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Solitons are coherent structures that describe the nonlinear evolution of wave localizations
in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine
breather is known to amplify a single localized perturbation of a carrier wave of finite
amplitude by a factor of three, there is a counterpart solution on zero background known
as the degenerate two-soliton which also leads to high amplitude maxima. In this study, we
report several observations of such multi-soliton with doubly-localized peaks in a water
wave flume. The data collected in this experiment confirm the distinctive attainment of
wave amplification by a factor of two in good agreement with the dynamics of the nonlinear
Schrödinger equation solution. Advanced numerical simulations solving the problem of
nonlinear free water surface boundary conditions of an ideal fluid quantify the physical
limitations of the degenerate two-soliton in hydrodynamics.

Keywords: degenerate soliton, Peregrine breather on the zero-background limit, rogue waves, nonlinear waves,
wave hydrodynamics

INTRODUCTION

The Peregrine breather (PB) [1] is a fundamental wave envelope solution of the nonlinear
Schrödinger equation (NLSE) localized both in space and time, yielding a three-fold
amplification of the initial amplitude at the point of maximum localization. These unique
characteristics have led the PB to be generally considered as a potential backbone model
allowing to describe the emergence of extreme events in several physical systems [2, 3].
Although the PB existence was originally predicted in the early eighties [1], it took about
3 decades to observe this particular wave envelope in a laboratory environment [4–6]. These
initial studies have attracted significant attention and led to many follow-up studies related to
PB dynamics and its peculiar physical properties [7–14]. The initial or boundary conditions
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leading to the PB excitation require to impose a small
perturbation on top of a plane wave background. Recently,
generic features of PB dynamics on a stationary dnoidal
background have been presented [15]. The regular
background solution represents only one limiting case of
the exact family of NLSE dnoidal solutions while the other
limit is the envelope soliton on zero-background [16, 17].
This allows a more general construction of Peregrine-type
coherent structures on different type of stationary
backgrounds. The respective evolution in time and space
can be described by an exact solution [18].

In this paper, we experimentally investigate the PB dynamics in
the zero background limit, which can be also associated with the
degenerate case of two soliton interaction, resulting in an amplitude
amplification factor of two at the point of maximum localization
[19]. The laboratory experiments, conducted in different water
wave flumes, are in excellent agreement with the theory when
the carrier steepness is moderate. We recall that the carrier
wave steepness, being physically the product of wavenumber
and wave amplitude and mathematically the expansion
parameter in the weakly nonlinear approximation of the
water wave problem [3], is a nonlinearity indicator of wave
field. Otherwise, deviations from the symmetric envelope
shapes are inevitable due to the physical limitations of the
NLSE approach to describe broadband and highly nonlinear
processes in water waves. The numerical simulations based on
the higher-order spectral method (HOSM), which accurately
solves the nonlinear water wave problem, quantify the
limitations in the evolution of the hydrodynamic degenerate
soliton on the water surface. The HOSM results predict a
recurrent focusing behavior, not anticipated by the NLSE,
when the carrier wave steepness is substantial. We believe
that our results will have a significant impact in nonlinear
dynamics as well as integrable systems and improve
fundamental understanding of extreme wave formation in a
variety of nonlinear media.

Higher-Order Solitons on Zero Background
and the Case of Degeneracy
The NLSE for surface gravity waves is the simplest nonlinear
evolution equation that takes into account the interplay between
dispersion and nonlinearity in the evolution of a narrowband
wave field. Assuming unidirectional propagation of the wave field
in infinite water depth, the wave envelope evolution equation
reads [20]

i(∂ψ
∂t

+ cg
∂ψ

∂x
) + ω

8k2
∂2ψ

∂x2
+ ωk2

2

∣∣∣∣ψ∣∣∣∣2ψ � 0, (1)

whereψ(x, t) is the complexwave envelope, x is the spatial coordinate
along the wave propagation, and t represents time. The parameters
ω and k are the carrier cyclic wave frequency and wavenumber,
respectively. The latter are constrained by the gravitational
acceleration g-dependent deep-water dispersion equation

ω2 � gk, (2)

and the envelope is assumed to propagate with the group velocity
cg � ∂ω

∂k � ω
2k.

The NLSE is a partial differential equation that belongs to the
family of integrable evolution equations [21]. Its exact solutions
provide physically relevant models for investigating the dynamics
of nonlinear coherent wave groups in controlled laboratory
environments. The fields of its application are hydrodynamics,
optics and Bose-Einstein condensates. It is common to use the
dimensionless form of Eq. 1 for simplicity, particularly when
aiming for the derivation of exact solutions,

i
∂Ψ

∂T
+ ∂2Ψ

∂X2 + 2|Ψ|2Ψ � 0, (3)

which is obtained by introducing the following transformations

X � 2k(x − cg t), T � ω

2
t, Ψ � k�

2
√ ψ. (4)

One of the most-fundamental solutions of the NLSE is an isolated
and stationary sech-shape nonlinear wave group on zero-
background known as envelope soliton, which can be
considered as a mode of a nonlinear system remaining
unchanged with propagation [22]. At the same time,
interactions and collisions between envelope solitons are
elastic [23, 24]. The number of solitons contained in a
localized initial condition remains fixed during the follow up
evolution. The zero-velocity soliton solution with an amplitude of
one can be written as

ΨS(X,T) � sech(X) exp (iT). (5)

The initial-value problem for the NLSE can be solved with the
help of the inverse scattering technique (IST) [21, 25, 26]. More
complex (higher-order) structures containing multiple solitons
can be also constructed using the Darboux transformation [27] or
dressing method [28]. Each envelope soliton in these
superpositions is unambiguously characterized by the pair of
its two key parameters: the amplitude and the velocity. The NLSE
solution describing the dynamics of two envelope solitons with
fixed amplitudes 0.5 and 1.5, zero-velocities and located at the
same position X � 0, is known as the Satsuma-Yajima
breather [29]

ΨS2(X,T) � 4
cosh 3X + 3 cosh X exp 8iT

cosh 4X + 4 cosh 2X + 3 cos 8T
exp (iT). (6)

This solution is periodic in T and can be used for pulse nonlinear
wave group compression. At T � 0, this solution takes the form of
a soliton with twice the amplitude of a single soliton of the same
width, i.e. ΨS2(X, 0) � 2 sech(X) � 2ΨS(X, 0). However, this
initial condition changes with propagation and evolves
towards a self-compression, i.e., breathing process [29]. Such
solutions also play a key role in the formation of significant
irreversible spectral broadening and the creation of
supercontinua as a result of soliton fission [30, 31]. Generally,
when the parameters of the two envelope solitons become close,
the distance between them increases and they repel each other,
moving away towards infinity. Due to this fact, for more than
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2 decades since the development of the IST, the two-soliton
solution of the NLSE with exactly the same parameters has
been considered as non-existent. Overcoming this controversy,
the solution has been reported in [1, 19]. Such solution is the
degenerate two-soliton solution, as finding it requires considering
the special limit when their amplitudes and velocities tend to the
same limiting values. It is represented by a mixed semi-rational
semi-hyperbolic functions

ΨD(X,T) � 4
X sinh X − cosh X − 2iT cosh X

cosh 2X + 1 + 2X2 + 8T2 exp (iT). (7)

Here, the subindex D refers to the degenerate case. More
specifically, the solution (Eq. 7) describes the interaction of
two envelope solitons with unit amplitudes and with
their center of mass located at X � 0. The envelope |ΨD| in
(Eq. 7) is symmetric with respect to the change of the sign of
either X or T. Note that the solution (Eq. 7) may be generalized
using the invariant transforms of the NLSE, i.e., arbitrary
phase, scaling and Galilean transforms. In the reduced form
(Eq. 7), it does not contain any free parameters. The
degenerate solution (Eq. 7) describes two “attracting”
envelope solitons when T < 0. When T � 0, the two solitons
are superimposed and form an extreme event with an
amplitude at the point of collision twice that the amplitude
of the isolated solitons. At large times T ≫ 1, the solution (Eq.
7) describes the two envelope solitons which slowly walk away
from each other after the collision. Each of them can be
approximated as a quasi-single-soliton solution. The
opposite velocities of the two solitons reduce when T → ∞.

What at first sight seems to be just a mathematical artifact has in
fact a particular physical relevance. Indeed, the central part of the
degenerate solution (Eq. 7) can be considered as the PB on the zero-
background limit. The comparison is relevant because the solution
(Eq. 7) is semi-rational while PB is a rational solution. Representing
hyperbolic functions cosh X and cosh 2X in the central part of the
solution as an expanded series in X can reduce it to a rational
approximation similar to the PB. On the other hand, the PB can be
excited on top of exact dnoidal solutions, parameterized as

FIGURE 2 | The amplitude rescaled Peregrine breather envelope shape
vs. degenerate two-soliton solution profile at T � 0.

FIGURE 1 | Spatio-temporal evolution of solitons on finite and zero-background. Top left: single envelope soliton. Top middle: Higher-order soliton of order 2.
Top right: Degenerate two-solution solution. Bottom left: Peregrine breather. Bottom middle: Peregrine breather on a dnoidal background. Bottom right:
Degenerate two-soliton solution.
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Ψdn(X,T) � dn(X,m) exp (i[2 −m2]T); 0≤m≤ 1 see [15, 18].
Such one-parameter family of modulated wave envelopes is
steady and the parameter m determines two edge cases [16, 17].
One limiting case of this one-parameter family of stationary dnoidal
solutions is the regular background (m � 0) and the other limit is
the envelope soliton (m � 1). This second limit leads to the
formation of the degenerate soliton solution. The transformation
is controlled by an additional free parameter–modulus of the dn
function. The role of this parameter in the highly nontrivial process
of degenerate soliton formation can be seen from Figure 7 in [15].
The latter process admits several stages of PB transformation. A
significantly simplified version of the process can be seen from
Figure 1 (see bottom panels from left to right). Here, the classical
Peregrine solution on finite background is transformed to the
degenerate solution on zero background with one intermediate
step in the form of the PB on the modulated DN-wave
background (referring to the semicircle in the λ-plane in
Figure 2 of [15]).

The Peregrine Solution

ΨP(x, t) � (−1 + 4 + 16iT
1 + 4X2 + 16T2) exp(2iT) (8)

has been found to be present in multi-soliton solutions [32]. On
the other hand, the degenerate two-soliton solution (Eq. 7) can
represent Peregrine-type dynamics with zero condensate. This
becomes more evident when considering the type of localization
around the point of maximum amplitude. In fact, the shape of the
extreme wave at T � 0 does resemble the shape of the Peregrine
breather.

This can be seen from Figure 2, where the degenerate two-
soliton solution at T � 0 is compared with the shape of the
Peregrine breather at T � 0 multiplied by the factor 2/3 in order to
equalize the maximal amplitudes.

The agreement between the two profiles is remarkably good
within the interval between the zeros.

Even though the dynamics of the degenerate two-soliton
solution creates a smaller wave amplification than the
Peregrine breather (2 rather than 3), it is still a rapidly
forming extreme event. We should also take into account the
difference between the backgrounds. Thus, such solutions can be
responsible for the occurrence of extreme wave events, which are
very similar to the PB.

LABORATORY EXPERIMENTS

The physical experiments have been conducted in two different
water wave facilities: Hamburg University of Technology and the
University of Sydney flumes, as described in [7, 33], respectively.
Although both facilities are different when considering their size
and type of wave generators (flap- and piston-type, respectively),
the experimental procedures are similar. The wave generator is
programmed to create the temporal surface elevation as described
by the NLSE solution at fixed position xp to first-order in
steepness

ηwavemaker(x*, t) � Re(ψ(xp, t) exp [i(ωt − kxp)] ). (9)

Note that wave makers are calibrated by means of a transfer
function, which is specific for each type of wave maker, to
properly generate the carrier wave amplitudes and frequency as
specified by Eq. 9 and any other pre-defined time-series. Since the
maximal compression occurs at x* � 0, a negative value for xp has
to be chosen in order to observe the nonlinear soliton interaction
and the gradual breather-type focusing process in the wave facility.
The larger |x*|, the more the two solitons move away from each
other. The second-order Stokes correction is considered when
comparing the collected data with the theoretical NLSE
predictions at the respective gauge location xpg , that is

η(xpg , t) � Re(ψ(xpg , t) exp [i(ωt − kxpg)]
+ 1
2
kψ2(xpg , t) exp [2i(ωt − kxpg)] ). (10)

Note also that when programming the wave maker to produce the
surface elevation to first-order in steepness according to (9),
results are expected to be identical as the bound waves
(higher-order Stokes harmonics) are immediately generated
within half a wavelength due to the intrinsic feature of the
nonlinearity in the description of water waves. Moreover,
fixing two key physical parameters, namely wave amplitude a
and the carrier frequency f � ω

2π are sufficient to determine all
physical features of the surface elevation. The choice for the
specific values of the carrier amplitude and frequency is restricted
to the stroke and frequency range specifications of the wave
generator. The wave steepness ka, which is an indicator for the
nonlinearity of the carrier wave, can be easily determined using

FIGURE 3 | Experimental observation of a degenerate soliton for
a � 0.006 m, ka � 0.12 and xp � −27m asmeasured in the Hamburg University
of Technology flume. Top: Water surface as measured by the wave gauges.
Bottom: NLSE predictions at the same physical locations using Eq. 10.
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the dispersion relation (Eq. 2). One crucial step consists in scaling
the solution Ψ(X,T) to a dimensional form ψ(x, t) satisfying Eq. 1.
Considering a scaling with respect to the space- or time-NLSE does
not have a major impact on the evolution of the degenerate solution
in a water wave flume [34]. Finally, capacitance wave gauges are
installed along the flume to collect the temporal variation of the water
surface at different locations in the direction of wave propagation.
Note that a wave-absorbing installation is placed opposite to the wave
maker to ensure a wave field propagation free of reflections. Exact
schematics of both facilities can be found in [5, 33]. A graphical guide
to better understand the origin of the data as measured by the wave
gauges along the flume can be found in [35].

The first experiment reported here aims to demonstrate the
evolution of the solution over a significantly large distance of 45m
in order to observe the nonlinear and solution-specific interaction
between the two envelope solitons yielding an extreme localization.
On the other hand, the evolution in the Hamburg University of
Technology flume was restricted to 15m (when taking out the
beach installation, effectively 12 m). To overcome this limitation,
the reflection-free wave measurement at 9 m was re-injected to the
wave generator four times mimicking continuation of the wave
propagation. The results of these tests are shown in Figure 3.

These results are a clear confirmation of degenerate soliton
dynamics on the water surface. Note the excellent agreement in
the distinct dynamics with the theoretical prediction, especially
considering the total evolution distance of about 144 times the
value of the wavelength.

There are obvious limitations of the NLSEmodel for water waves
[36–38]. In fact, when waves become steep, the spectral broadening
reduces the ability of the NLSE to accurately describe the wave
hydrodynamics. However, this strongly depends on the initial carrier
steepness and the bandwidth of the wave train [39].

The next series of tests have been conducted at the University of
Sydney wave flume. These addressed the role of wave steepness on
the collision process. Several tests have been conducted by gradually
increasing the wave steepness from 0.10 to 0.13 with a 0.01 step for
the same carrier amplitude of 0.01m. The four examples of evolution
of the degenerate solution at different steepness values are shown in
Figure 4.

We can clearly notice that the increase of carrier steepness
distorts the clean and ideal evolution of the NLSE solution,
particularly when the carrier steepness values exceed 0.13 in these
laboratory tests. Consequently, the soliton interaction becomes
asymmetric with a distortion of the envelope shape at the peak.

These restrictions can be accurately addressed and quantified
numerically by solving the Euler equations as is discussed in the
next section.

NUMERICAL SIMULATIONS

The numerical simulation is performed within the framework of the
potential Euler equations using the High-Order Spectral Method
(HOSM) following [40]. The HOSM simulations include 210 grid

FIGURE 4 | Experimental observation of a degenerate soliton for a � 0.01 m and xp � −23mwith varying steepness values as measured in the University of Sydney
flume. Top left: ka � 0.10. Top right: ka � 0.11. Bottom left: ka � 0.12. Bottom right: ka � 0.13.
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points in the physical space and a twice larger number in the
Fourier domain. The iterations in time are performed with the help
of a split-step Fourier procedure. The order of nonlinearity is set to
M � 6. This corresponds to the solution that is accurate of up to 7-
wave nonlinear interactions. The initial-value problem is solved in
a periodic spatial domain. The wave steepness is the only physical
parameter which controls the wave evolution. The steepness is
determined by the quantity ka, where a is the amplitude of the
envelope solitons long before they start to collide.

With the purpose of comparing the results of the
simulations with the NLSE solution (Eq. 7), the computed
surface evolution was transformed to the co-moving
dimensionless variables (Eq. 4) as used in the NLSE. It is
then re-scaled to provide the unit amplitudes of the envelope
solitons when these are detached at T → –∞, according to the
transformations similar to (Eq. 4)

X � 2ak(x − cg t), T � a2
ω

2
t, Ψ � k�

2
√ η

a
(11)

Note that in Eq. 11 the functionΨ(X,T) is now real-valued.
Three cases of the wave steepness were simulated, which
correspond to ka � 0.05, ka � 0.10 and ka � 0.15. In all these
cases, the initial condition is specified according to the solution
(Eq. 8). The dimensionless time is chosen to be T0 ≈ –12. This
choice corresponds to the situation when solitons already exhibit
partial overlap as can be seen in Figure 5. This overlap seeds the
interaction process in the simulations.

The physical time of the start of the simulation t0 depends on
the wave steepness, see Eq. 11. In fact, it corresponds to about 340
wave periods in the steepest case shown in the right panel of
Figure 5, and to about 3,000 periods in the small-amplitude case
shown in the left panel of Figure 5. In order to initiate the
simulation of the HOSM code, the surface displacement and the
surface velocity potential are calculated from ψ(x,−t0) with a
more precise definition than Eq. 10, using the third-order
asymptotic solution for nonlinear modulated waves, see [41].
Only the cases without wave breaking were simulated, thus, no
filters are required to take into account wave breaking effects.

Six runs of the numerical simulations were performed with
different complex phases of the initial condition ψ(x,−t0), for
several wave steepness conditions. The envelope Ψenv(X,T) is
calculated as the maximal values of Ψ among these six

simulations at every X and T. The surface displacements of
the initial conditions are plotted in Figure 5 with respect to
two versions of the dimensionless space and amplitude
variables.

A false color representation of the evolution of each degenerate
soliton envelope in time and space is shown in Figure 6.

The intersection of the white dashed lines corresponds to the
point in time and space where the maximum wave is expected
within the NLSE framework. Qualitatively, the evolution of waves
with small steepness ka � 0.05 (see Figure 6 left panel) is similar
to the one obtained from the NLSE theory (Figure 1 right panel)
and in the laboratory experiment (Figure 3). In the simulations,
the two solitary groups separated initially collide, form an
extreme event and then separate again restoring their soliton
shape. However, the strongly nonlinear simulation results in
faster propagation of the wave groups and slightly quicker
formation of the large wave (yellow dot). Interestingly, the
amplitudes of the solitons after the separation are slightly
different: the amplitude of the leading group is larger. The
described features of the strongly nonlinear simulation become
more pronounced when the steepness is larger than ka � 0.1
(Figure 6, middle panel).

Indeed, when the steepness further increases, ka � 0.15, the
new recurrence effects are becoming more apparent (Figure 6
right panel). Moreover, when the two soliton groups merge, they
form a bound state similar to the bi-soliton described in [1, 29].
However, in contrast to the bi-soliton, the interaction here is
asymmetric. The two subsequent extreme events are still large in
amplitude in this type of recurrent dynamics. Figure 7 shows the
time evolution of the maxima of the wave elevation for the three
simulations shown in Figure 6.

After a few beating cycles, the solitary groups finally decouple.
At the end of the interaction process the leading soliton has a
higher amplitude than the trailing one. After the three collisions,
the envelope solitons are completely separated. The groups
emerged after the third collision are not stationary. The
leading soliton reveals the breathing dynamics (this can be
seen in Figure 7 for T > 20). The second solitary group
spreads decaying in amplitude. Thus, the water wave dynamics
of very steep degenerate solitons shows the survival of only one
(leading) soliton. Its amplitude increases while the energy of the
other group reduces.

FIGURE 5 | Initial conditions for the numerical simulations of the degenerate soliton. Left panel: ka � 0.05. Middle panel: ka � 0.1. Right panel: ka � 0.15. The
axes show the physical scaled coordinate and surface displacement (y-axis left), the standard NSLE coordinate X � k(x − cgt) (x-axis) and the complex amplitude
Ψ � k�

2
√ η

a (y-axis right).

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 6335496

Chabchoub et al. Peregrine Breather on the Zero-Background Limit

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The extreme wave groups with highest amplitude which arise
in the course of the wave dynamics are shown in Figure 8.

In contrast to the envelopes shown in Figure 5, these wave
profiles possess strong back-to-front asymmetry. Some alteration
of the central feature with maximal amplitude, when the wave
steepness grows, may be noticed as well. This difference from the
experimental observations is most-probably caused by dissipative
effects [17]. The maximumwater elevation is slightly smaller than
anticipated by the NLSE solution forΨ � 2 (marked by the dotted
red lines in Figure 8) in the smaller wave steepness case, shown in
Figure 8 (left panel). However, this limit is slightly exceeded in
the case of larger wave steepness shown in Figure 8 right panel.
The wave groups in Figure 8 possess noticeable vertical
asymmetry in the steeper cases (Figure 8 middle and right

panels) due to the bound (phase-locked) waves. While the
wave crest exceeds the value of Ψ � 2 in the steepest wave
case (Figure 8 right panel), the deepest wave trough is well
under the level of the NLSE solution. We emphasize that the
wavelength of the carrier wave is assumed to be sufficiently large
so that the capillary effects may be neglected while being small
enough to satisfy the deep-water condition. We also report the
evolution of the normalized and spatial Fourier transform of the
three simulated evolutions, i.e., ka � 0.05, ka � 0.1 and ka � 0.15,
in Figure 9 to complete the picture.

The evolution of the Fourier modes confirms the characteristic
evolution features of the degenerate two-soliton when the steepness
is ka � 0.05, thus, being very small. This appears to be the case for ka
� 0.1. On the other hand, deviations start to occur with the gradual
increase of carrier wave steepness. For ka � 0.15 a noticeable beating,
i.e. recurrent breathing process, can be noted.

CONCLUSION

We have reported for the first time the experimental
observation of the degenerate soliton interaction in nonlinear
physics. This coherent structure can be considered to be a PB on
the zero-background limit. The experimental data and
numerical simulations are both in excellent agreement for
small and moderate carrier wave steepness values while
deviations in form of beatings are observed for strongly
nonlinear regimes. This fact confirms the accuracy of the

FIGURE 8 | Extreme events with highest amplitude during the evolution presented in Figure 6.

FIGURE 7 | Evolution of the wave maxima in the numerical simulations
shown in Figure 6.

FIGURE 6 |Numerical simulations of the Euler equations of the degenerate soliton for different steepness values of the initial condition: ka � 0.05 on the left panel,
ka � 0.1 on the middle panel, and ka � 0.15 on the right panel. The color-coded evolution of the wave envelope Ψenv is shown.
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NLSE in the description of extreme wave events for a wide range
of reasonable carrier wave parameters in nonlinear dispersive
wave guides. Moreover, we anticipate motivated studies related
to further exploration of such distinct degenerate soliton
dynamics in optics and quantum physics. We also believe
that the degenerate soliton solution may play a substantial
role in the spontaneous formation [42, 43] identification of

doubly-localized extreme wave events using data-driven
methods [44]. Future studies will be devoted to higher-order
soliton degeneracy beyond the collision of two solitons. This
will in our opinion further improve our understanding of the
role of integrable systems and nonlinear wave interaction in the
formation of rogue waves.
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