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Spatially periodic breather solutions (SPBs) of the nonlinear Schrödinger (NLS) equation
are frequently used tomodel rogue waves and are typically unstable. In this paper we study
the effects of dissipation and higher order nonlinearities on the stabilization of N-mode
SPBs, 1≤N ≤ 3, in the framework of a damped higher order NLS (HONLS) equation. We
observe the onset of novel instabilities associated with the development of critical states
resulting from symmetry breaking in the damped HONLS system. We develop a
broadened Floquet characterization of instabilities of solutions of the NLS equation by
showing that instabilities are associated with degenerate complex elements of not only the
discrete, but also the continuous Floquet spectrum. As a result, the Floquet criteria for the
stabilization of a solution of the damped HONLS centers around the elimination of all
complex degenerate elements of the spectrum. For a given initial N-mode SPB, a short-
time perturbation analysis shows that the complex double points associated with resonant
modes split under the damped HONLS while those associated with nonresonant modes
remain closed. The corresponding /damped HONLS numerical experiments corroborate
that instabilities associated with nonresonant modes persist on a longer time scale than the
instabilities associated with resonant modes.

Keywords: spatially periodic breathers, rogue waves, modulational instability, higher order nonlinear Schrödinger,
Floquet spectrum

1 INTRODUCTION

In one of his foundational studies, Stokes established the existence of traveling nonlinear periodic wave
trains in deep water [1]. The stability of these waves was resolved when Benjamin and Feir proved that
in sufficiently deep water the Stokes wave is modulationally unstable. Small perturbations of Stokes
waves were found to lead to exponential growth of the side bands [2, 3]. More recently, modulational
instability (MI) of the background state is considered to play a prominent role in the development of
rogue waves in oceanic sea states, nonlinear optics, and plasmas [4–9].

The nonlinear Schrödinger (NLS) equation (when ε, c � 0 in Eq. 1) is one of the simplest models
for studying phenomena related to MI; as such, special solutions of the NLS equation are regarded as
prototypes of rogue waves. Among themore tractable “rogue wave” solutions of the NLS equation are
the rational solutions (with the Peregrine breather being the lowest order) and the spatially periodic
breathers (SPBs) which are constructed as heteroclinic orbits of modulationally unstable Stokes
waves [10–12]. In the case of the Stokes waves withN unstable modes (UMs), the associated SPBs can
be of dimensionM ≤N and are referred to asM-mode SPBs; the single mode SPB is the Akhmediev
breather [13]. For more realistic sea states with non-uniform backgrounds, heteroclinic orbits of
unstable N-phase solutions have been used to describe rogue waves [14–16].
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For theoretical and practical purposes it is important to
understand the stability of the SPBs with respect to small
variations in initial data and small perturbations of the NLS
equation. Using the squared eigenfunction connection between
the Floquet spectrum of the NLS equation and the linear stability
problem, the SPBs were shown to be typically unstable [17]. The
effects of damping on deep water wave dynamics, even when
weak, can be significant and in many instances must be included
in models to enable accurate predictions of laboratory and field
data [18–22].

In a recent study the authors examined the stabilization of
symmetric SPBs using the linear damped NLS equation (a near-
integrable system that preserves even symmetry of solutions)
[23]. The route to stability for these damped SPBs was determined
by appealing to the Floquet spectral theory of the NLS equation.
Degenerate complex elements of the periodic spectrum (referred
to as complex double points) are associated with instabilities of
the solution and may split under perturbation to the system. In
the restricted subspace of even solutions complex double points
can reform as time evolves. The damped solutions were found to
be unstable as long as complex double points were present in the
spectral decomposition of the data (either by persisting or
reforming). A key issue in analyzing the route to stability is
determining which complex double points in the spectrum of the
SPB are split by damping. For an initial SPB with a given mode
structure, perturbation analysis showed that only the complex
double points associated with resonant modes split under
damping while those associated with nonresonant modes
remained closed [23].

The evolution of deep water waves is described only to leading
order by the NLS equation. A more accurate description of the
wave dynamics is provided by the Dysthe equation, obtained by
extending the asymptotic analysis used to derived the NLS
equation to fourth order. The Dysthe equation has been
shown to accurately predict laboratory data for a wider range
of wave parameters than the NLS equation [24, 25, 26]. Gramstad
and Trulsen brought the Dysthe equation into Hamiltonian form
obtaining a new higher order NLS (HONLS) equation (Eq. 1 with
c � 0) [27]. Damped versions of the HONLS equation have
successfully described ocean swell and frequency downshift of
wave trains on deep water [28, 29].

In this paper we examine the competing effects of dissipation
and higher order nonlinearities on the routes to stability of the
N-mode SPBs in the framework of the linear damped HONLS
equation over a spatially periodic domain:

iut + uxx + 2|u|2u + iε(1
2
uxxx − 8|u|2ux − 2iu[H(|u|2)]x) + icu

� 0

(1)

where u(x, t) is the complex envelope of the wave train,
H{f (x)} � 1

π ∫∞−∞ f (ξ)
x−ξ dξ is the Hilbert transform of f, and

0< ε, c≪ 1. The initial data used in the numerical experiments
is generated using exact SPB solutions of the integrable NLS
equation. The SPBs are over Stokes waves with N unstable modes
(referred to as the N-UM regime) for 1≤N ≤ 3. We interpret the

damped HONLS (near-integrable) dynamics by appealing to the
NLS Floquet spectral theory.

The higher order nonlinearities in Eq. 1 break the even
symmetry of both the initial data and the equation. This raises
several interesting questions regarding the damped HONLS
equation. Which integrable instabilities are excited by the
damped HONLS flow and which elements of the Floquet
spectrum are associated with these instabilities? What are the
routes to stability under damping; i.e., what remnants of
integrable NLS structures are detected in the damped HONLS
evolution?

In the present study we observe the onset of novel instabilities
as a result of symmetry breaking and the development of critical
states in the damped HONLS flow which were nonexistent in the
previously examined damped NLS system with even symmetry.
Significantly, we determine these instabilities are associated with
degenerate complex elements of both the periodic and continuous
spectrum, i.e., with both complex “double points” and complex
“critical points”, respectively. This association was not previously
recognized. With regard to teminology, although double points
are among the critical points of Δ, in this paper we exclusively call
degenerate complex periodic spectrum where Δ � ± 2 “double
points” and reserve the term “critical points” for degenerate
complex spectrum where Δ≠ ± 2.

The paper is organized as follows. In Section 2 we present
elements of the NLS Floquet spectral theory which we use to
distinguish instabilities in the numerical experiments. Whether
higher phase solutions, such as the even 3-phase solution given in
Eq. 8, are unstable with respect to general noneven perturbations
and what the Floquet “signature” is of the possible instabilities, has
been an open question. The closest stability results we are aware of
are for the elliptic solutions of the focusing NLS equation [30]. We
numerically show an even 3-phase solution of the NLS equation is
unstable with respect to generic perturbations of initial data and
find the relevant element of the Floquet spectrum associated with
the instability in order to develop a broadened Floquet
characterization of instabilities of the NLS equation.

A brief overview of the SPB solutions of the NLS is provided at
the end of Section 2 before numerically examining their
stabilization under the damped HONLS flow in Section 3. The
Floquet decompositions of the numerical solutions are computed
for 0≤ t ≤ 100. Complex double points are initially present in the
spectrum. If one of the complex double points present initially
splits due to the damped HONLS perturbation, the subsequent
evolution involves repeated formation and splitting of complex
critical points (not double points) which we correlate with the
observed instabilities. The Floquet spectral analysis is
complemented by an examination of the growth of small
perturbations in the SPB initial data under the damped
HONLS flow. We determine that the instabilities saturate and
the solutions stabilize once all complex double points and
complex critical points vanish in the spectral decomposition of
the perturbed flow. Variations in the spectrum under the HONLS
flow are correlated with deformations of certain NLS solutions to
determine the routes to stability for the damped HONLS SPBs.

In Section 4, via perturbation analysis, we examine splitting of
the complex double points, present in the SPB initial data, under
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the damped HONLS flow. We find that for short time, the
complex double points associated with modes that resonate
with the SPB structure split producing disjoint asymmetric
bands, while the complex double points associated with
nonresonant modes remain closed, substantiating the initial
spectral evolutions observed in the numerical experiments.
The nonresonant double points are observed to remain closed
for the duration of the experiments, beyond the time-frame of the
short time analysis, even though the solution evolves as a damped
asymmetric multi-phase state. In this study resonances have a
stabilizing effect; the instabilities of nonresonant modes persist on
a longer time scale than the instabilities associated with
resonant modes.

2 ANALYTICAL FRAMEWORK

The nonlinear Schrödinger equation (when ε, c � 0 in Eq. 1)
arises as the solvability condition of the Zakharov-Shabat (Z-S)
pair of linear systems [31]:

L(u)ϕ � λϕ, L(u) � ( izx u
−up −izx ) (2)

ϕt � (−2iλ2 + i|u|2 2iλu − ux

2iλup + up
x 2iλ2 − i|u|2 )ϕ (3)

where λ is the spectral parameter, ϕ is a complex vector valued
eigenfunction, and u(x, t) is a solution of the NLS equation itself.
Associated with an L−periodic NLS solution is it’s Floquet
spectrum

σ(u) :� {λ ∈ C|Lϕ � λϕ,
∣∣∣∣ϕ∣∣∣∣ bounded ∀x} (4)

Given a fundamental matrix solution of the Z-S system,Φ, one
defines the Floquet discriminant as the trace of the transfer matrix
across one period L, Δ(u, λ) � Trace[Φ(x + L, t; λ)Φ− 1(x, t; λ)].
The Floquet spectrum has an explicit representation in terms of
the discriminant:

σ(u) :� {λ ∈ C|Δ(u, λ) ∈ R,−2≤Δ(u, λ)≤ 2} (5)

The Floquet discriminant Δ(λ) is analytic and is a conserved
functional of the NLS equation. As such, the spectrum σ(u) of an
NLS solution is invariant under the time evolution.

The spectrum consists of the entire real axis and curves or
“bands of spectrum” in the complex λ plane (L(u) is not self-
adjoint). The periodic/antiperiodic points (abbreviated here as
periodic points) of the Floquet spectrum are those at which
Δ � ± 2. The endpoints of the bands of spectrum are given by
the simple points of the periodic spectrum
σs(u) � {λsj

∣∣∣∣∣Δ(λj) � ± 2, zΔ/zλ≠ 0}. Located within the bands
of spectrum are two important spectral elements:

1. Critical points of spectrum, λcj , determined by the
condition zΔ/zλ � 0.

2. Double points of periodic spectrum σd(u) � {λdj
∣∣∣∣∣Δ(λdj ) �

± 2, zΔ/zλ � 0, z2Δ/zλ2 ≠ 0}.

Double points are among the critical points of Δ. However, in
this paper, we exclusively call the degenerate periodic spectrum
where Δ � ± 2 “double points” and reserve the term “critical
points” for degenerate elements of the spectrum where Δ≠ ± 2.

The Floquet spectrum can be used to represent a solution
in terms of a set of nonlinear modes where the structure and
stability of the modes are determined by the band-gap
structure of the spectrum. Simple periodic points are
associated with stable active modes. The location of the
double points is particularly important. Real double points
correspond to zero amplitude inactive nonlinear modes. On
the other hand, complex double points are associated with
degenerate, potentially unstable, nonlinear modes with
either positive or zero growth rate. When restricted to the
subpace of even solutions, exponential instabilities of a
solution are associated with complex double points in the
spectrum [32].

A concrete example illustrating the correspondence between
complex double points in the spectrum and linear instabilities is
the Stokes wave solution ua(t) � aei(2a2t+ϕ). For small
perturbations of the form u(x, t) � ua(t)[1 + ε(x, t)], |ε|≪ 1,
one finds ϵ satisfies the linearized NLS equation

iεt + εxx + 2|a|2(ε + εp) � 0 (6)

Representing ϵ as a Fourier series with modes εj ∝ eiμjx+σ j t ,
μj � 2πj/L, gives σ2j � μ2j (4|a|2 − μ2j ). As a result, the jth mode is
unstable if 0< (jπ/L)2 < |a|2. The number of UMs is the largest
integer M such that 0<M < |a|L/π.

The Floquet discriminant for the Stokes wave is
Δ � 2 cos(

������
a2 + λ2

√
L). The Floquet spectrum consists of

continuous bandsR∪ [−ia, ia] and a discrete part containing λs0 �
± i|a| and the infinte number of double points

(λdj )2 � (jπ
L
)2

− a2, j ∈ Z, j≠ 0 (7)

FIGURE 1 | The Floquet spectrum of the Stokes wave with PaL/π⌋ � 2.
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as shown in Figure 1. Note that the condition for λdj to be
complex is precisely the condition for the jth Fourier mode εj to
be unstable. The remaining λdj for

∣∣∣∣j∣∣∣∣>M are real double points.
As the NLS spectrum is symmetric under complex

conjugation, we subsequently only display the spectrum in the
upper half λ-plane.

2.1 A Broadened Floquet Spectral
Characterization of Instabilities
Earlier work on perturbations of the NLS equation dealt primarily
with solutions with even symmetry whose instabilities were
identified solely via complex double points [33, 34]. In
general, imposing symmetry on a solution restricts it’s
dynamical behavior and may suppress instabilities. In the
current damped HONLS experiments we find instabilities arise
due to the asymmetry of the system that are not captured by
complex double points. Although complex double points, if
present in the damped HONLS flow, still identify instabilities,
we need to develop a broader Floquet spectral characterization of
instabilities to capture the instabilities of generic solutions.

A clue as to which new spectral elements are associated with
instabilities in the full solution space of the NLS equation is
provided by considering generic perturbations of initial data for
even solutions of the NLS equation. One of the simplest solutions
to examine is the following even 3-phase solution of the NLS
equation [13],

u0(x, t) � ae2ia
2t

���
κ

1+κ
√

cn( ax�
κ

√ ,
���
1−κ
2

√ )dn(a2tκ , κ) + iκ sn(a2tκ , κ)�
2

√
κ[1 − ���

κ
1+κ

√
cn( ax�

κ
√ ,

���
1−κ
2

√ )cn(a2tκ , κ)] (8)

With respect to t the solution has a double frequency; a
frequency determined by the exponential function and a
modulation frequency determined by the elliptic functions.
Equation 8 describes an even standing wave, periodic in space
and time, arising as the degeneration of a 3-phase solution due to
symmetry in it’s spectrum. The spatial period L and temporal

period T are functions of Kx( ���
1−κ
2

√ ) and Kt(κ), respectively,
whereK is the complete elliptic integral of the first kind. As κ→ 1
in Eq. 8, T→∞ and u0(x, t)→U(1)(x, t), the SPB given in Eq.
10 associated with one complex double point.

The surface and Floquet spectrum for u0(x, t) are shown in
Figures 2A,B. The spectrum forms an even “cross” state with two
bands of spectrum in the upper half plane with endpoints given
by the simple periodic spectrum λ0 � 0.5i and λ ±

1 � 0.35i ± α.
These two bands intersect transversally at λc on the imaginary
axis. Since zΔ/zλ � 0 at transverse intersections of bands of
continuous spectrum, λc is a critical point. There are no
complex double points in σ[u0(x, t)].

To numerically address the stability of the cross state Eq. 8
with respect to initial data we consider small perturbations (both
symmetric and asymmetric) of the following form:

uδ(x, 0) � u0(x, 0) + δgk(x), k � 1, 2

where g1(x) � eiϕ cos μx, g2(x) � eiϕ1 cos μx + reiϕ2 sin μx, and
δ � 10− 3, . . . , 5 × 10− 3. We examine 1) the Floquet spectrum
of uδ(x, t) as compared with u0(x, t) and 2) the growth of the
perturbations as δ is varied. We consider a solution u(x, t) of the
NLS equation to be stable if for every ε> 0 there exists a δ > 0 such
that if ‖uδ(x, 0) − u(x, 0)‖H1 < δ, then ‖uδ(x, t) − u(x, t)‖H1 < ε,
for all t. Therefore, to determine whether u and uδ stay close as
time evolves, we monitor the evolution of the difference

η(t) � ‖uδ(x, t) − u(x, t)‖H1 (9)

where
����f ����2H1 � ∫L/2−L/2(

∣∣∣∣fx∣∣∣∣2 + ∣∣∣∣f ∣∣∣∣2)dx.
Symmetric Perturbations of Initial Data
As ϕ and δ are varied, the surface and spectrum for uδ(x, t) for
perturbation g1(x) are qualitatively the same as in Figures 2A,B.
The endpoints of the band of spectrum, σs(uδ), are slightly shifted
maintaining even symmetry. Due to analyticity of Δ, λc does not
split under even perturbations and the spectrum is not
topologically different. Figure 2C shows the evolution of η(t)
for even perturbations uδ(x, 0) � u0(x, 0) + δg1(x). The small
osciallations in η(t), typical in Hamiltonian systems, do not
grow. The Floquet spectrum and the evolution of η(t) show
that when restricted to the subspace of even solutions, u0(x, t) is
stable.

Asymmetric Perturbations of Initial Data
The surface and spectrum of uδ(x, t) for uδ(x, 0) � u0(x, 0) +
0.05 sin μx are shown in Figures 3A,B. A topologically different

FIGURE 2 | NLS cross state: (A) |u0(x, t)| for 0≤ t≤ 100, (B) it’s spectrum at t � 0, (C) η(t) for uδ(x, 0) � u0(x, 0) + δg1(x).
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spectral configuration is obtained and the waveform is a
modulated right traveling wave. The critical point λc has split
into λc± and the two disjoint bands of spectrum form a “right”
state: the upper band with endpoints λs0 and λ+1,δ in the right
quadrant and the lower band with endpoint λ−1,δ extending to the
real axis in the left quadrant. On the other hand, if e.g.,
uδ(x, 0) � u0(x, 0) + 0.05(cos μx + eiπ/3 sin μx), the waveform is
a modulated left traveling wave. In this case the orientation of the
bands of spectrum is reversed, forming a “left” state with the
upper band in the left quadrant and the lower band in the right
quadrant. As the parameters in g2(x) are varied these are the two
possible noneven spectral configurations for uδ(x, t). The
perturbation analysis in Section 4 is related and shows
noneven perturbations of the SPB split complex double points
into left and right states.

Figure 3C shows η(t) grows to O(1) for asymmetric
perturbations uδ(x, 0) � u0(x, 0) + δg2(x). Clearly uδ(x, t) does
not remain close to u0(x, t) for these perturbations. We associate
the transverse complex critical points with instabilities arising
from symmetry breaking which are not excited when evenness is
imposed. The exact nature of the instability associated with
complex critical points is under investigation. The current
damped HONLS experiments in Section 3 corroborate the
significance of transverse critical points λc in identifying
instabilities in the unrestricted solution space.

2.2 Spatially Periodic Breather Solutions of
the NLS Equation
A variety of dressing methods can be used to derive new
nontrivial solutions to integrable equations [see [35] for
applications of the Darboux transformation to generate
solutions of generalized NLS models]. Here we use the
Bäcklund-gauge transformation (BT) for the NLS equation
[36] to generate the heteroclinic orbits of a spatially periodic
unstable NLS potential u(x, t) with complex double points, λdj , in
its Floquet spectrum. Given a Stokes wave ua(t) with N complex
double points, a single BT of ua(t) at λdj yields the one mode SPB,
U(j)(x, t), associated with the jth UM, 1≤ j≤N . Introducing
μj � 2πj/L, σ j � −2iμjλj, cos pj � μj/2a, and τj � (ρ − σ jt) one
obtains [13, 33]:

U(j)(x, t) � ae2ia
2t⎛⎝i sin 2pj tanh τ j + cos 2pj − sin pj cos(μjx + β)sec hτj

1 + sin pj cos(μjx + β) sec h τ j ⎞⎠
(10)

U(j)(x, t) exponentially approaches a phase shift of the Stokes
wave, limt→ ± ∞U(j)(x, t) � ae2ia

2t+α ± , at a rate depending on λdj .
Figures 4A,B show the amplitudes of two distinct single mode
SPBs, U(1)(x, t) and U(2)(x, t) over a Stokes waves with N � 2
UMs. U(1)(x, t) and U(2)(x, t) are both unstable as the BT based
at λj saturates the instability of the jth UM while the other
instabilities of the background persist.

When the Stokes wave posesses two or more UMs, the BT can
be iterated to obtain multi mode SPBs. For example, the two-
mode SPB with wavenumbers μi and μj, obtained by applying the
BT successively at complex λdi and λdj , is of the following form:

U(i,j)(x, t; ρ, τ) � a e2ia
2tN(x, t; ρ, τ)
D(x, t; ρ, τ) (11)

The exact formula is provided in [11]. The parameters ρ and τ
determine the time at which the first and second modes become
excited, respectively. Figure 4C shows the amplitude of the
“coalesced” two mode SPB U(1,2)(x, t; ρ, τ) (ρ � −2, τ � −3)
over a Stokes waves with N � 2 UMs where the two modes
are excited simultaneously.

An important property of the Bäcklund transformation: The BT
is isospectral, i.e., σ[ua(t)] � σ[U(j)(x, t)] � σ[U(i,j)(x, t)]. For
example, the Stokes wave with N � 2 UMs (given in Figure 1)
and each of the SPBs shown in Figure 4A–C share the same
Floquet spectrum.

3 NUMERICAL INVESTIGATION OF
ROUTES TO STABILITY OF SPBS IN THE
DAMPED HIGHER ORDER NLS EQUATION
In our examination of the even 3-phase solution in Section 2 we
found that when evenness is relaxed novel instabilities arise which
are associated with complex critical points. Armed with this
result, in this section we return to the questions posed at the
outset of our study: 1) Which integrable instabilities are excited
by the damped HONLS flow and what is the Floquet criteria for

FIGURE 3 | NLS noneven 3-phase solution: (A) |uδ(x, t)| for 0≤ t≤100, (B) it’s spectrum at t � 0, (C) η(t) for uδ(x, 0) � u0(x, 0) + δg2(x).
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their saturation? 2) What remnants of integrable NLS structures
are detected in the damped HONLS evolution?

The notation used in this section is as follows: 1) The “N UM
regime” refers to the range of parameters a and L for which the
underlying Stokes wave initially has N unstable modes. 2) The
initial data used in the numerical experiments is generated using
exact SPB solutions of the integrable NLS equation. The
perturbed SPBs are indicated with subscripts: U(j)

ε,c(x, t) refers
to the solution of the damped HONLS Eq. 1 for one-mode SPB
initial data U(j)(x, 0). Likewise U(i,j)

ε,c (x, t) is the solution to Eq. 1
for iterated SPB initial data.

The damped HONLS equation is solved numerically using a
high-order spectral method due to Trefethen [37]. The integrator
uses a Fourier-mode decomposition in space with a fourth-order
Runge-Kutta discretization in time. The number of Fourier
modes and the time step used depends on the complexity of
the solution. For example, for initial data in the three UM regime,
N � 1024 Fourier modes are used with time step Δt � 7.5 × 10− 5.
As a benchmark the first three global invariants of the HONLS
equation, the energy E � ∫L

0
|u|2dx, momentum

P � i ∫L
0
(upux − uupx)dx, and Hamiltonian

H � ∫L

0
{ − i|ux|2 + i|u|4 − ε

4
(uxu

p
xx − up

xuxx) + 2ε|u|2(upux − uupx)
+ iε|u|2[H(∣∣∣∣u 2)]x}dx∣∣∣∣∣∣∣

are preserved with an accuracy of O(10− 12) for 0≤ t ≤ 100. The
invariant for the damped HONLS system, the spectral center
km � −P/2E, is preserved with an accuracy of at leastO(10− 12) in
the experiments.

Nonlinear mode decomposition of the damped HONLS flow: At
each time t we compute the spectral decomposition of the
damped HONLS data using the numerical procedure
developed by Overman et. al. [34]. After solving system Eq.
(2), the discriminant Δ is constructed. The zeros of Δ ± 2 are
determined using a root solver based on Müller’s method and
then the curves of spectrum filled in. The spectrum is calculated
with an accuracy of O(10− 6) which is sufficient given the
perturbation parameters ϵ and γ used in the numerical
experiments are O(10− 2).

Notation used in the spectral plots: The periodic spectrum is
indicated with a large ×when Δ � −2 and a large box when Δ � 2.
The continuous spectrum is indicated with small × when the Δ is
negative and a small box when Δ is positive.

Interpreting the damped HONLS flow via the NLS spectral
theory: A tractable example which illustrates the use of the
Floquet spectrum to interpret near integrable dynamics is the
spatially uniform solution (there is no depenence on ϵ) of the
damped HONLS Eq. 1,

ua,c(t) � ae−cte
i(|a|2(1−e−2ct)

c )
(12)

At a given time t � tp the nonlinear spectral decomposition of
Eq. 12 can be explicitly determined by substituting ua,c(tp) into
L(u)ϕ � λϕ. We find the periodic Floquet spectrum consists of
λs0 � ± iae−ctp and infinitely many double points

(λdj )2 � (jπ
L
)2

− e−2ctpa2, j ∈ Z, j≠ 0 (13)

where λdj is complex if (jπL)2 < e−2ctpa2. Under the damped
HONLS evolution the endpoint of the band of spectrum λs0
and the complex double points λdj move down the imaginary
axis and then onto the real axis. Similarly, at t � tp, a linearized
stability analysis about ua,c(tp) shows the growth rate of the jth
mode σ2j � μ2j (4e−2ctpa2 − μ2j ). Thus the number of complex
double points and the number of unstable modes diminishes
in time due to damping. As a result, ua,c(t) stabilizes when the
growth rate σ1 � 0, i.e., when λd1 � 0, giving tp � ln(aL/π)/c.

Saturation time of the instabilities: Since the association of
complex critical points with instabilities is a new result, we
supplement the spectral analysis with an examination of the
saturation time of the instabilities for the damped SPBs
U(j)
ε,c(x, t) and U(j,k)

ε,c (x, t) as follows: we examine the growth of
small asymmetric perturbations in the initial data of the following
form,

U(j)
ε,c,δ(x, 0) � U(j)(x, 0) + δfk(x)

and

U(i,j)
ε,c,δ (x, 0) � U(i,j)(x, 0) + δfk(x)

FIGURE 4 | SPBs over a Stokes wave withN � 2 UMs, a � 0.5, L � 4
��
2

√
π: Amplitudes of (A–B) single mode SPBs

∣∣∣∣U(1)(x, t, ρ)∣∣∣∣ and ∣∣∣∣U(2)(x, t, ρ)∣∣∣∣ (ρ � β � 0) and (C)
2-mode SPB

∣∣∣∣U(1,2)(ρ, τ)∣∣∣∣.
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where.

i.fk(x) � cos μkx + rkeiϕk sin μkx, μk � 2πk/L, 1≤ k≤ 3,
ii.f4(x) � r(x), r(x) ∈ [0, 1] is random noise.

To determine the closeness ofU(j)
ε,c(x, t) andU(j)

ε,c,δ(x, t) as time
evolves we monitor the evolution of η(t), as given by Eq. 9. We
consider the solution to have stabilized under the damped
HONLS flow once η(t) saturates.

In the damped HONLS numerical experiments we obtain a
new criteria for the saturation of instabilities: η(t) saturates and
the SPB stabilizes once damping eliminates all complex double
points and complex critical points in the spectrum.

3.1 Damped HONLS SPB in the One
Unstable Mode Regime
U(1)
ε,c (x, t) in the one UM regime

We begin by considering U(1)
ϵ,c (x, t) for ε � 0.05 and c � 0.01 in

the one UM regime with initial data generated using Eq. 10 with
j � 1, a � 0.5 and L � 2

�
2

√
π. Figure 5A shows the surface∣∣∣∣∣U(1)

ε,c (x, t)
∣∣∣∣∣ for 0< t < 100.

The evolution of the Floquet spectrum for U(1)
ε,c (x, t) is as follows:

At t � 0, the spectrum in the upper half plane consists of a single band

of spectrum with end point at λs0 � 0.5i, indicated by a large “box”,
and one imaginary double point at λd1 � 0.3535i, indicated by a large
“×” (Figure 5B). Under the dampedHONLS λd1 splits asymmetrically
forming a right state, with the upper band of spectrum in the right
quadrant and the lower band in the left quadrant, consistent with the
short time perturbation analysis in Section 4. The right state is clearly
visible at t � 6 in Figure 5C with the waveform characterized by a
single damped modulated mode traveling to the right. The spectrum
persists in a right state with the separation distance between the two
bands varying until t � 10.43, Figure 5D, when a cross state forms
with an embedded critical point indicating an instability. Subsequently
the critical point splits into a right state. As damping continues the
band in the right quadrant widens, Figure 5E, and the vertex of the
loop eventually touches the origin at t ≈ 27.5. The spectrum then has
three bands emanating off the real axis, with endpoints λ−1 , λ

s
0, λ

+
1

which, as damping continues, diminish in amplitude and move away
from the imaginary axis, Figure 5F.

Figure 5G shows the evolution of η(t) for U(1)
ε,c (x, t) using f4

and δ � 10− 5, . . . , 10− 4. The saturation of η(t) at t ≈ 16 is
consistent with the Floquet criteria that the solution stabilizes
after complex double points and complex critical points are
eliminated in the damped HONLS flow.

From the spectral analysis of U(1)
ε,c (x, t) in the one UM

regime, we find it may be characterized as a continuous

FIGURE 5 | One UM regime: (A)
∣∣∣∣∣U(1)

ε,c (x, t)
∣∣∣∣∣ for 0≤ t≤ 100 and the spectrum at (B) t � 0, (C) t � 6, (D) t � 10.43, (E) t � 24.1, (F) t � 70 and (G) η(t) for f4(x, t),

δ � 10−5 , . . . , 10− 4 and ε � 0.05, c � 0.01.
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deformation of a noneven generalization of the 3-phase
solution, the right state, given by Eq. 8. The amplitude of
the oscillations of U(1)

ε,c (x, t) decreases and the frequency
increases until small fast oscillations about the damped
Stokes wave, visible in Figure 5A, are obtained.

An alternate approach to studying the effect of small damping
(or gain) on the one mode SPB is to consider the evolution of
asymmetric initial data in the neighborhood of the SPB under the
linearly damped NLS equation. Using the finite gapmethod of the
periodic NLS equation [38], the solution is analytically
approximated to leading order with a sum of SPBs shifted in
space and time. The quantitative agreement between the leading
order analytical formula and the corresponding numerical
experiments was found to be good [21]. It is interesting to
note that, although we use exact SPB initial data under the
linearly damped HONLS equation, with different damping
values, the asymmetric evolution of the Floquet spectral data
is qualitatively consistent with the numerical experiments
described in [21].

3.2 Damped HONLS SPBs in the Two
Unstable Mode Regime
For the two UM regime we let a � 0.5, L � 4

�
2

√
π and consider

the two distinct perturbed single mode SPBs U(1)
ε,c (x, t) and

U(2)
ε,c (x, t) and the perturbed iterated SPB U(1,2)

ε,c (x, t). The
damped HONLS perturbation parameters are ε � 0.05
and c � 0.01.

U(1)
ε,c (x, t) in the two UM regime

Figure 6A shows the surface
∣∣∣∣∣U(1)

ε,c (x, t)
∣∣∣∣∣ for 0< t < 100 for initial

data given by Eq. 10 with j � 1. The Floquet spectrum at t � 0 is
given in Figure 6B. The end point of the band of spectrum at
λs0 � 0.5i is indicated by a “box”. There are two complex double
points at λd1 � 0.4677i and λd2 � 0.3535i, indicated by a “×” and
“box”, respectively. For t > 0 both double points split
asymmetrically: λd1 , the complex double point at which
U(1)(x, t) is constructed, splits at leading order into λ ±

1 such
that a right state forms with the first mode traveling to the right.
The second double point λd2 splits at higher order into λ ±

2 such

FIGURE 6 | Two UM regime: (A)
∣∣∣∣∣U(1)

ε,c (x, t)
∣∣∣∣∣ for 0≤ t≤ 100, and spectrum at (B) t � 0, (C) t � 11.5, (D) t � 11.94, (E) t � 12.5, (F) t � 19.26, (G) t � 19.32, (H)

t � 19.37, (I) t � 42.4, and J) η(t) for f1(x, t), δ � 10−5 , . . . , 10− 4.
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that a left state forms with the second mode traveling to the left.
These disjoint asymmetric bands of spectrum are consistent with
the short time perturbation analysis in Section 4 for damped
HONLS data of the form Eq. 18.

This spectral configuration is representative of the spectrum
during the initial stage of it’s evolution and is still observable in
Figure 6C at t � 11.5. A sequence of bifurcations occur at
t ≈ 11.94, Figure 6D, when two complex critical points emerge
in rapid succession in the spectrum, indicating instabilities
associated with both nonlinear modes. Subsequently both
complex critical points split, Figure 6E, with the upper band in
the left quadrant and the second band in the right quadrant
corresponding to a damped waveform with the first mode
traveling to the left and the second mode traveling to the right.

The bifurcation at t � 11.94 corresponds to transitioning
through the remnant of an unstable 5-phase solution (with
two instabilities) of the NLS equation. The bands eventually
become completely detached from the imaginary axis and a
second complex critical point forms at t � 19.32. The
bifurcation sequence is shown in Figure 6F–H. The main
band emanating from the real axis then reestablishes itself
close to the imaginary axis, Figure 6I, and the spectrum
settles into a configuration corresponding to a stable 5 phase
solution. The bands move apart and downwards and hit the real
axis with no further development of complex critical points. From
the Floquet spectral perspective, once damping eliminates
complex critical points in the spectrum at approximately
t ≈ 20, U(1)

ε,c (x, t) stabilizes.
Figure 6J shows the evolution of η(t) for U(1)

ε,c (x, t) with f2 for
δ � 10− 5, . . . , 10− 4. The perturbation f2 is chosen in the direction
of the unstable mode associated with λd2 . η(t) stops growing by
t ≈ 20, confirming the instabilities associated with the complex
critical ponts and time of stabilization obtained from the
nonlinear spectral analysis.

ForU(1)
ε,c (x, t) in the 2-UM regime, both λd1 and λ

d
2 resonate with

the perturbation. The route to stability is characterized by the
appearance of the double cross state of the NLS and the proximity
to this state is significant in organazing the damped HONLS
dynamics. Once stabilized, U(1)

ε,c (x, t) may be characterized as a
continuous deformation of a stable 5-phase solution.

U(2)
ε,c (x, t) in the two UM regime

We now consider U(2)
ε,c (x, t) whose initial data is given by Eq. 10

with j � 2. Although U(1)(x, t) and U(2)(x, t) are both single
mode SPBs over the same Stokes wave, their respective routes to
stability under damping are quite different. Notice in Figure 7A
the surface of

∣∣∣∣∣U(2)
ε,c (x, t)

∣∣∣∣∣ for 0≤ t ≤ 100 is a damped modulated
traveling state, exhibiting regular behavior, in contrast to the
irregular behavior of

∣∣∣∣∣U(1)
ε,c (x, t)

∣∣∣∣∣ in the two UM regime.
The spectrum of U(2)

ε,c at t � 0 is the same as in Figure 6B.
Under perturbation λd2 immediately splits asymmetrically into
λ ±
2 with the upper band in the right quadrant and the lower band
in the left quadrant, while the first double point λd1 (indicated by
the large “×”) does not split. Figure 7B clearly shows that at t � 6
damping has only split λd2 , i.e., the double point at which the SPB
U(2) is constructed. In fact λd1 does not split for the duration of the

damped HONLS evolution, 0≤ t ≤ 100. In Figure 7C, by t � 11,
the two bands have aligned forming a cross state with a complex
critical point at the transverse intersection of the bands while λd1 is
still intact and has simply translated down the imaginary axis.

The complex critical point subsequently splits with the upper band
of spectrum again in the right quadrant, Figure 7D. Complex critical
points do not reappear in the spectrum. At t � 27.4 the vertex of the
upper band of spectrum touches the real axis Figure 7E. As damping
continues λd1 moves down the imaginary axis and the two bandsmove
away from the imaginary axis with diminishing amplitude. In
Figure 7F the complex double point λd1 has moved almost all the
way down the imaginary axis. At t ≈ 72, λd1 � 0 and complex double
points do not arise in the subsequent spectral evolution.

We find η(t) grows until t � ts ≈ 80, Figure 7G, consistent
with the expectation that U(2)

ε,c will stabilize once all complex
critical points and complex double points vanish in the spectrum.
Until λd1 moves onto the real axis, perturbations to the initial data
U(2)
ε,c,δ can excite the first mode associated with λd1 causingU

(2)
ε,c and

U(2)
ε,c,δ to grow apart.

Why doesn’t the HONLS perturbation split λd1 when given
U(2)(x, 0) initial data? In Section 4, for short time, a suitable
linearization of the damped HONLS SPB data is found to be given
by Eq. 19 for j � 1, 2, respectively where ~ε � ~ε(ε, c). The
perturbation analysis shows that at leading order damping
asymmetrically splits only the double point λd2 associated with
U(2)(x, 0). The endpoint of spectrum, λs0, decreases in amplitude
and the rest of the double points simply move along curves of
continuous spectrum without splitting. The resonant modes
which correspond to λd2m split asymmetrically at higher order
O(~εm). The splitting of λdl , l ≠ 2m, is zero and is termed “closed”.

The spectral evolution for U(2)
ε,c (x, t) in the 2 UM regime is

reminiscent of the spectral evolution of U(1)
ε,c (x, t) in the one UM

regime. There is an important difference though: The nearby
cross state that appears in the spectral decomposition of
U(2)
ε,c (x, t) has two different types of instabilites: the instability

associated with the complex critical point (potentially a phase
instability) and the exponential instability associated with the
(nonresonant) complex double point λd1 . The numerical results
suggest that when nonresonant modes are present in the damped
HONLS, their instabilities persist and organize the dynamics on a
longer time scale. As λd1 remains closed for t < ts, U(2)

ε,c (x, t) can be
characterized as a continuous deformation of a noneven
generalization of the degenerate 3 phase solution given by Eq.
8 (the parameter values change due to doubling the period L; i,e.,
a j−th mode excitation with period L becomes a 2j−th mode
excitation with period 2L.)

U(1,2)
ε,c (x, t) in the two UM regime

Figure 8A shows the surface
∣∣∣∣∣U(1,2)

ε,c (x, t)
∣∣∣∣∣ for 0< t < 100 for initial

data obtained from Eq. 11 by setting ρ � 0 and τ � −2, a � 0.5.
The spectrum of U(1,2)

ε,c at t � 0 is given by Figure 6B. As we’ve
seen in the previous examples, once complex double points split
they do not reform in the perturbed system; if they are present in
the spectral decomposition of the damped HONLS, it is because
the modes corresponding to λdj didn’t resonate under
perturbation. Here both double points λd1 and λd2 split at
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leading order under the damped HONLS perturbation. Figure 8B
shows for short time (t � 1.5) the spectrum has a band gap
structure indicating the first mode travels to the right and the
second travels to the left. As time evolves the bands shift and align
and Figure 8C shows at t ≈ 15.9 two bands in the right quadrant
intersect with an embedded complex critical point. The critical
point splits with one band moving back toward the imaginary
axis. There are now two bands detached from the primary band
and evolving towards the real axis, Figures 8D,E. Complex
critical points do not appear for t > 15.9.

Figure 8F shows η(t) for the example under consideration
(ρ � 0, τ � −2) when f1(x, t),δ � 10− 5, . . . , 10− 4. We find η(t)
saturates at ts ≈ 20 indicating U(1,2)

ε,c has stabilized. For t > ts
U(1,2)
ε,c is characterized as a continuous deformation of a stable

NLS five-phase solution. The numerically observed initial
splitting of complex double points λd1 and λd2 is consistent with
the perturbation analysis of damped HONLS SPB data (19).

Among the two mode SPBs in the 2 UM regime, the one of
highest amplitude due to coalescence of the modes appeared to be
more robust [17]. An interesting observation is obtained if we
examine the evolution of spectrum and of η(t) using the initial
data for the special coalesced two mode SPB, generated from Eq.
11 by setting ρ � 0.665, τ � 1, and a � 0.5. For the coalesced case,

complex critical points form 4 times for 0< t < 45 in the damped
HONLS system. Figure 8G shows η(t) saturates for t ≈ 50. A
comparison with the results of the non-coalesced two mode SPB
given above indicate that remnants of the coalesced U(1,2) and it’s
instabilities influence the damped HONLS dynamics over a
longer time period, suggesting enhanced robustness with
respect to perturbations of the NLS equation.

3.3 Damped SPBs in the Three Unstable
Mode Regime
The parameters used for the three UM regime are a � 0.7 and
L � 4

�
2

√
π. The damped HONLS perturbation parameters are ε �

0.05 and c � 0.01. We present the results of two damped HONLS
SPBs, U(2)

ε,c (x, t) and U(2,3)
ε,c (x, t), which exhibit an interesting or

new feature. The evolutions of the other damped HONLS SPBs in
the three UM regime in the three UM regime are discussed in
relation to these cases.

U(2)
ε,c (x, t) in the three UM regime

The surface
∣∣∣∣∣U(2)

ε,c (x, t)
∣∣∣∣∣ for initial data given by Eq. 10 with j � 2

is shown in Figure 9A for 0< t < 100. Notice in the 3 UM regime
U(2)
ε,c (x, t) exhibits regular behavior and is a damped modulated

FIGURE 7 | Two UM regime: (A)
∣∣∣∣∣U(2)

ε,c (x, t)
∣∣∣∣∣ for 0≤ t≤ 100 and Spectrum at (B) t � 6, (C) t � 11, (D) t � 23.4, (E) t � 27.4, (F) t � 71.9, and (G) η(t) for f1(x, t),

δ � 10−5 , . . . , 10− 4 and c � 0.01.
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right traveling wave as was U(2)
ε,c (x, t) in the 2 UM regime. The

spectrum at t � 0 is given in Figure 9B. The end point of the
band of spectrum, λs0 � 0.7i is indicated by a “box”. There are
three complex double points at λd1 � 0.677i, λd2 � 0.604i, and
λd3 � 0.456i indicated by an “×”, “box” and “×”, respectively.
Under the damped HONLS perturbation the complex double
point at which U(2)

ε,c (x, t) is constructed, λd2 , splits into a right
state as shown in Figure 9C. The complex double points λd1 and
λd3 remain closed; λd1 lies on the upper band in the right quadrant
and λd3 lies on the lower band. Transverse cross states with
embedded complex critical points form frequently in the
spectrum until t ≈ 68, e.g., a cross state is shown at t � 36.6
in Figure 9D. Figures 9E,F show the complex double points
persist on the bands of spectrum until damping sufficiently
diminishes the amplitude of the background and the complex
double points reach the real axis at t ≈ 85. In Figure 9G η(t)
saturates at t � ts ≈ 90. Due to the presence of the complex
double points for t < ts, U(2)

ε,c (x, t) can be viewed as a continuous
deformation of an unstable 3 phase solution (with two
instabilities). As discussed previously, the instabilities
associated with the nonresonant modes persist longer than
for the resonant modes.

In the 3 UM regime the behavior of the SPB U(3)
ε,c (x, t) is

similar to U(2)
ε,c (x, t). In this case λd3 initially splits asymmetrically

into the right state (which we’ve now seen frequently in the initial
damped HONLS system when only one mode is activated). The
double points λd1 and λ

d
2 do not split, they move along the band of

spectrum created by λs0 and λ+3 . As a result U(3)
ε,c (x, t) stabilizes

only when λd1 and λd2 become real, at t ≈ 140. As in the previous
cases, it is striking that the prediction from a short time
perturbation analysis that certain double points remain closed,
holds for the duration of the experiments (even while the solution
evolves as a perturbed degenerate 3-phase state (with two
instabilities). In contrast, for U(1)

ε,c (x, t) the higher order
nonlinearities and damping excite all the modes. The solution
is characterized by the formation of complex critical points and
irregular behavior before stabilizing at t ≈ 40.

U(2,3)
ε,c (x, t) in the three UM regime

Figure 10A shows the surface
∣∣∣∣∣U(2,3)

ε,c (x, t)
∣∣∣∣∣ for 0< t < 100 for

initial data given by Eq. 11 with i, j � 2, 3.
The spectrum at t � 0 is as in Figure 9B. The perturbation

initially splits the double points λd2 and λd3 into λ ±
2 and λ ±

3 that
correspond to a left and right modulated traveling modes,
respectively. The new feature here is that the first complex
double point, λd1 , splits at higher order into λ ±

1 (see the
analysis in Section 4 showing that a multi-mode perturbation
in a higher UM regime introduces new resonances not seen with

FIGURE 8 | Two UM regime: (A)
∣∣∣∣∣U(1,2)

ε,c (x, t)
∣∣∣∣∣ for 0≤ t≤100 and spectrum at (B) t � 1.5, (C) t � 15.84, (D) t � 17.4, (E) t � 57.5, and η(t) for U(1,2)

ε,c (x, t)with f1(x, t)
when (F) ρ � 0, τ � −2 (the uncoalesced SPB), (G) ρ � 0.665, τ � 1 (the coalesced SPB).
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single mode perturbations). The higher order splitting is visible in
Figure 10B at t � 10.5.

Complex double points are not observed in the spectral
evolution for t > 0.The formation of complex critical points in
the spectrum occurs frequently as shown, for example, in
Figure 10C and Figure 10D. Since the amplitude of the
background state at a � 0.7 is initially very close to the 4 UM
regime, in this example we observe that nearby real double points
are noticeably split by the perturbation. Figure 10E shows the
spectrum at t � 68.4 when the last complex critical point forms.
This is reflected in Figure 10G which shows η(t) saturates at
ts ≈ 68. Each of the bursts of growth in η(t) can be correlated with
a complex critical point crossing. As time evolves disspiation
diminshes the strength of the instability captured by the complex
critical points or complex double points. U(2,3)

ε,c (x, t) exhibits
quite rich and compex dynamics before damping saturates the
instabilities and it’s behavior is not easy to characterize as when
dealing with the perturbed SPBs in the N � 1, 2 UM regimes. For
t > ts the evolution of U(2,3)

ε,c (x, t) may be characterized as a
continuous deformation of a stable 7-phase solution
(Figure 10F).

As a comparison, U(1,2)
ε,c (x, t) and U(1,3)

ε,c (x, t) exhibit shorter
term irregular behavior with all the dominant modes excited and
they stabilize at t ≈ 15, 18. respectively. U(2,3)

ε,c (x, t) was observed
to take longer to stabilize due to the higher order splitting in λd1.

The exact nature of the instability associated with complex
critical points in under investigation. They may be weaker than
the exponential instabilities associated with complex double
points but the evolution of U(2,3)

ε,c (x, t) illustrates their
cumulative impact can be significant.

4 PERTURBATION ANALYSIS

While examining the route to stability of the SPBs under the
damped HONLS several novel results arose. One feature was
that the instabilities of nonresonant modes persist longer than
the instabilities of the resonant modes. We are interested in
the fate of complex double points under noneven
perturbations induced by HONLS as they characterize the
SPB. Following the perturbation analysis in [39] used to
determine the O(ε) splitting of double points for single
mode perturbations, we carry the analysis to higher order
for noneven multi mode perturbations of the SPBs. We find 1)
additional modes resonate with the perturbation and 2)
complex double points associated with nonresonant modes
remain closed.

To obtain linearized initial conditions for the one and two
mode SPBs we use the Hirota formulation of the SPBs [40]. For
example for the one mode SPB one obtains,

FIGURE 9 | Three UM regime: (A)
∣∣∣∣∣U(2)

ε,c (x, t)
∣∣∣∣∣ for 0≤ t≤100 and Spectrum at (B) t � 0, (C) t � 4.7, (D) t � 36.6, (E) t � 42.8, (F) t � 85 and (G) η(t) for f1(x, t),

δ � 10−6 , . . . , 10− 5.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 63389012

Schober and Islas Stabilization of Damped HONLS Solutions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


u(j)(x, t) � ae2ia
2t
1 + 2e2iθj+Ωj t+c cos μjx + A12e2(2iθj+Ωj t+c)

1 + 2eΩj t+c cos μjx + A12e2(Ωj t+c) (14)

where μj � 2πj/L, Ωj � μj

�������
4a2 − μ2j

√
, sin θj � μj/2a, A12 � sec2θj,

and γ is an arbitrary phase.
The appropriate linearized initial conditions for the one and

two mode SPBs, u(i)(x, 0) and u(i,j)(x, 0) respectively, are
obtained by choosing t and γ such that ~εs � 4i sin θs eΩst+c,
s � i, j, are small. After neglecting second-order terms we obtain:

u(j)(x, 0) � a(1 + ~εjeiθj cos μjx) (15)

u(i,j)(x, 0) � a(1 + ~εi eiθi cos μix + ~εj eiθj cos μjx) (16)

The damped HONLS yields the following noneven first order
approximation for small time,

u(j)(x, h) � a[1 + ~εj(eiθj cos μjx + rje
iϕj sin μjx)] (17)

u(i,j)(x, h) � a[1 + ~εi(eiθi cos μix + ri e
iϕi sin μix) + ~εj(eiθj cos μjx

+ rje
iϕj sin μjx)]

(18)

where θs ≠ ϕs and a,~εs, rs are functions of h and the damped
HONLS parameters ϵ and γ, for s � i, j. For simplicity we set ε �
~εs and suppress their explicit dependence on ε, c:

u� a+ ε[eiθi cosμix+ rieiϕi sinμix+Q(eiθj cosμjx+ rjeiϕj sinμjx)]
� a+ εu(1)

(19)

where rs ≠ 0 and Q can be 0 or 1, depending on whether a one or
two mode SPB is under consideration.

Since Δ(λ, u) and the eigenfunctions vn � [ vn1
vn2

] are analytic

functions of their arguments, at the double points λn we assume
the following expansions:

vn � v(0)n + εv(1)n + ε2v(2)n +/ (20)

λn � λ(0)n + ελ(1)n + ε2λ(2)n +/ (21)

Substituting these expansions into Eq. 25we obtain the following:

O(ε0) : Lv(0)n � 0 (22)

O(ε1) : Lv(1)n � [ −iλ(1)n v(0)n1 + u(1)v(0)n2

−iλ(1)n v(0)n2 + u(1)pv(0)n1

] ≡ F (23)

FIGURE 10 | Three UM regime: (A)
∣∣∣∣∣U(2,3)

ε,c (x, t)
∣∣∣∣∣ and Spectrum at (B) t � 10.5, (C) t � 14.78, (D) t � 24.96, (E) t � 68.38, (F) t � 69.9, and (G) η(t) for f1(x, t),

δ � 10−5 , . . . , 10− 4 and c � 0.01.
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O(ε2) : Lv(2)n � [ −iλ(1)n v(1)n1 − iλ(2)n v(0)n1 + u(1)v(1)n2

−iλ(1)n v(1)n2 − iλ(2)n v(0)n2 + u(1)pv(1)n1

] ≡ G (24)

where

L � [ z/zx + iλ(0)n −a
−a −z/zx + iλ(0)n

] (25)

The leading order Eq. 22 provides the spectrum for the Stokes
wave. At the double points λ(0)n the two dimensional eigenspace is
spanned by the eigenfunctions

ϕ ±
n � e ± iknx⎡⎢⎢⎢⎢⎢⎣ 1

i
a
( ± kn + λn)

⎤⎥⎥⎥⎥⎥⎦ (26)

where (λ(0)n )2 � k2n − a2, kn � nπ/L, and the general solution is
given by

v(0)n � A+ϕ+
n + A−ϕ−

n

4.1 First Order Results
For periodic v, the solvability condition for the system Lv � F �
[ F1
F2
] is given by the orthogonality condition

∫L

0
(F1wp

1 + F2w
p
2) � 0

for all w in the nullspace of the Hermitian operator

LH � [−z/zx − iλpn −a
−a z/zx − iλpn

]
At the double points the nullspace of LH is spanned by the

eigenfunctions [ ϕ ±
n2

ϕ ±
n1
]p and the orthogonality condition becomes

∫L

0
(F1ϕ ±

n2 + F2ϕ
±
n1 )dx � 0 (27)

Applying this orthogonality condition to Eq. 23 yields the
system of equations

[T+ T
T T−

][ A+

A− ] � 0

where

T � 2λ(0)n λ(1)n /a (28)

T ± � −1
2

⎧⎪⎪⎨⎪⎪⎩
( ± kn + λn

a
)2(eiθn ± irne

iϕn) − (e− iθn ± irne
− iϕn) n � i, j

0 n≠ i, j

(29)

Non trivial solutions A ± are obtained only at the complex
double points λn, n � i, j at which the SPB was constructed
providing the first order correction

(λ(1)n )2 �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2

4λ2n
[sin(ωn + θn)sin(ωn − θn)

+ r2n sin(ωn + ϕn)sin(ωn − ϕn) n � i, j

+ irn sin(ϕn − θn)sin 2ωn]
0 n≠ i, j

(30)

where tanωn � Im(λ(0)n )/kn and θs ≠ ϕs ± nπ for s � i, j. As a
result λ(1)n � ± r1/2eip/2 where 0< p< 2π and the double point
splits asymmetrically in any direction. Examining Δ in a
neighborhood of u(0) we find that when u(1) resonates with a
particular mode, the band of continuous spectrum along the
imaginary axis splits asymmetrically into two disjoint bands in
the upper half plane. The other double points do not experience
an O(ε) correction.

The spectral configuration is determind by the location of
λ( ± )
n � λ(0) + ελ(1). λ+n determines the speed and direction of the
associated phase. For example, in the one complex double point
regime there are only two spectral configurations associated with
noneven perturbation: 1) For 0< p< π, Re λ+ > 0 and the upper
band of spctrum lies in the first quadrant. The wave form is
characterized by a single modulated mode traveling to the right.
2) For π < p< 2π, Re λ+ < 0, the upper band of spectrum is in the
second quadrant, and the wave form is characterized by a single
modulated mode traveling to the left.

As observed in the damped HONLS numerical experiments,
the spectrum evolves between two distinct configurations when
the continuous spectrum develops a complex critical point (not
double point) due to the formation of transverse bands which
then splits.

4.2 Second Order Results
Determining the O(ε2) corrections to the double points λn for
n≠ i, j, requires determining the eigenfunctions at O(ε). When
λ(1)n � 0 the right hand side of Eq. 23 simplifies to

Lv(1)n � F � [ 0 u(1)

u(1)p 0
]v(0)n � [ u(1)(A+ϕ+

n2 + A−ϕ−
n2)

u(1)p(A+ϕ+
n1 + A−ϕ−

n1) ]
where ϕ ±

n is given by Eq. 26. We assume v(1)n � v(0)n +∑(1)
n where

∑(1)
n

� Aie
i(kn+μi)x + Bie

i(kn+μi)x + Cie
−i(kn−μi)x + Die

−i(kn+μi)x

+ Aje
i(kn+μj)x + Bje

i(kn−μj)x + Cje
−i(kn−μj)x + Dje

−i(kn+μj)x
(31)

Substituting ∑(1)
n into Eq. 23 we find the coefficient vectors to

be (with n≠ s, s � i, j)

As � A+/2
μ2s + 2knμs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
a
[2(cos θs − sin ϕs)a2 + (eiθs + ieiϕs)(kn + λn)μs]

i[2(cos θs − sinϕs)(kn + λn) + (eiθs − ieiϕs)μs]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bs � A+/2
μ2s − 2knμs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
a
[2(cos θs − sin ϕs)a2 − (eiθs + ieiϕs)(kn + λn)μs]

i[2(cos θs − sin ϕs)(kn + λn) − (eiθs − ieiϕs)μs]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cs � A−/2
μ2s − 2knμs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
a
[2(cos θs − sin ϕs)a2 + (eiθs + ieiϕs)(−kn + λn)μs]

i[2(cos θs − sin ϕs)(−kn + λn) + (eiθs − ieiϕs)μs]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ds � A−/2
μ2s + 2knμs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
a
[2(cos θs − sinϕs)a2 − (eiθs + ieiϕs)(−kn + λn)μs]

i[2(cos θs − sinϕs)(−kn + λn) − (eiθs − ieiϕs)μs]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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With v(1)n in hand, applying the orthogonality condition to Eq. 24
yields the system

[ α+
n λ(2)n − βn

λ(2)n − βn α−n
][ A+

A− ] � 0 (32)

giving an O(ε2) correction of the form

(λ(2)n − βn)2 � { α+nα
−
n n � 2i, 2j, i + j, j − i

0 for all other cases
(33)

Consequently only the double points λ(0)n with n � 2i, 2j, i + j,
or j − i experience an O(ε2) splitting. All other double points
experience an O(ε2) translation. This calculation can be carried
to higher order O(εm). In the simpler case of a damped single
mode SPB, U(j)

ε,c(x, t), only λ(0)n corresponding to the resonant
mode n � mjwill split at orderO(εm)whereas the splitting is zero
for λ(0)n , n≠mj [41].

For the two mode damped SPB U(2,3)
ε,c in the 3 UM regime we

find λd2 and λd3 will split at O(ε). The mode associated with λ(0)1
resonates also with u(1) atO(ε2). All 3 complex double points split,
in contrast with the onemodeU(2)

ε,c where λ(0)1 and λ(0)3 do not split.

5 CONCLUSIONS

In this paper we investigated the route to stability for even
N-mode SPB solutions of the NLS equation in the framework
of a damped HONLS equation using the Floquet spectral theory
of the NLS equation. We found novel instabilities emerging in the
symmetry broken solution space of the damped HONLS which
are not captured by complex double points in the Floquet
spectrum. We developed a broadened Floquet characterization
of instabilities by examining the stability of an even 3-phase
solution of the NLS equation with respect to noneven
perturbations. We found the transverse complex critical point
in its spectrum is associated with an instability which is not
excited when evenness is imposed.

The association of instabilities excited by symmetry breaking
with complex critical points of the Floquet spectrum was
corroborated by the numerical experiments. If one of the
complex double points present at t � 0 splits in the damped
HONLS system, the subsequent spectral evolution involves
repeated formation and splitting of complex critical points (not
double points) which we correlated with the observed instabilities.

In the numerical study we presented experiments using
fixed values of the perturbation parameters ϵ and γ. As these
parameters are varied fewer or more critical points may form

and the time the damped HONLS solution stabilizes may vary
but the following interesting results are independent of their
specific value: 2) Instabilities excited by symmetry breaking are
associated with complex critical points. 2) Solutions stabilize
once damping eliminates all the complex critical points and
complex double points in the spectral deomposition of the
damped HONLS data. 3) Only certain modes resonate with the
damped HONLS perturbation. Resonant modes aid in
stabilizing the solution. If nonresonant modes are present,
their instabilities persist and appear to organize the dynamics
on a longer timescale.

Each burst of growth in η(t) can be correlated with the
emergence of a complex critical point. The numerics suggest
the instabilities associated with complex critical points may be
weaker than those associated with complex double points. Even
so the exact nature of the instability warrants further
investigation. As demonstrated by the evolution of U(2,3)

ε,c (x, t)
their cumulative impact can be significant.

Via a short time perturbation analysis we find that resonant
complex double points split producing disjoint asymmetric
bands, while the nonresonant complex double points remain
closed as they move along the bands of spectrum, corroborating
the initial spectral evolutions observed in the numerical
experiments. Further, the nonresonant double points remain
closed for the duration of the experiments, beyond the time-
frame of the short time analysis, even though the solution evolves
as a damped asymmetric multi-phase state.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CS was responsible for the theoretical framework, calculations,
and the writing of the manuscript. CS and AI performed the
numerical simulations. Both authors approve the manuscript.

FUNDING

This work was partially supported by Simons Foundation, Grant
No. #527565.

REFERENCES

1. Stokes GG. On the theory of oscillatory waves. Trans Cambridge Philos Soc
(1847) 8:441–73.

2. Benjamin TB, Feir JE. The disintegration of wave trains in deep water. J Fl Mech
(1967) 27:417–30. doi:10.1017/s002211206700045x

3. Zakharov VE. Stability of periodic waves of finite amplitude on the surface
of a deep fluid. J Appl Mech Tech Phys (1968) 9:190–4. doi:10.1007/
BF00913182

4. Peregrine D.Water waves, nonlinear Schrödinger equations and their solutions.
J Austral Math Soc Ser B (1983) 25:16–43. doi:10.1017/s0334270000003891

5. Dysthe KB, Trulsen K. Note on breather type solutions of the NLS as models for
freak-waves. Physica Scripta (1999) T82:48–52. doi:10.1238/physica.topical.
082a00048

6. Kibbler B, Fatome J, Finot C, Millot G, Dias F, Genty G, et al. The Peregrine
soliton in nonlinear fibre optics. Nat Phys (2010) 6:790–5. doi:10.1038/
nphys1740

7. Kharif C, Pelinovsky E, Slunyaev A. Rogue waves in the ocean. Berlin Heidelberg:
Springer-Verlag (2009).

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 63389015

Schober and Islas Stabilization of Damped HONLS Solutions

https://doi.org/10.1017/s002211206700045x
https://doi.org/10.1007/BF00913182
https://doi.org/10.1007/BF00913182
https://doi.org/10.1017/s0334270000003891
https://doi.org/10.1238/physica.topical.082a00048
https://doi.org/10.1238/physica.topical.082a00048
https://doi.org/10.1038/nphys1740
https://doi.org/10.1038/nphys1740
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


8. Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT. Rogue waves and
their generating mechanisms in different physical contexts. Phys Rep (2013)
528:47–89. doi:10.1016/j.physrep.2013.03.001

9. Solli DR, Ropers C, Koonath P, Jalali B. Optical rogue waves.Nature (2007) 450:
1054–7. doi:10.1038/nature06402

10. Osborne A, Onorato M, Serio M. The nonlinear dynamics of rogue waves and
holes in deep-water gravity wave train. Phys Lett A (2000) 275:386–93. doi:10.
1016/s0375-9601(00)00575-2

11. Calini A, Schober CM. Homoclinic chaos increases the likelihood of rogue wave
formation. Phys Lett A (2002) 298:335–49. doi:10.1016/s0375-9601(02)00576-5

12. Akhmediev N, Soto-Crespo JM, Ankiewicz A. Extreme waves that appear from
nowhere: on the nature of rogue waves. Phys Lett A (2009) 373:2137–45.
doi:10.1016/j.physleta.2009.04.023

13. Akhmediev NN, Eleonskii VM, Kulagin NE. Exact first-order solutions of the
nonlinear Schrödinger equation. Theor Math Phys (Ussr) (1987) 72:809–18.
doi:10.1007/bf01017105

14. Calini A, Schober CM. Characterizing JONSWAP rogue waves and their
statistics via inverse spectral data.Wave Motion (2017) 71:5–17. doi:10.1016/j.
wavemoti.2016.06.007

15. Chen J, Pelinovsky D. Rogue periodic waves of the focusing nonlinear
Schrödinger equation. Proc Math Phy Eng Sci (2018) 474:20170814. doi:10.
1098/rspa.2017.0814

16. Chen J, Pelinovsky DE, White RE. Rogue waves on the double-periodic
background in the focusing nonlinear Schrödinger equation. Phys Rev E
(2019) 100:052219. doi:10.1103/physreve.100.052219

17. Calini A, Schober CM. Numerical investigation of stability of breather-type
solutions of the nonlinear Schrödinger equation. Nat Hazards Earth Syst Sci
(2014) 14:1431–40. doi:10.5194/nhess-14-1431-2014

18. Segur H, Henderson D, Carter J, Hammack J, Li C, Pheiff D, et al. Stabilizing
the benjamin-feir instability. J Fluid Mech (2005) 539:229–71. doi:10.1017/
s002211200500563x

19. Chabchoub A, Hoffmann NP, Akhmediev N. Rogue wave observation in a water
wave tank. Phys Rev Lett (2011) 106:1–4. doi:10.1103/physrevlett.106.204502

20. Fotopoulos G, Frantzeskakis DJ, Karachalios NI, Kevrekidis PG, Koukouloyannis
V, Vetas K. Extreme wave events for a nonlinear Schrödinger equation with linear
damping and Gaussian driving. Commun Nonlinear Sci Numer Simul (2019) 82:
105058. doi:10.1016/j.cnsns.2019.105058

21. Coppini F, Grinevich PG, Santini PM. Effect of a small loss or gain in the
periodic nonlinear Schrödinger anomalous wave dynamics. Phys Rev E (2020)
101:032204. doi:10.1103/physreve.101.032204

22. KimmounO, Hsu HC, Branger H, Li MS, Chen YY, Kharif C, et al. Modulation
instability and phase-shifted Fermi-Pasta-Ulam recurrence. Sci Rep (2016) 6:
28516. doi:10.1038/srep28516

23. Schober CM, Islas AL. The routes to stability of spatially periodic solutions of
the linearly damped NLS equation. The Eur Phys J Plus (2020) 135:1–20.
doi:10.1140/epjp/s13360-020-00660-w

24. Dysthe K. Note on a modification to the nonlinear Schrödinger equation for
deep water. Proc R Soc London Ser A Math Phys Sci (1979) 369:105–14. doi:10.
1098/rspa.1979.0154

25. Lo E, Mei CC. A numerical study of water wave modulation based on a higher-
order nonlinear Schrödinger equation. J Fluid Mech (2020) 150:395–416.
doi:10.1017/s0022112085000180

26. Ablowitz MJ, Herbst B, Schober CM. Long-time dynamics of the modulational
instability of deep water waves. Physica D (2001) 152-153:416–33. doi:10.1016/
s0167-2789(01)00183-x

27. Gramstad O, Trulsen K. Hamiltonian form of the modified nonlinear
Schrödinger equation for gravity waves on arbitrary depth. J Fluid Mech
(2011) 670:404–26. doi:10.1017/s0022112010005355

28. Zaug C, Carter JD. Dissipative models of swell propagation across the Pacific.
arXiv. Preprint: arXiv:2005.06635. doi:10.1002/essoar.10503175.1

29. Carter JD, Henderson D, Butterfield I. A comparison of frequency downshift
models of wave trains on deep water. Phys Fluids (2019) 31:013103. doi:10.
1063/1.5063016

30. Deconinck B, Segal BL. The stability spectrum for elliptic solutions to the
focusing NLS equation. Physica D (2017) 346:1–19. doi:10.1016/j.physd.2017.
01.004

31. Zakharov VE, Shabat AB. Exact theory of two-dimensional self-focusing and
onedimensional self-modulation of waves in nonlinear media. Soviet Phys
JETP (1972) 34:62–9.

32. Ercolani N, Forest MG, McLaughlin DW. Geometry of the
modulational instability. iii. homoclinic orbits for the periodic Sine-
Gordon equation. Physica D (1990) 43:349–84. doi:10.1016/0167-
2789(90)90142-c

33. McLaughlin DW, Overman EA.Whiskered tori for integrable pdes and chaotic
behavior in near integrable pdes. Surv Appl Math (1995) 1:83–203. doi:10.
1007/978-1-4899-0436-2_2

34. Overman EA, II, McLaughlin DW, Bishop AR. Coherence and chaos in the
driven damped Sine-Gordon equation: measurement of the soliton spectrum.
Physica D (1986) 19:1–14. doi:10.1016/0167-2789(86)90052-7

35. Lu X, Ma WX, Yu J, Khalique CM. Solitary waves with the Madelung fluid
description: a generalized derivative nonlinear Schrödinger equation.
Commun Nonlinear Sci Numer Simul (2016) 31:40–6. doi:10.1016/j.cnsns.
2015.07.007

36. Sattinger DH, Zurkowski VD. Gauge theory of BÃcklund transformations. ii.
Physica D Nonlinear Phenom (1987) 26:225–50. doi:10.1016/0167-2789(87)
90227-2

37. Trefethen LN. Spectral methods. Philadelphia: SIAM (2000).
38. Grinevich PG, Santini PM. The finite gap method and the analytic

description of the exact rogue wave recurrence in the periodic NLS
Cauchy problem. Nonlinearity (2018) 31:5258–308. doi:10.1088/1361-
6544/aaddcf

39. Ablowitz MJ, Herbst BM, Schober CM. Computational chaos in the nonlinear
Schrödinger equation without homoclinic crossings. Physica A (1996) 228:
212–35. doi:10.1016/0378-4371(95)00434-3

40. Hirota R. Lecture notes in mathematics. New York, NY: Springer-Verlag
(1976), 515.

41. Ablowitz MJ, Schober CM. Effective chaos in the nonlinear Schrödinger
equation. Contemp Math (1994) 172:253. doi:10.1090/conm/172/01808

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Schober and Islas. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 63389016

Schober and Islas Stabilization of Damped HONLS Solutions

https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1038/nature06402
https://doi.org/10.1016/s0375-9601(00)00575-2
https://doi.org/10.1016/s0375-9601(00)00575-2
https://doi.org/10.1016/s0375-9601(02)00576-5
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1007/bf01017105
https://doi.org/10.1016/j.wavemoti.2016.06.007
https://doi.org/10.1016/j.wavemoti.2016.06.007
https://doi.org/10.1098/rspa.2017.0814
https://doi.org/10.1098/rspa.2017.0814
https://doi.org/10.1103/physreve.100.052219
https://doi.org/10.5194/nhess-14-1431-2014
https://doi.org/10.1017/s002211200500563x
https://doi.org/10.1017/s002211200500563x
https://doi.org/10.1103/physrevlett.106.204502
https://doi.org/10.1016/j.cnsns.2019.105058
https://doi.org/10.1103/physreve.101.032204
https://doi.org/10.1038/srep28516
https://doi.org/10.1140/epjp/s13360-020-00660-w
https://doi.org/10.1098/rspa.1979.0154
https://doi.org/10.1098/rspa.1979.0154
https://doi.org/10.1017/s0022112085000180
https://doi.org/10.1016/s0167-2789(01)00183-x
https://doi.org/10.1016/s0167-2789(01)00183-x
https://doi.org/10.1017/s0022112010005355
http://arXiv:2005.06635
https://doi.org/10.1002/essoar.10503175.1
https://doi.org/10.1063/1.5063016
https://doi.org/10.1063/1.5063016
https://doi.org/10.1016/j.physd.2017.01.004
https://doi.org/10.1016/j.physd.2017.01.004
https://doi.org/10.1016/0167-2789(90)90142-c
https://doi.org/10.1016/0167-2789(90)90142-c
https://doi.org/10.1007/978-1-4899-0436-2_2
https://doi.org/10.1007/978-1-4899-0436-2_2
https://doi.org/10.1016/0167-2789(86)90052-7
https://doi.org/10.1016/j.cnsns.2015.07.007
https://doi.org/10.1016/j.cnsns.2015.07.007
https://doi.org/10.1016/0167-2789(87)90227-2
https://doi.org/10.1016/0167-2789(87)90227-2
https://doi.org/10.1088/1361-6544/aaddcf
https://doi.org/10.1088/1361-6544/aaddcf
https://doi.org/10.1016/0378-4371(95)00434-3
https://doi.org/10.1090/conm/172/01808
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	On the Stabilization of Breather-type Solutions of the Damped Higher Order Nonlinear Schrödinger Equation
	1 Introduction
	2 Analytical Framework
	2.1 A Broadened Floquet Spectral Characterization of Instabilities
	Symmetric Perturbations of Initial Data
	Asymmetric Perturbations of Initial Data

	2.2 Spatially Periodic Breather Solutions of the NLS Equation

	3 Numerical Investigation of Routes to Stability OF SPBS IN the Damped Higher Order NLS Equation
	3.1 Damped HONLS SPB in the One Unstable Mode Regime
	Uε,γ(1)(x,t) in the one UM regime

	3.2 Damped HONLS SPBs in the Two Unstable Mode Regime
	Uε,γ(1)(x,t) in the two UM regime
	Uε,γ(2)(x,t) in the two UM regime
	Uε,γ(1,2)(x,t) in the two UM regime

	3.3 Damped SPBs in the Three Unstable Mode Regime
	Uε,γ(2)(x,t) in the three UM regime
	Uε,γ(2,3)(x,t) in the three UM regime


	4 Perturbation Analysis
	4.1 First Order Results
	4.2 Second Order Results

	5 Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


