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We revisit the CPT theorem for the Dirac equation and its extended version based on the

vector representation of the Lorentz group. Then it is proposed that CPTM may apply to

this fundamental equation for a massive fermion a s a singlet or a doublet with isospin.

The symbol M stands here for reversing the sign of the mass in the Dirac equation, which

can be accomplished by operation on it with the so-called gamma-five matrix that plays

an essential role for the chirality in the Standard Model. We define the CPTM symmetry

for the standard and extended Dirac equation and discuss its physical implications and

some possible consequences for general relativity.
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1. INTRODUCTION

The famous CPT invariance of quantumfield theorymeans that the reversal of the sign of the charge
(charge conjugation, C), and of the space-time coordinates (parity reflection P and time reversal T)
are fundamental physical symmetries [1–6] of any field equations, and the related Lagrangians thus
should be invariant under these transformations. Lehnert [7] provides a concise modern review of
CPT symmetry and its proofs and possible violation.

It seems that the combined CPT symmetry cannot be easily violated, but it has been put into
question, for example recently by Heald [8]. In his conclusion “CPT symmetry has been violated in
relation to beta decay of mesons and for the three inverted CPT operations of antimatter that result
in odd parity, and so it cannot be a fundamental symmetry of Nature. In the case of the broken CPT
symmetry of Kaon beta decay for instance, the additional hidden symmetry can be provided by the
negative mass of antimatter contained within the meson.”

Checking the equality of the masses of particles and antiparticles is the adequate empirical test
of the validity of CPT invariance within the Standard Model (SM). In a recent letter, Larin [9] also
argued that there is a possibility of violation of CPT symmetry in the SM, yet consistent with the
CPT theorem, by choosing non-standard phases of the quark fields. To check this experimentally
requires by an order of magnitude higher precision of measurements of the proton and anti-
proton mass difference than possible presently. Some recent experimental achievements in this
field are discussed by Ulmer et al. [10]. Barenboim and Salvado [11] recently put forward ideas and
made related calculations indicating that cosmology provides nowadays the most sensitive data to
test CPT violation by scrutinizing the possible neutrino-antineutrino mass splitting, and by thus
providing a bound on CPT violation for the absolute value of that splitting from cosmological data.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.618392
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.618392&domain=pdf&date_stamp=2021-06-01
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yasuhito.narita@oeaw.ac.at
https://doi.org/10.3389/fphy.2021.618392
https://www.frontiersin.org/articles/10.3389/fphy.2021.618392/full


Marsch and Narita CPTM Symmetry

The main physical motivation of this paper is to show that
there is another new symmetry for the Dirac equation, namely
mass inversion M. The symmetries of the Dirac equation are
not complete with the combined CPT symmetry, but due to
the chirality (associated with the γ5 matrix) there is another
symmetry, namely mass inversion. However, by allowing the
mass sign inversion to extend the CPT transformation into
CPTM, the maximal symmetry of the Dirac equation based on
the five gamma matrices is achieved. CPTM transformation is
then simply proportional to the unity operator in Dirac-matrix
terms. The fact that CPTM is proportional to the unit matrix
means that the Dirac spinor field obeys it in all its spinor
components like a scalar field, which it should as the squared
Dirac equation reproduces the Klein-Gordon equation, as will be
shown in Equations (23) and (28). This has no basic implications
for a free fermion spinor field, yet may so in the context of
coupling to gauge fields or gravity.

We stress at the outset that this paper is essentially a
theoretical work which discusses CPTM as an extension of the
symmetry of the Dirac equation in Minkowski space. According
to our knowledge this idea in the present algebraic form has first
been discussed by Marsch and Narita [12] before. We further
define the CPTM symmetry for the new extended Dirac equation
as proposed by Marsch and Narita [13, 14] and provide here
the related detailed algebra. There it was also shown that the
extended Dirac equation can easily be expanded to include the
SU(N) gauge fields of the standard model.

Especially, in the context of modern cosmology and general
relativity, an extension of the CPT theorem has been considered
by Bondarenko [15], which addresses the possibility of a negative
sign of the particle mass, and related with it the mass sign-
inversion symmetry. Therefore, in order to preserve fundamental
invariance, the CPTM theorem has been proposed by him,
whereby here the symbol M stands for the inversion of the
sign of the mass m. CPTM was so defined to include besides
charge-conjugation, parity reflection, and time-reversal now also
the sign-inversion of the mass. As a result, antimatter might
attain a negative “gravitational mass,” and so CPTM invariance
is required and must be ensured by that generalized theory.

But observationally, the gravitational behavior of antimatter is
not known, and the interaction between matter and antimatter
might be either attractive or repulsive. Villata [16] theoretically
investigated a decade ago the behavior under CPT of the
covariant equations of motion of an electron in a gravitational
and electromagnetic field and came to the conclusion that there
should be gravitational repulsion between matter and antimatter.

Bondarenko [15] originally had in mind the possible
application of the CPTM symmetry of the space-time solutions of
Einstein equations to the resolution of the cosmological constant
problem. He also discussed the consequences of the CPTM
symmetry for cosmological problems such as the values of the
vacuum energy density and cosmological constant. But he further
considered possible consequences of CPTM symmetry when
being applied to quantum field theory and relativity.

Here we aim, within a much narrower scope, at revisiting the
CPT theorem for the extended and original Dirac equation [17]
and are led to propose that CPTMmay, by good physical reasons,

apply as well to this fundamental equation for a massive fermion
described within the framework of special relativity. Changing
the sign of the mass in the Dirac equation can be accomplished
by operation of the so-called gamma-five matrix that plays an
essential role for chirality in the SM. After revisiting the CPT
theorem for the extended Dirac equation based on the vector
representation of the Lorentz group [13], we newly define CPTM
and discuss its consequences. A brief final section addresses
some related theoretical aspects of general relativity. In a short
Appendix we present some relevant matrices.

2. REVISITING THE CPT THEOREM

In this section we derive and discuss the basic symmetries of the
standard and extended (including isospin) Dirac equation, which
are charge conjugation, parity reflection and time inversion. We
write the Dirac equation by using capital (lower) letters for
the Gamma (gamma) matrices corresponding to the extended
[13] and (standard) [17] Dirac equation. Lack of space forbids
to explicitly quote here all related matrices in the Weyl
representation. Some of them are quoted below in theAppendix.
For more on this we refer to the cited references. The extended
Dirac equation also has the usual form

Ŵµi∂µ8 = m8. (1)

A Dirac spinor field is denoted conventionally as ψ , whereas
for the extended Dirac equation we use throughout the capital
symbol 8 for the quantum field. To include an electromagnetic
gauge fieldAµ the derivative ∂µ in Equation (1) is replaced by the
covariant derivate

Dµ = ∂µ + ieAµ. (2)

The three basic symmetries consist of the simple operations
of complex conjugation, named C, parity reflection or space
inversion, named P, and time inversion, named T. They have the
following effects on the field: C8 = 8∗, P8(x) = 8(−x), and
T8(t) = 8(−t). These operations are their own inversions, i.e.,
we haveC = C−1,P = P−1, andT = T−1. Furthermore, there are
also three relevant matrices involved, such that we can generally
define the symmetry operations as

C = C C,
P = P P,
T = T T

. (3)

These matrices (C, P,T) have like the Dirac matrices the
dimension 8 × 8 and still need to be determined by explicit
operation of C,P, T on the Dirac equation. The transformed fields
are identified by a calligraphic subscript. We define 8C = CC8,
8P = PP8, and 8T = TT8. Correspondingly, we obtain the
three Dirac equations for the transformed fields reading

ŴµiD∗
µ8C = m8C,

Ŵµi∂µ8P = m8P,
−(Ŵµ)∗i∂µ8T = m8T.

. (4)
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For the time inversion we had to first complex conjugate the
kinetic term, as the Hamiltonian corresponding to the Dirac
Lagrangian is real, and thus its eigenvalues must be real as well
(see for example the related discussions in Refs. [4–6]). The above
kinetic terms define the requirements to be posed on the matrices
C, P,T such that transformed fields as well obey the original
Dirac equation [Equation (1)]. Insertion of the operations given
in Equation (3) and exploiting the definitions of C,P,T yields

(C−1ŴµC)iD∗
µ8

∗ = m8∗,
(P−1ŴµP)i∂µ8(−x) = m8(−x),

−(T−1(Ŵµ)∗T)i∂µ8(−t) = m8(−t).

. (5)

Concerning charge conjugation, we compare the first of the above
three equations with the complex conjugated Dirac equation
reading

(Ŵµ)∗(−i)D∗
µ8

∗ = m8∗, (6)

from which we read off by comparison that

C−1ŴµC = −(Ŵµ)∗. (7)

Similarly, by inversion of the spatial and temporal variables in the
original Dirac equation [Equation (1)], we obtain

Ŵµi∂µ(−x, t)8(−x, t) = m8(−x, t),
Ŵµi∂µ(x,−t)8(x,−t) = m8(x,−t).

. (8)

Here the derivate is ∂µ(x, t) = (∂/∂t, ∂/∂x). Again by comparison
of Equation (5) with Equation (8), we find that the relations
must hold:

P−1
ŴP = −Ŵ, and P−1Ŵ0P = Ŵ0. (9)

Finally, for time inversion we obtain

T−1(Ŵ)∗T = −Ŵ, and T−1(Ŵ0)
∗T = Ŵ0. (10)

So the remaining task is to determine the three matrices
C, P,T for the extended Dirac equation. For parity close
inspection of Equation (9) readily shows that P = Ŵ0, and
therefore

P =
(

0 i1
−i1 0

)

P. (11)

For time inversion we need to know (Ŵµ)∗, which is obtained by
complex conjugation of Equation (A3) in theAppendix. We thus
obtain Ŵ∗

0 = −Ŵ0 and

Ŵ
∗ = i

(

0 16
+

16
− 0

)

. (12)

For time inversion close inspection of Equation (10) then
suggests that

T =
(

1 0
0 −1

)

. (13)

For charge conjugation again close inspection now of
Equation (7) leads to the matrix

C =
(

0 i14
−i14 0

)

. (14)

As a result, we obtained themathematical expressions for all three
symmetry operations. Now we can state their combined effects in
the famous CPT Theorem of the Standard Model. The result is

CPT =
(

0 i14
−i14 0

)

C

(

0 i1
−i1 0

)

P

(

1 0
0 −1

)

T = Ŵ5CPT.

(15)
This operator transforms the field as follows

CPT8(x, t) = Ŵ58
∗(−x,−t). (16)

This result is the analog to the well known result for the normal
Dirac equation as used in the SM of elementary particle physics
[4], which reads similarly

CPTψ(x, t) = γ5ψ
∗(−x,−t). (17)

Here the three involved standard Dirac 4× 4 matrices are

C =
(

0 iσy
−iσy 0

)

, P =
(

0 12

12 0

)

, T =
(

iσy 0
0 iσy

)

. (18)

The definition of C differs by a minus sign from the conventional
definition. The product of the three CPT matrices yields the
diagonal matrix γ5 = [−1,−1, 1, 1]. The Dirac matrices in Weyl
representation attain the standard form quoted in the Appendix.
When one replaces in Equation (5) the field8 byψ andŴµ by γ

µ

and inserts the matrices of Equation (18) and the standard Dirac
gamma matrices, then one finds that the same requirements as
given in Equations (7, 9, 10) hold for, and are fulfilled by, the
matrix γ

µ. More generally, one may consider phase factors of
module unity in each of the above symmetry operations, an issue
that is discussed in detail by Lehnert [7], but we take here trivial
values of unity which suffices for the present purpose and the case
we want to make.

3. EXTENSION TO CPTM SYMMETRY

INVOKING MASS SIGN-INVERSION

It is interesting to note that the conventional CPT operation
involves the Ŵ5 matrix for the extended and γ5 for the standard
Dirac equation. We find this result puzzling because each
component of the spinors ψ and 8 obeys the quadratic scalar
Klein-Gordon (KG) equation [18], which has only the complex
conjugation and space-time inversion as basic symmetries, which
means CPT, and does not involve any Dirac matrices. We suggest
that a possible solution to this problem may be found in another
intrinsic symmetry of the Dirac equation. Consequently, we
define similarly to what we did before the mass sign-version
symmetry as 8M = M8 = MM8. The operation M has the
following effect on the massive-particle field, M8(m) = 8(−m),
and is of course its own inversion, i.e., giving M = M−1. We recall
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that the solution of the Dirac equation depends on the mass as
characteristic parameter of the particle. Still, the matrixM needs
to be defined. One now obtains the Dirac equation in the two
equivalent forms

Ŵµi∂µ8M = m8M,
Ŵµi∂µ8(−m) = −m8(−m).

(19)

By comparison, we then obtain by insertion of 8M a condition
on the matrixM that is given by the equation

M−1ŴµM = −Ŵµ. (20)

Consequently, M = Ŵ5, since this delivers by anticommutation
with the Gammas the negative sign in front of the mass
(m ≥ 0). We emphasize that with that definition we find after
Equation (15) that CPTM = 18CPTM, which is an important
result. Let us briefly return to the KG equation. Formally, on can
of course even in that equation,

(∂µ∂µ +m2)8 = 0, (21)

replace m by −m, which is trivial but may be denoted as a “mute
mass sign-inversion.”

Consequently, couldM perhaps be the sought after additional
symmetry of the Dirac equation, which would also apply to
neutral but massive neutrinos, for example? Taking the roots
of m2 of course delivers ±m, where the negative sign is
conventionally not considered. As the Dirac equation results
from taking in Lorentz-invariant fashion the “roots” of the KG
equation, there is may be some physical meaning to the negative
mass, corresponding to a negative frequency in the particles rest
frame. Let us first consider the operation of CPTM on simple
waves. As is well-known, fermion quantum fields can be Fourier
decomposed, i.e., be written as a sum of plane waves with negative
(particles) and positive (antiparticles) frequency like

φ±(x, t) = exp (±i(E(p)t − p · x)), (22)

with the positive definite relativistic particle energy E(p) =
√

p2 +m2 and momentum p. It can then readily be seen that

CPTMφ±(m; x, t) = φ∗±(−m;−x,−t) = φ±(m; x, t). (23)

Therefore, the plane waves are eigenfunctions of CPTM.
Moreover, the relativistic four-momentum Pµ = i∂µ obeys the
equation (CPTM)−1PµCPTM = Pµ, which means it commutes
with the CPTM operation, since M has no effect on the particle
energy depending on the square of the massm.

To substantiate our suggestion we present a few more
instructive calculations for the individual symmetry operations.
For the sake of convenience we provide them only for the
standard Dirac equation. For the extended one we simply have
to replace the lower case with the upper gamma matrices, and
similarly for C, P, T, and M as defined above. By insertion it is
easily validated that the particle and antiparticle solutions of the
free Dirac equation can be written

ψP(p,m; x, t) = (γ p+m)u exp (−ip x),
ψA(p,m; x, t) = (γ p−m)v exp (+ip x).

(24)

Here we use the abbreviation γ p = γ µpµ, with pµ = (E(p), p).
Similarly, we have p x = pµxµ, with xµ = (t, x). The vectors u
and v form a basis in the fermion rest frame and are orthogonal
and can be normalized in a Lorentz-invariant fashion. Explicitly
they read in Weyl representation as follows: uT1 = (1, 0, 1, 0),
uT2 = (0, 1, 0, 1), vT1 = (1, 0,−1, 0), vT2 = (0, 1, 0,−1), whereby
index 1 and 2 refers to spin up and down. When we operate with
the charge conjugation operator on Equation (24) and use that
C = C∗ and C2 = 14, we find that

CψP1,2 = C(γ∗ p+m)u∗1,2 exp (+ip x)

= (Cγ
∗C p+m)Cu∗1,2 exp (+ip x) = ±ψA2,1,

CψP1,2(p,m; x, t) = ±ψA2,1(p,m; x, t), (25)

since Cu∗1,2 = ∓v2,1, whereby the spin is flipped. As expected,
the particle is transformed into the antiparticle solution with
opposite spin, and vice versa, which is not shown here. Exploiting
the relations Equations (9) and (10) with Gamma being replaced
by gamma, and using the definitions given in Equation (18), one
finds after some algebra that

PψP1,2(p,m; x, t) = +ψP1,2(p,m; x, t),
PψA1,2(p,m; x, t) = −ψA1,2(p,m; x, t),
Tψ∗

P1,2(p,m; x, t) = ∓ψP2,1(p,m; x, t),
Tψ∗

A1,2(p,m; x, t) = ∓ψA2,1(p,m; x, t).

(26)

Here we used the fact that in the rest frame the basis vectors
behave as follows against time and space inversion, i.e., we have
Pu1,2 = u1,2, and Pv1,2 = −v1,2, which means that particles
have positive and antiparticles negative rest-frame parity, and
moreover Tu∗1,2 = ∓u2,1 and Tv∗1,2 = ∓v2,1, which implies a
spin flip. Concerning the mass sign-inversion one obtains with
M = MM the result

MψP1,2(p,m; x, t) = ψP1,2(p,m; x, t),
MψA1,2(p,m; x, t) = ψA1,2(p,m; x, t). (27)

We note that to obtain this result the spinors u and v are
understood to depend implicitly also on themassm, whichmeans
that u(−m) = v(m) and vice versa, since they are the eigenvectors
of the Dirac equation in the rest frame and correspond to the
eigenvalues E = ±m. Here we used further that operation
with M = γ5 on the basis vectors yields Mu1,2 = −v1,2, and
thus Mv1,2 = −u1,2. Apparently, the spin is not flipped in
this case. As a result, the solutions in Equation (24) simply are
the eigenfunctions of the mass sign-inversion operator with the
trivial eigenvalue plus one. Conventionally, in the SM the plus
sign corresponds to particles with negative frequency waves and
the minus sign to antiparticles with positive frequency waves.
This remains true also for the extendedDirac equation describing
a massive fermion doublet. The fundamental sense of the sign of
m is also obvious from the polarization spinors in Equation (24).

Obviously, the effects of the four symmetry transformations
yield subtle individual results. However, if we finally combine
them in their product CPTM, we obtain a much simpler result
for the general Dirac spinor field

CPTMψ(m; x, t) = CPTMψ = ψ∗(−m;−x,−t). (28)
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In particular for the spinor wave functions in Equation (24)
we finally obtain CPTMψP,A(p,m; x, t) = ψ∗

A,P(p,m; x, t).
In conclusion, we suggest to include the mass sign-inversion
operator M as intrinsic symmetry of the Dirac equation in the
CPT theorem, which yields the extended CPTM theorem and the
rather concise result in Equation (28). The operation of γ5 has of
course no effect on the scalar plane wave and particle momentum
as discussed above, but effectively merely acts on the polarization
vectors of the Dirac equation. Importantly, it plays a key role
in chirality through the projection operator P± = 1

2 (14 ± γ5),
which permits to decompose the spinor field ψ into its left- and
right-chiral spinor components.

4. CPTM SYMMETRY IN GENERAL

RELATIVITY

It is of interest to study the CPTM transformation in the
astronomical or cosmological applications even though the
CPTM symmetry is derived for the flat Minkowski space-time.
In the gravitational theory (in the frame of general relativity), the
charge conjugation C is ineffective, and parity and time reversal
act as the PT transformation, dxµ → −dxµ [16]. The energy-
momentum tensor Tµν transforms anti-symmetrically under the
CPTM transformation. For a point mass at x0, for example, the
energy-momentum tensor Tµν transforms as

1
√
g
m

∫

δ(4)(x− x0)
dxµ

dτ

dxν

dτ
dτ

→
1
√
g
(−m)

∫

δ(4)(x− x0)
−dxµ

dτ

−dxν

dτ
dτ (29)

where g = |det(gµν)| is the determinant of the metric gµν in
absolute value. The metric tensor gµν , the Ricci curvature tensor
Rµν , and the scalar curvature R all transform symmetrically
under the CPTM transformation in the same way as the CPT
transformation (assuming the metric is already given or mass-
independent). The Christoffel symbol is anti-symmetric to the
CPTM transformation. Using the symmetry properties above, the
Einstein equation

Rµν −
1

2
gµνR = −8πGTµν (30)

is violated in that the l.h.s. (which represents the space-time
property) is symmetric to the CPTM transformation while the
r.h.s. (which represents the source of gravity) is anti-symmetric.
The Einstein equation is CPTM symmetric in vacuum Tµν = 0.
If, however, the gravitational constantG changes the sign together
with the CPTM transformation, the symmetry of the Einstein
equation is restored for a non-zero energy-momentum tensor.

The particle equation of motion (represented by the
geodesic equation)

d2xλ

dτ 2
= −

mg

mi

dxµ

dτ
Ŵλµν

dxν

dτ
(31)

transforms symmetrically to the CPTM transformation if both
the inertial mass mi and the gravitational mass mg change
the sign under the CPTM transformation. Note that the four-
acceleration (l.h.s.) is anti-symmetric. Equation (31) implies
that the gravitational interaction between ordinary matter
(represented by positive inertial mass) and antimatter (in case it
is represented by negative gravitational mass) is repulsive, which
according to Villata [16] could be one of the possible mechanisms
of large-scale structure formation such as the void regions in
galaxy clusters (Mpc or larger).

5. SUMMARY AND CONCLUSION

We have shown that the CPT theorem of the standard
Dirac equation also holds for the extended version, which
describes a massive fermion doublet obeying the isospin SU(2)
symmetry [13]. This result was stated in Equation (16). The
combined multiplied matrices of CPT result in Ŵ5 which is
the key matrix for the definition of chirality in the Dirac
equation. Moreover, Ŵ58 (or γ5ψ for the standard Dirac
equation) also provides a solution to it after mass sign reversal
(named M), which we suggest to be adopted as another
intrinsic symmetry of the Dirac equation. Related to it we
therefore propose the symmetry transformation M = Ŵ5M.
It should be multiplied from the right to CPT, which seems
incomplete, but when being upgraded to CPTM it simply is
proportional to the unity operator. Therefore, for the standard
as well as extended Dirac equation we obtain CPTM =
14CPTM, respectively CPTM = 18CPTM, which yields the
fundamental relation Equation (28) for the standard Dirac
equation, and similarly

CPTM8(m; x, t) = CPTM8 = 8∗(−m;−x,−t) (32)

for the extended Dirac equation describing a massive fermion
doublet. We recall that the eigenfunctions of the CPTM operator
are just the plane waves [Equation (22)], which represent
the wave functions of massive free particles and antiparticles
in relativistic quantum theory. With these results we have
achieved the main purpose of this short theoretical paper. It
emphasizes that by the introduction of the mass inversion
operator M the CPT theorem can be simplified to the above
forms for the CPTM theorem, which do not involve Dirac
matrices any more but just the related unit matrix, whereas
in the usual form of the CPT theorem [4–7] the γ5 matrix
appears explicitly, whereby its physical meaning in this context is
according to our knowledge not discussed at all. We speculated
[12] about this possible modification of the CPT theorem
previously, although we did not evaluate this rigorously as in the
present paper.

One natural field of application seems to us the state of
unusual non-baryonic matter in the universe. The extension
of CPT symmetry to CPTM symmetry may be applied to
astrophysical and cosmological contexts and studies, as we
already discussed in the introduction. For example, CPTM
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promotes the notion that negative mass states or particles are
one of the likely candidates for dark energy, as was suggested
by Petit and d’Agostini [19]. It is pointed out that negative mass
particles may exist in the de Sitter space-time like for the inflation
phase of the early universe, an issue discussed by Mbarek and
Paranjape [20]. Another application would be massive neutrinos.
Combination of the Majorana-type mass with the Dirac-type
mass in the neutrino field can, after Yanagida [21] andMohapatra
and Senjanović [22], generate neutrino states with negative mass.
Other future applications remain to be determined, and the
consequences for quantum field theory beyond the SM still need
to be investigated.
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APPENDIX: EXTENDED DIRAC MATRICES

IN WEYL REPRESENTATION

The standard Dirac matrices can be found and looked up in any
textbook [4, 5]. But we first quote them here for completeness in
the Weyl representation

γ
µ =

((

0 12

12 0

)

,

(

0 σ

−σ 0

))

, (A1)

with the well-known three-vector of the Pauli [23] matrices σ =
(σx, σy, σz). According to the new derivations by Marsch and
Narita [13], the Dirac matrices for the extended Dirac equation
including isospin are based on the generalized 4×4 spinmatrices,
reading

6±
x =









0 ±1 0 0
±1 0 0 0
0 0 0 −i
0 0 i 0









,

6±
y =









0 0 ±1 0
0 0 0 i
±1 0 0 0
0 −i 0 0









,

6±
z =









0 0 0 ±1
0 0 −i 0
0 i 0 0
±1 0 0 0









, (A2)

with the commutator [6±,6∓] = 0. Also,6±×6
± = 2i6±.

By complex conjugation of the Sigma matrices in Equation (A2),

we can see that they obey (6±)∗ = −6
∓. The Gamma matrices

are defined in the following way

Ŵ = i

(

0 16
−

16
+ 0

)

. (A3)

The involved Sigma matrices and their characteristics were
already quoted above. The new Delta matrix corresponds to the
metric in Minkowski space-time and is defined as

1 =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (A4)

which yields 12 = 14. Delta has the important property that
6

± = 16
∓1, which guarantees that Ŵ2

j = −18, and thus

Ŵ
2 = −318, and consequently that the component matrices
Ŵj anticommute, and therefore obey the Clifford algebra. The
matrices Ŵ5 and Ŵ0 are given by the expressions

Ŵ5 =
(

−14 0
0 14

)

, Ŵ0 =
(

0 i1
−i1 0

)

, (A5)

which obeys (Ŵ0)
2 = 18 and mutually anticommutes with

the other four Gamma matrices by its definition. The spin or
spinorial rotation operator is given by

S =
1

2

(

6
+ 0
0 6

−

)

. (A6)

It is interesting to note that charge exchange leads to spin
inversion, i.e., flips the spin, namely

C
−1SC = −S, (A7)

which means these two operators anticommute.
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