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Clean foams tend to age with time through sequential coalescence events. This

study evaluates aging dynamics in clean foams by measuring bubble populations

from coalescence simulation experiments and adopting biological population dynamics

analysis. The population dynamics of bubbles in clean foams during coalescence show

that the mortality rates of individual bubbles change exponentially with time, regardless

of initial simulation conditions, consistent with the Gompertz mortality law commonly

observed in biological aging. This result would be beneficial in understanding the aging

dynamics of clean foams.
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1. INTRODUCTION

Foams have a cellular network structure between two immiscible phases. The structural dynamics
of foams have attracted researchers in both scientific and industrial applications. Particularly, solid
metallic foams are exciting thanks to combinations of physical and mechanical properties, such as
high stiffness in conjunction with a low specific weight or high compressive strength combined
with suitable energy absorption characteristics. Their network structure makes them proper for
lightweight construction or crash energy absorption in automotive and aerospace industries [1]. A
composite metal foam is appropriate for Li-ion batteries [2]. Fluid foams or cellular fluids consist
of uniformly dispersed bubbles and a continuous liquid film. Bubbles inside fluid foams are usually
unstable and evolve with time to minimize their surface energy [3]. In physics, foams are a model
system for materials that minimize surface energy: soap foams, emulsions, magnetic garnets, and
grain boundaries [3], because they eventually evolve into a stationary state of statistical equilibrium
[4]. In mathematics, foams are a model system to study the isoperimetric problem relevant to the
minimal perimeter with a fixed number of bubbles in an area [3]. Two-dimensional random cellular
networks (2D foams) are ubiquitous such as soap froths, fragmentation patterns, and biological
epidermis [4]. Initially unstable foams evolve with time toward equilibrium by reducing their total
surface area as the average size of the bubbles grows over time by either rupture of the liquid films
between bubbles (coalescence) or growth through the diffusive exchange of gas (coarsening) [5].

After an initial transient, film rupture initiates dynamic rearrangement of bubbles, where
bubbles rapidly coalesce and slowly evolve toward a new quasi-equilibrium state. Slow dynamics
and aging effects in out-of-equilibrium systems such as glasses, gels, and foams are a rich and
fascinating topic, yet still poorly understood [6]. Cellular patterns like foams widely appear in
nature, such as cells in biological tissues, crystalline grains in polycrystals, grain aggregates in
colloidal materials, and bubbles on a pint of beer [7, 8]. Physicists have extensively studied
collective statics and dynamics of foams theoretically and experimentally [7–15]. Foams have
gained much attention not only in engineering but also in soft matter physics [7]. Clean foams
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spontaneously and rapidly coalesce with time unless they are
stabilized by surfactants and stabilizing particles [10] under the
volume constraint [3]. The sequential coalescence events in clean
foams show the irreversible monotonic decay in the bubble
population, analogous to the irreversible biological aging.

This study evaluates the temporal evolution of bubbles in
clean foams by adopting biological population dynamics analysis.
Clean foams are far-from-equilibrium dissipative systems like
biological systems despite the detailed aging mechanisms
are different in both systems. Taking the simulation data
reproduced by Dr. Peter Stewart (personal communication, see
the Datasets 1, 2) based on his simulation methods [see the
details in [10]], we analyzed the clean foam coalescence curves.
The networkmodel for numerical simulations of clean foams was
previously developed to simulate the rapid evolution of molten
metallic foams [10]. The aging dynamics for a given bubble
population emerged as a consequence of collective interactions
among individual bubbles [10]. From the measurements of the
total bubble numbers, we find that the mortality rate (µ) of
individual bubbles in clean foams increases exponentially with
time (x), indicating the Gompertz mortality law that truly holds
commonly in biological aging [16, 17]. The exponential changes
in the mortality rates for clean foams are attributable to a
cumulative consequence of sequential coalescence events [3, 10],
similar to progressive physiological changes in biology [16, 17].
We find that a Boltzmann sigmoidal function well describes the
bubble population change, indicating that foam aging may be
a kind of phase transition phenomena [18, 19]. The aging of
clean foam cells occurs by the self-similar coalescence of bubbles
regardless of initial conditions [10]. For the analysis of aging
dynamics of clean foams, we suggest a new methodology for
survival analysis by formulating themortality probability,µ(x) =
−d ln[s(x)]/dx, where s(x) is the survival probability of bubbles in
clean foams that survive without coalescence from birth to age x.

2. METHODS

We study the coalescence-driven aging dynamics of clean foam
cells from the coalescence data taken by numerical simulations
with a networkmodel for clean foam coalescence events [10]. The
details of the network model for clean foams are well-described
in the original work [10]. In the absence of stabilizing particles
or surfactants, bubbles inside clean foams coalesce rapidly after
film rupture typically occurs on time scales of milliseconds in
experiments [20]. Van derWaals intermolecular attractions drive
film rupture [21]. The resulting film thinning over two distinct
phases induces bubble coalescence in clean foams [10]. In the
first phase, film rupture triggers a cascade of rapid topological
rearrangement of bubbles through bubble coalescence, and
finally, the foam reaches a new quasi-equilibrium state [10].
Typically, bubble coalescence is a fundamental consequence of
the surface energy minimization of the whole liquid films [22,
23]. In the simulation work, bubble coalescence occurs by film
rupture in clean foams driven by capillary viscous suction [10].
The second phase proceeds by isolated rupture events, which
occur intermittently over much longer time scales [10].

Based on a planar gas−liquid foam with low liquid fraction
without any surfactants and stabilizing particles, the network
model for clean foams treated the gas bubbles as polygons, the
accumulation of liquid at the bubble vertices (Plateau borders) as
dynamic nodes, and the liquid bridges separating the bubbles as
uniformly thinning free films [10]. The clean foam system started
from a periodic array of equally pressurized bubbles, with the
initial film thicknesses sampled from a normal distribution [10].
After an initial transient, the first film rupture induces a dynamic
rearrangement, where the bubbles rapidly coalesce, evolving
toward a new quasi-equilibrium [10]. Through the Monte Carlo
simulations of the coalescence process, it was possible to measure
the total bubble population as a function of the model parameters
[10]. We received the simulation data (see the Datasets 1, 2)
reproduced by Dr. Peter Stewart (personal communication) and
analyzed the bubble coalescence curves with the Origin software
(OriginLab Corp., Origin 2021).

Figure 1 shows representative examples of a typical soap
foam and a collective bubble number (population) dynamics
with sequential coalescence events in clean foams: the initial
number of bubbles gradually decreases with age. As seen here,
the bubble population decreases as time goes on from the initial
bubbles. We evaluate the foam population dynamics from the
total number of bubbles for each simulation, denoted as sb(x).
From each simulation, we adopt three quantities: the first rupture
time, denoted tr , the time scale of the first phase of coalescence,
denoted x = t − tr , and the temporal change in the total number
of bubbles over the first phase of coalescence, denoted s(x). To
analyze the bubble survival curves at which the bubbles coalesce
for different initial foam sizes, the current number of bubbles
sb(x) is normalized by the initial bubble number sb(0) as s(x) =
sb(x)/sb(0), so that 0 ≤ s(x) ≤ 1. The bubble total numbers with
the rescaled time for four initial foam sizes of 72, 128, 200, and
512 are self-similar despite initial various simulation parameters.
All the bubble survival curves monotonically decrease with age
regardless of their initial conditions.

In the simulation work, the base-line pressure in the
bubbles (P0), the liquid fraction (φ), the van der Waals
attraction (S), and the lamellae thickness (h0) are the main
parameters to reproduce the simulation results [10]. Importantly,
the normalized simulation results are self-similar and almost
invariant regardless of the simulation parameters in the range
of 1.0 < P0 < 50.0 and 0.01 < φ < 0.05 for S = 10−10

and h0 ≪ 1 [10] (discussed with Dr. Peter Stewart). In this
analysis study, we ignore the initial condition variances because
the analysis results are almost invariant by the self-similarity of
the coalescence events.

We find that the total number of bubbles monotonically
decreases with age x, independent on the initial conditions,
which can be fitted by an arbitrary sigmoidal function. To
compare physical and biological survival curves with an identical
sigmoidal function, the Boltzmann sigmoidal function is adopted
as s(x) = (a1 − a2)/[1− e(x−x0)/ω]+ a2, where a1 and a2 are the
initial and the final values, x0 is the critical value of the stimulus,
and ω is a coefficient associated with the slope of the process
during the transition [18]. The Boltzmann sigmoidal function,
based on the logistic sigmoidal equation of s(x) = 1/[1 + ex],
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FIGURE 1 | Foam coalescence. (A) Soap foam taken in a kitchen. (B) Bubble population dynamics of sequential coalescence events in clean foams from simulation

results, reproduced by Dr. Peter Stewart (personal communication, see the Dataset 1) based on a network model [10] (see details on data collection and analysis in

the Supplementary Note): showing the time-dependent changes in bubble numbers. The current number of bubbles is normalized by the initial number as

s(x) = sb(x)/sb(0), so that 0 ≤ s(x) ≤ 1. The time after the first rupture time (tr ) is rescaled as x = t− tr . The data for sb(0) = 72, 128, 200, and 512 were taken from a

range of models: the datasets for 200 and 512 bubbles were generated using a simpler model than those for 72 and 128.

is an appropriate decay function for phase transition phenomena
[18]. The sigmoidal patterns in s(x) are common in [8–11]. The
mortality probability, µ(x) = −d ln[s(x)]/dx, is estimated from
the fitting curves with the Boltzmann sigmoidal function for the
survival probability s(x) of the bubbles in clean foams (see the
fitting methods in the Supplementary Note).

3. RESULTS AND DISCUSSION

The foam survival curves taken from Figure 1B (from the
Dataset 1, reproduced by Dr. Peter Stewart) show good
agreements between the data (solid lines) and the sigmoidal
fits (dashed lines) (Figure 2A): the average values of a1 and a2
are almost identical as a1 ≈ 1.002568 and a2 ≈ 0.144341,
whereas the other two parameters have a linear proportion as
seen in Figure 2B. Therefore, a master survival curve (red line
in Figure 2C) for clean foams could be obtained by adopting
the average value of x0/ω ∼ 6.254547 and by rescaling the age
by (x − x0)/ω. All the bubble survival curves look to follow
very well the master curve, indicating the self-similarity of the
coalescence events, which was found by normalizing x/1x (1x
= the length of the first phase of coalescence) [10], while by
(x − x0)/ω in this study. From the fitted survival curves (dashed
lines) in Figure 2A, the mortality curves (µ) are calculated with
the rescaled age in Figure 2D. This result clearly shows that the
mortality rates in clean foams increase exponentially with age,
consistent with the Gompertz mortality law, regardless of the
initial condition variances.

We repeatedly find the Gompertz mortality patterns in clean
foams for the second simulation datasets (from the Dataset 2,
reproduced by Dr. Peter Stewart) with the different sets for
the larger initial numbers of bubbles as illustrated in Figure 3.
The bubble population dynamics (s(x)) with age (x) shows the
validity of the Boltzmann sigmoidal function fitting (Figure 3A)
and the Gompertz mortality growth in the mortality curves (µ)

with the rescaled age for clean foams (Figure 3B), independent
on the initial condition variances. In particular, the mortality
curves are almost identical regardless of the initial conditions
(Figures 2D, 3B), suggesting the universality of the Gompertz
mortality patterns in clean foams.

We discuss the analogy of physical and biological survival
curves. The human survival curves are characteristic biological
survival curves. Biological aging includes a progressive
deterioration of physiological function with age and an increase
of vulnerability to disease and death [24, 25]. The Gompertz
mortality law shows the exponential growth of the mortality rate
commonly observed in many organisms, including mammals,
flies, worms, plants, and yeast cells [24–26]. We obtain the
survival and mortality data for humans from reliable statistical
data in the Human Mortality Database (www.mortality.org),
taking s(x) = 10−5lx (in life tables, lx means the number of
survivors at age normalized by 100,000 people). The Boltzmann
sigmoidal function well fits the survival curves for humans
(solid lines) (dashed lines) (Figure 3C). The mortality curves
(µ) for humans (Figure 3D) were rescaled by (x − x0)/ω for
comparisons with those for clean foams (Figures 2D, 3B). As
well-known in the demography community, the survival curves
shift upward from 1950 to 2010, and the mortality curves shift
downward [24, 25, 27], because of the survival-mortality link as
µ(x) = −d ln[s(x)]/dx. The exponential growth in µ in most
adult ages, except infant and oldest ages, supports the validity
of the Gompertz mortality law (Figure 3D). Here we can find
similarities in the mortality curves between clean foam aging
(Figures 2D, 3B) and human aging (Figure 3D), reproducing
the Gompertz mortality law, without any adjustments. The
slopes for both cases are identical as µ/[(x − x0)/ω] ≈ 0.5
during the exponential mortality growth. Here, the identical
slope of µ is attributable to the similarity in the shape of the
survival curves for clean foams and humans. Both cases originate
from the irreversible monotonic decay dynamics of the survival
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FIGURE 2 | Sigmoidal and demographic analyses of bubble coalescence events in clean foams. (A) The normalized current number of bubbles with the rescaled time

[from the Dataset 1, reproduced by Dr. Peter Stewart (personal communication) (solid lines), identical to Figure 1B] agrees well the Boltzmann sigmoidal function

(dashed lines, see details on data collection and analysis in the Supplementary Note). (B) In the Boltzmann sigmoidal fits, two parameters, x0 and ω, have a linear

proportion. (C) A master survival curve (solid red line) is achieved. (D) The death (mortality) curves, µ, are calculated from the fitted survival curves. This result clearly

shows that the death rates in clean foams increase exponentially with age, consistent with the Gompertz mortality law, regardless of the initial conditions.

probability. This similarity may imply the presence of a universal
law in physical and biological aging dynamics.

A collection of radioactive atoms shows a simple exponential
decay, which has a constant decay rate [28]. On the contrary,
complex systems may show a form of non-exponential decays:
most viscous materials close to the glass-transition temperature
exhibit non-exponential relaxation [29, 30]. Non-exponentiality
of physical aging is frequently described by the stretched
exponential or Kohlrausch-Williams-Watts function [31, 32] or
the Weibull function [33] as s(x) = exp[−(t/α)β ] and 0 <

β < 1 [34]. The biological survival curves are typically more
complicated than the physical survival curves and can be fitted by
a modified stretched exponential function [24, 25, 27], described
as s(x) = exp(−uβ(u)), where the rescaled age u = x/α is
relevant to the characteristic life (α) to make s(α) = exp(−1)
and the stretched exponent β(u) = ln[− ln(s(x))]/ ln(u) is an
age-dependent variable, which differs from the classical stretched
exponential function with a fixed β . In a survival curve, α

indicates the scale effect and β indicates the shape effect in
the curvature of a survival curve [24, 25]. Healthy biological
populations strive to achieve the ideal rectangular survival curve
[35], where β(u) tends to shift toward an ideal rectangular curve
of β(u) = 7| ln(u)|−1 that corresponds to s(x) ≈ 1 at u < 1 and
s(x) ≈ 0 at u > 1 [24, 25]. The upward (downward) shift in β

at u < 1 (at u > 1) (Figure 4) is a typical feature of biological
aging [24, 25].

Clean foam models successfully reproduce the Gompertz
mortality law, suggesting that clean foam aging resembles
biological aging. For clean foams, each bubble would
have different lifespans from many-body effects, and death
(coalescence) occurs as stochastic events. Clean foams show
collective interactions between bubbles: single events would
affect the entire system’s stability as a many-body effect. To
provide insights into biological aging, physicists have suggested
physical models imitate biological aging. The Penna model,
where bit strings represent individual genomes [36], is one of
the successful models for biological aging [37–39]. This model
is suitable for testing evolutionary aging mechanisms through
mutation accumulations, reproducing the Gompertz mortality
law [38]. A recent study took living systems as large networks
and tested how large networks can age [28]. This network
model suggests that aging is a many-body effect, and mortality
curves for different organisms can be similar because of strong
interactions between individuals [28].

We evaluate the experimental results taken from coalescing
and coarsening foams in the literature [[40, 41] for coarsening
foams and [42] for coalescing foams] with the Boltzmann
sigmoidal function, rescaled as η = (s − a2)/(a1 − a2) =
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FIGURE 3 | Gompertz mortality patterns for clean foams (A,B) and for humans (C,D). The clean foam coalescence data were analyzed for the Dataset 2

(reproduced by Dr. Peter Stewart). The human survival and mortality data were taken for the USA female period life tables from 1950 to 2010 from the Human

Mortality Database (www.mortality.org). The Boltzmann sigmoidal function fits in (A) for clean foams and (C) for humans produce the Gompertz mortality growths in

the mortality curves (µ) with the rescaled age in (B) for clean foams and (D) for humans (see details on data collection and analysis in the Supplementary Note).

FIGURE 4 | Nonexponentiality of survival curves in clean foams. (A) The survival curves of clean foams (from Figure 1B) are analyzed by the modified stretched

exponential function, s(u) = exp(−uβ(u)), where the rescaled age u = x/α is relevant to the characteristic life (α) at s(α) = exp(−1) and the stretched exponent β(u) is

age-dependent. (B) The age-dependence in β(u) is a typical feature found in biological aging [24, 25].

1/[1 − e(x−x0)/ω] in Figure 5A (see details on data collection
and analysis in the Supplementary Note). The collapse of all
data indicates the validity of the Boltzmann sigmoidal function.
We find in Figure 5B that the mortality rates of the bubble
population (µ) decrease exponentially with age at the positive
(x − x0)/ω, which is equivalent with the exponential increase in

µ at the negative (x − x0)/ω in Figures 2D, 3B, indicating the
Gompertz law. The experimental results seem to reflect only the
positive (x− x0)/ω dynamics.

The current understanding of the coalescence dynamics in
clean foams is still incomplete: further attention is required for
the many-body effects for individual bubbles during sequential
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FIGURE 5 | Comparison with experimental results in foams. (A) The Boltzmann sigmoidal function for the experimental data [[40, 41] for coarsening foams and [42]

for coalescing foams, see details on data collection and analysis in the Supplementary Note] is rescaled as η = (s− a2)/(a1 − a2 ) = 1/[1− e(x−x0 )/ω ]. The collapse of

all data indicates the validity of the Boltzmann sigmoidal function. (B) The mortality rates µ decrease exponentially at the positive (x − x0)/ω, equivalent with the

exponential increase at the negative (x − x0)/ω (Figures 2D, 3B), indicating the Gompertz law.

FIGURE 6 | Gaussian distributions of rupture times taken from sb(0) = 512 (in the Dataset 1) (from Figure 1B) for clean foams (A) and of death rates taken from the

USA female (2010, period 1x1) (from Figure 3D) for humans (B). The Gauss fits were carried out with the Origin software and described by the solid lines (adj.

R2 = 0.9851 in A and adj. R2 = 0.9961 in B). The Gaussian distributions found in both systems would be a reason for the analogous survival curves.

coalescence events. We test the Gaussian distributions of
rupture times for clean foams and death rates for humans,
as seen in Figure 6. The histogram of rupture times for clean
forms follows the Gaussian distribution very well (Figure 6A).
Similarly, the distribution of age-specific death (mortality) rates
for humans shows the Gaussian distribution well (Figure 6B).
The Gaussian distributions found in both systems would be
a credible reason for the analogous survival curves. The
analogy of the survival curves is restricted as: while the
human survival curves tend toward zero as x increases,
the bubble population in the clean foams evolves toward a
constant value (s ∼ 0.15) by the end of the first phase
(Figure 3). The Gompertz mortality law of bubbles in clean
foams appears for the first phase of bubble coalescence. In
practice, the coalescence process would continue to much
longer times (and further avalanches) [10]. Further study is
required for the second phase of long-time bubble coalescence
events [10].

4. CONCLUSION

To conclude, this study presents that clean foam aging is
analogous to biological aging: the bubble mortality rate changes
exponentially with time, demonstrating the Gompertzian aging
dynamics. Presumably, the mortality curve universality is
attributable to the Gaussian distributions of rupture times in
clean foams and of death rates in humans. Both cases originate
from the irreversible monotonic decay dynamics of the survival
probability despite the differences in physical and biological
aging mechanisms. This similarity may imply the presence of a
universal law in physical and biological aging dynamics. For clean
foams, aging occurs through sequential coalescence events. The
bubble population dynamics in clean foams are well-described
by a sigmoidal function, indicating that foam aging is a phase
transition from non-equilibrium (life) to equilibrium (death)
states. This result would help understand the structure and
stability of clean foams.
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