column shows the images that were recovered from a simulated poroelastic

phantom subjected to a stress relaxation compression (applied strain of −3%). The grayscale bars were arbitrarily scaled to allow comparisons, with maxima and

minima chosen to include the maximum and minimum pixel values within each image.
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loading. Images of the local values of the Poisson’s ratio and
the product of the aggregate modulus and permeability were
created, again demonstrating equal capability and performance
for the strain relaxation loading as for stress relaxation loading.
For the simulation of homogeneous media, the Poisson’s ratio
and aggregate modulus maps in Figure 10 illustrate a desirable
absence of spatial bias in the solution to which the inversion
method converged. They also indicate the level of variation to be
expected, for the noise level employed in this simulation. Finally,
they illustrate the capability to produce the quantitative images of
these novel biomechanical properties, which for biological tissues
should show spatial variation that may be expected to highlight
differences for different tissues and spatially localized pathology.

However, it should be noted that the determination of the
characteristics of a poroelastic material by fitting a time-varying
strain at a point to the analytical predictions is applicable only
to the conditions to which the analytical theory applies, i.e., in
this case to the cylindrical samples of homogeneous materials
where the biomechanical properties are not varying significantly
over time and space. The implication of this assumption is that
to apply this method in the laboratory, homogenous cylindrical
phantoms of controlled mechanical properties need to be made
and tested under strictly monitored experimental conditions.
Moreover, to extend the application of the method in vivo, the
inverse method should be further developed to account for tissue
inhomogeneities, non-linearity, anisotropy, and viscoelasticity
of the solid matrix, a variation in tissue permeability due to
the different types of fluid flow and widely varying (i.e., non-
cylindrical) boundary conditions, including the varying levels
of confinement provided by surrounding tissues. Also not
considered is the in vivo feasibility of applying and tracking
tissue deformations for the long periods that may be necessary.
Nevertheless, the positive results of previous in vivo studies
involving various types of loading and strain measurement [10,
11, 14], provide substantial encouragement that our findings
concerning the strain-relaxation loading should be applicable for
poroelastography in vivo.

The noise model employed in the simulation, which was
spatially uncorrelated and has a uniformly distributed probability
density function, may not reflect the correlations and distribution
of noise in ultrasonically generated estimates of strain, which
may also be anisotropic showing the largest variance in the
lateral direction. A further limitation is that only a single noise
level was simulated rather than a range of signal-to-noise ratios.
However, these limitations should not impact negatively on
the main finding that, for quantitative poroelastography, strain
relaxation (which may have practical advantages as described
below) represents a viable alternative loading condition to stress
relaxation. In fact, the use of a more accurate noise model with
a greater strain estimation variance in the lateral direction is
likely to have further emphasized the benefits of strain relaxation,
which can take advantage of a greater precision with which axial
strain can be measured. Nevertheless, further work would be
helpful to understand whether there are differences between the
two approaches in terms of sensitivity to noise.

By studying the strain inside a cylindrical phantom, it has
been found from these simulations that either a constant axial

stress or strain may be used for quantitative poroelastography
because they generate a similar and predictable temporal and
spatial variation of internal strain when applied to the same
phantom. Although a cylindrical geometry is unlikely to occur
naturally in the body (apart from, perhaps, intervertebral discs),
it is sufficient here to allow a qualitative and quantitative
comparison of the experiments of strain relaxation and stress
relaxation. If an inversion method for recovering the quantitative
values and the images of the characteristics of a poroelastic
material was to be applied in vivo, however, sample geometries
other than cylindrical geometries may need to be modeled. For
such purposes, analytical modeling is likely to be too complex
and a more feasible approach may be to extract parameters
from the simulations that best fit the ultrasound-measured
spatially varying and time-varying strain. The input data for
such simulations, regarding the organ (such as breast, liver, and
brain) boundary shape, for example, could be obtained from
3D medical images such as those obtained using MRI, x-ray
CT, or ultrasound. In such future work, however, it would also
be necessary to extend the modeling to predict the behavior
under conditions of localized compression (indentation) of large
organs [15].

The reader should note though that the creep (strain
relaxation) poroelastic results simulated herein may not be easily
replicated experimentally using a rigid compressor because the
compressor may not permit the radially varying axial strain
shown in Figure 3A in all axial locations. Sridhar et al. [23]
and Qiu et al. [14] performed creep experiments using a rigid
compressor for the purposes of studying a viscoelastic behavior
and did not report behavior such as that shown in Figure 3A,
although they were not specifically looking for such effects.
For the optimal laboratory replication of the strain-relaxation
results shown here, a much more sophisticated non-rigid way
of applying the constant axial stress would be ideal, possibly by
using an indenter array or a fluid compressor. Alternatively, a
rigid compressormay yield useful results for some axial locations,
or a more complete understanding of the axial variation of the
time-varying and radially varying strain may allow more general
use of a rigid compressor.

The stress relaxation experiments are relatively easily
implemented in a laboratory using a conventional rigid
compressor to sustain an axial strain on the top surface of
a poroelastic sample. Indeed, Berry [24], using an FEM and
experiments in vitro, reported a poroelastic strain response
during stress relaxation that was like that shown in Figures 3B–
6B. Strain relaxation, on the other hand, could be advantageous
if one considers potential clinical imaging setups.

If 3D ultrasound methods for accurately estimating all
three components of strain and their temporal evolution were
available, the dilatation of the poroelastic sample could be imaged
during the relaxation [12]. This would be an ideal echo imaging
system for poroelastography because it could quantify the change
in the volume of the poroelastic sample, which would be equal to
the fluid that has flowed out of the matrix during relaxation. If
only one accurately estimated component of strain is available
(i.e., along the ultrasound beam axis), which is typically the
case for two-dimensional (2D) or 3D ultrasound imaging, then
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a strain-relaxation (creep) methodology may have advantages
compared with a stress-relaxation method, since it exhibits a
time-varying axial strain whereas for stress relaxation it does
not (compare Equation 6 with Equation 9, and Figures 3A,B).
Importantly for clinical applications, if axial strain alone could
be employed, it would allow the ultrasound probe to be used for
both compression and imaging, avoiding the errors and difficulty
of lateral and elevational strain estimation.

It was shown in the FEM images (Figures 3–5) that
all poroelastic strain components vary spatially and all
components contribute to the local dilatation information
(Figure 6A) during strain (creep) relaxation. In a stress
relaxation case, as axial strain is fixed, only the radial and
circumferential strain components (Figures 4B and 5B)
contribute to the local dilatation information (Figure 6B). Thus,
the mathematical formulation of each compression problem
should be considered before selecting the most appropriate
experimental design.

Overall, an important potential advantage of the creep
methodology is the possibility to derive useful information
related to the biomechanical nature of a sample by imaging the
time evolution of the axial strain only, avoiding the technical
difficulties and errors associated with the volumetric or even
axial-to-lateral strain ratio calculation.

CONCLUSIONS

Based on both the FEM and analytical results, it is evident
that the diffusion-like strain behavior during the relaxation of
an unconfined poroelastic sample under compressive loading is
determined entirely by its elastic constants (aggregate modulus,
Poisson’s ratio, and Young’s modulus), and by the permeability
of its matrix to the pore fluid and the radial flow path
length. Regardless of whether the type of sustained compression
employed eliceted strain or stress relaxation, the simulated
relaxations of a poroelastic sample with interstitial permeability
and Poisson’s ratio similar to a healthy tissue, resulted in a
similar magnitude of volumetric strain at equilibrium. Similar
spatially varying and time-varying dilatations of a poroelastic
cylinder were observed in a relaxation compression, independent
of the type of loading, as long as other boundary conditions
remained unchanged. Therefore, both unconfined compression

methodologies permit the study of the poroelastic deformation
of a sample. Most importantly, either of the unconfined
compression configurations could be applied experimentally
to obtain the qualitative and quantitative information related
to the biomechanical nature of a chosen poroelastic sample.
For eventual clinical application of the method for recovering
the quantitative poroelastic parameters and images, it will
be necessary to consider sample geometries other than the
cylindrical geometry with, for example, an inversion by fitting the
predictions of simulations to the ultrasoundmeasurements of the
spatially varying and time-varying strain.

This work shows that both unconfined compression relaxation
methodologies could in principle be applicable in vitro and in
vivo and strain relaxation provides several potential advantages
due to the fact that the strain variation could be imaged by
axial displacement tracking with the ultrasound beam aligned
along the axis of compression, which bypasses the need for the
estimation of lateral strain and elevational strain and significantly
simplies the setup for in vivo scanning and compression.
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