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In this Brief Research Report, we show, within the framework of the nonlinear Schrédinger
equation in deep water and in the presence of vorticity (vor-NLS), that the Peregrine
breather traveling at the free surface of a shear current of slowly varying vorticity may
transform into gray solitons.
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1 INTRODUCTION

Within the framework of a fully nonlinear two-dimensional potential solver [4], computed the
temporal evolution of a Stokes wavetrain with a small modulation. They found that the energy
becomes focused, at the maximum of modulation, into a short wave packet of large amplitude they
called a steep wave event (SWE). They showed that the Peregrine breather, which is an exact
solution of the self-focusing nonlinear Schrédinger equation, was the most convenient
approximation of the envelope of the SWE. Note that the Peregrine breather can be derived
from the Kuznetsov-Ma breather and the Akhmediev breather in the limit of infinite temporal and
spatial period (see [7]) [3]. suggested that the Peregrine breather may provide a useful and simple
model for rogue wave events [1]. presented the first experimental observation of the Peregrine
breather in a water wave tank. More recently [2], presented the first ever observation in a wave tank
of dark solitons on the surface of water, so demonstrating the probable existence at the sea surface
of dark solitons in finite depth for kh < 1.363 where k is the carrier wavenumber and h the water
depth. They found a good agreement between the experimental soliton and the dark soliton
solution of the defocusing nonlinear Schrédinger equation. Dark solitons occur as envelope holes.
Rogue waves are large-amplitude waves which occurs at the sea surface suddenly without warning.
Such waves are accompanied by deep holes before and/or after the largest crest. Another possible
mechanism of these holes in the ocean could be dark or gray soliton generation. There is an
abundant literature on the interaction between surface water waves and spatially uniform currents.
In the real ocean, currents are never uniform. Spatially varying currents may affect strongly the
water wave behavior. Herein, we paid attention to the evolution of a Peregrine breather
propagating at the surface of a vertically sheared current. In this Brief Research Report we
propose, based on the NLS equation in infinite depth, a physical mechanism of gray soliton
generation from a Peregrine breather evolving on slowly varying underlying water vorticity.
Section 2 is devoted to the presentation of the vor-NLS equation in the presence of constant
vorticity derived by [8]. The vor-NLS equation is self-focusing or defocusing according to the
magnitude of the vorticity. Vorticity effect on the soliton solutions of the vor-NLS of self-focusing
and defocusing types is displayed. A numerical simulation of the transformation of the Peregrine
breather propagating at the free surface of a water flow of slowly varying vorticity is presented in
section 3. A conclusion is given in section 4.
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2 THE VOR-NLS

We choose an Eulerian frame (Oxyz) with unit vectors
(ex,€y,e;). The vector e, is oriented upwards so that the
acceleration due to gravity is g=—ge, with g>0. The
equation of the undisturbed free surface is z = 0. The water
waves are traveling at the surface of an underlying vertically
sheared current of constant vorticity given by U (z) = Qz. The
study is restricted to modulated wave trains propagating with
positive phase velocities so long as both negative and positive
values of Q) are considered. [8], have shown that the spatio-
temporal evolution of the complex envelope a(&,7) of the
surface elevation of a two-dimensional weakly nonlinear
modulated wave train propagating in the presence of
constant water vorticity is governed by the nonlinear
Schrodinger equation (NLS equation)

ia, + aag +ylal’a =0 (1)

In the case of a wave train propagating at the surface of a deep
water flow of constant vorticity { = —(Q, the dispersive and
nonlinear coefficients of the vor-NLS Eq.1 are

_ w1+ _ R (§+2/3)(3§i+ 60 +6)
1+Q

— 3 y >
k2+0) 8
with Q = Q/w. We consider a carrier wave traveling from left to
right in deep water whose intrinsic frequency, intrinsic phase
velocity and intrinsic group velocity are

QZ
= -+ \—+ gk,
w 2+ 4+g
R OO [+
P2k \4k2 K
Q+/Q% + 4gk
cg=7cp,
24/Q% + 4gk

with k the carrier wavenumber and g the gravitational
acceleration.

[5] have compared both the linear intrinsic phase velocities
and total energies of gravity waves in the presence of constant
vorticity in finite depth and deep water and came to the
gravity waves depth
propagating at the surface of a water flow of constant
vorticity behave like waves in infinite depth if kh>n. We
can conclude that the unbounded water flow at z=-o00
does not influence the kinematics and dynamics of the
surface waves. In addition to the results of [5], Figure 1
shows the dimensionless intrinsic group velocity deviation
between finite and infinite depths for different values of the
vorticity. As we can see the difference between the group
velocities in finite and infinite depth becomes very weak as
kh increases beyond the value n. Equation 1 is focusing for
Q> -2/3 and defocusing for Q < -2/3. Note that O > - 1, VQ.

conclusion that linear in finite

Breather Transformation into Gray Soliton

FIGURE 1 | Dimensionless group velocity deviation between finite and
infinite depths as a function of the dispersive parameter for several values of
the dimensionless vorticity. In dimensionless terms, the units of acceleration
and length are the acceleration of gravity g and 27 (g =1 and k = 1).

2.1 Effect of Vorticity on the Peregrine

Breather and Gray Soliton
The focusing vor-NLS equation admits the Peregrine breather as
solution

4(1 —ia’k?
ap (& 1) = ak /_3(1 _ ( 2mok wr) )
2)’ 1- a)aész /(x + agk4w2.l_2 (2)

exp (- iagk’ wt/2).

Note that <0 and y < 0, YQ > —2/3. The defocusing vor-NLS
equation admits the dark, ap, and the gray, ag, solitons as

solutions.
ap = a, tanh( 7 —zl aof>exp (iyaiT) 3)
a

exp (2im) + exp<2a0 sin(m)( \/:%f + agyT cos (m)))
1+ exp(2a0 sin(m)(\/j%f + agyT cos(m)))
(4)

where g is the envelope amplitude of the background carrier
wave. The parameter m fixes the minimum of amplitude at the
center of the soliton. For m = /2 this minimum is zero, with a
phase shift, that corresponds to the dark soliton. Note that a <0
and >0, V- 1<Q<-2/3 (> - 1 whatever the value of Q).
Equation 3 can be derived from Eq. 4 when m = 71/2. In Figure 2
are plotted several dimensionless profiles of the Peregrine
breather and the gray soliton for different values of the
vorticity (=-Q. The vorticity does not modify the
amplification factor |ap|/|dpe|- The envelope amplitude of the
background carrier wave is |apeo| = aok+/—w/ (2y) whereas the

i72
elao yT

ag = dy
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FIGURE 2 | Dimensionless profiles of the Peregrine breather (left) and the gray soliton (right) for several values of the vorticity with g =1 and k = 1.

maximum amplitude of the envelope is 3agk+/—w/(2y).
Consequently, the normalized maximum of the modulation
envelope does not depend on the vorticity. The Peregrine
breather is narrower (wider) for positive (negative) vorticity. The
width of the breather decreases as the vorticity increases. The
minimal amplitude at the center of the gray soliton is not
modified by the presence of the vortical flow. The gray solitons
becomes narrower as the positive vorticity increases.

3 EVOLUTION OF THE PEREGRINE
BREATHER ON SLOWLY VARYING
VORTICAL FLOW

Within the framework of Eq. 1, we have performed a numerical
simulation of the transformation of a Peregrine breather traveling
at the free surface of a vortical water flow whose vorticity varies
very slowly. Q varies from zero to a value less than —2/3. For
Q=0 Eq. 1 is focusing whereas for Q <—2/3 this equation is
defocusing. Consequently, the slow variation of the vorticity
transforms the focusing vor-NLS equation into defocusing. We
consider a Peregrine breather that meets progressively a vortical
water flow whose temporal variation is

Q(r) =sin(ot + 1/2) - 1,
Q1) =-2, oT >

O<or<nm

The parameter o is chosen such that the average temporal
variation of the vorticity along the ramp is of O(a2k?). The
vorticity remains constant when o7 > 7. Note that Q(0) = 0 and
Q(or=m) =~ —0.828. The vor-NLS equation is solved
numerically using a pseudo-spectral Fourier method. The
periodicity length of the spatial domain is L =1607. The
number of grid points is N = 6000. Dealiasing is used. Time
integration is carried out with a second order time-splitting
method and a fourth order Runge Kutta scheme as well. The
numerical code is checked using comparisons with the exact
breather solutions and by the self consistency of the results of the
two time integration schemes also. We have used a spatial filter
similar to that of [6] to avoid numerical instabilities. The filter

does not modify the envelope evolution because it cancels the
highest modes that do not participate in the global dynamic of the
envelope. The transfer function of the filter is exp (—=v«?), where
is a wavenumber in the Fourier space and » = 107° is used. With
this value of v the loss of the energy of the carrier wave is of the
order of 1% over approximately 1,000 periods of time evolution of
the carrier. The numerical simulation has been run in
dimensionless units with k = 1 and g = 1. The initial condition
at 7 =0 is the Peregrine breather with 4y = 0.10 and Q =0.
Figure 3 shows the evolution of the envelope at several times.
The vorticity { =—-Q varies slowly along the ramp from
{(r=0)=0 to {(r=10T)=2. At 7=6T the vor-NLS
equation becomes defocusing. T is the period of the
background of the Peregrine breather. During its propagation
along the ramp the width of the breather increases whereas its
amplitude decreases. At 7 = 20 T, on both sides of the crest of the
envelope two small local troughs occur that then deepen during
the propagation of the envelope to give rise to the formation of
two gray solitons whose profiles are close to that of a dark soliton.
Figure 4 shows the profiles of the two gray solitons at two
different times. An excellent agreement is obtained between
the numerical and analytical profiles.

4 CONCLUSION

Within the framework of the vor-NLS equation in infinite depth we
have shown numerically that a Peregrine breather propagating at
the free surface of a slowly varying vortical flow may generate gray
solitons. The present simulation confirms in a different context the
result of [2] on the existence of dark solitons on the surface of
shallow water (kh<1.363) in the absence of vorticity. Our
approach presents two limitations. The vor-NLS equation which
was derived for constant vorticity has been used with a slowly
varying vorticity to transform the focusing NLS equation into
defocusing during a limited time. Nevertheless, the very slow
variation of the vorticity on a small number of periods lead us
to believe that our results are physically relevant. The time to obtain
the formation of the gray solitons is beyond the time range of
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7=0,23T, 145T. Bottom panels from left to right: 7=298T, 596 T, 901 T. T is
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FIGURE 3 | Time evolution of the tranformation of the Peregrine breather into a two-grey soliton with g = 1 and k = 1. Top panels from left to right:

the period of the Peregrine breather background.
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analytical solution of Eq. 4 for ap = 0.09 and m = n/2-1/10.

FIGURE 4 | Gray soliton profiles at t = 867 T (left) and t = 900 T (right). The solid lines correspond to the numerical simulation whereas the circles correspond the
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validity of the NLS equation. However, it is well known that
approximate models can be valid beyond their validity domain
[4]. found, from their numerical simulations of the NLS equation
over several thousands of periods, that their computations were in
qualitative good agreement over a much longer time scale than
expected, namely when the wave steepness of the carrier wave is
not too steep. Despite these limitations we conjecture the existence
of gray solitons on deep water in the presence of varying water
shear flows. Our numerical simulation provides only preliminary
results on this transition which has to be confirmed by using
models free of these two limitations.
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