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Molecular simulations such as Molecular Dynamics (MD) and Monte Carlo (MC) have
gained increasing importance in the explanation of various physicochemical and
biochemical phenomena in soft matter and help elucidate processes that often cannot
be understood by experimental techniques alone. While there is a large number of
computational studies and developments in MD, MC simulations are less widely used,
but they offer a powerful alternative approach to explore the potential energy surface of
complex systems in a way that is not feasible for atomistic MD, which still remains
fundamentally constrained by the femtosecond timestep, limiting investigations of many
essential processes. This paper provides a review of the current developments of a MC
based code, SIMONA, which is an efficient and versatile tool to perform large-scale
conformational sampling of different kinds of (macro)molecules. We provide an overview of
the approach, and an application to soft-matter problems, such as protocols for protein
and polymer folding, physical vapor deposition of functional organic molecules and
complex oligomer modeling. SIMONA offers solutions to different levels of
programming expertise (basic, expert and developer level) through the usage of a
designed Graphical Interface pre-processor, a convenient coding environment using
XML and the development of new algorithms using Python/C++. We believe that the
development of versatile codes which can be used in different fields, along with related
protocols and data analysis, paves the way for wider use of MC methods. SIMONA is
available for download under http://int.kit.edu/nanosim/simona.
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INTRODUCTION

Over the past decades, computer simulation methods have been extensively used to explore the
potential energy surface (PES) in molecular systems in order to get valuable thermodynamic
information. In the study of large atomistic systems, Molecular Dynamics (MD) and Monte
Carlo (MC) simulations are the most popular and useful tools to contribute to the
understanding of physico-chemical phenomena at the nanoscale level. The common ground of
both methods is the use of specially parameterized potential functions, i.e., Force Fields (FF), that
describe the system of interest and its behavior at finite conditions. Nevertheless, they use different
approaches. MD trajectories are the result of solving the integration of Newton’s laws of motion
obtaining several configurations or states of a molecule that depend on the previous state describing
the atomic positions and velocities over the simulation time [1]. This approach is suitable to study
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dynamical processes, such as protein stabilization or binding of
receptor-ligand complexes during a limited time scale. The
challenge in simulating such processes is the trapping of
conformations in local minimum of the PES and rare
transitions between minima, leading to poor sampling of the
wide conformational space of a molecular system. This can be
overcome in MC simulations with Markov chains (MCMC),
where the state/conformation of a molecule does not depend
on the previous state, i.e., there is no memory, resulting in the
sampling of different local minima potentially being faster than
MD [2]. MD integration algorithms become unstable at large
time steps. This limitation can be solved using MC simulations
where applying the right “moves” can guide the system to
different local minima. In MC simulations, novel
conformations are created by applying moves affecting the
whole structure (translations, rotations and dihedral rotations)
to generate candidates that could be accepted/rejected according
to energy acceptance criteria. The move-construction is a key
feature affecting the efficiency of the MC approach. Single and
local moves are not sufficient for complex systems where the
acceptance rate commonly shows an exponential decrease for
high energy intermediates and the efficiency of the method
decreases due to the big number of steps required. These types
of moves involve just one or a few degrees of freedom of the
system whereas “collective”moves involve many more degrees of
freedom from the entire configurational space. In systems where
collective effects play a major role making “collective” moves is
essential in finding moves which fulfill the acceptance criteria.
Methods with a force-biased move construction, using an energy
estimator to increase the MC simulation efficiency, are suitable to
generate moves with many degrees of freedom. Examples are
forced bias MC [3, 4] and AROMoCa (Acceptance Rate
Optimized Monte-Carlo) approach [5], which is a generic MC
protocol that has been proven to be effective compared with
generic MC methods.

The conformations of a condensed-phase system can be
significantly affected by the surrounding. To accurately predict
the conformational space of a molecule in specific conditions, the
implementation of solvation methods is necessary but
challenging. For MD simulations, it is possible to simulate the
solvent explicitly but for MC simulations, only a small part of the
system is modulated in a single move. Explicit solvation in MC
increases the number of degrees of freedom which, in many cases,
makes efficient algorithms for multi-particle moves too
expensive. Even though some strategies to add explicit
solvation in MC simulation have been proposed in MC_PRO
[6, 7], the solute conformations in MC simulations can be
predicted faster using implicit solvation methods in order to
achieve accurate convergence. The most widely used implicit
solvent models that provide approximate descriptions of the
effect of the solvent on the solute are Poisson-Boltzmann (PB),
Generalized Born (GB) and Solvent-accessible Surface Area
(SASA) models.

PB solvation method, which solves the PB equation
numerically, describes the electrostatic interactions of charges
in a dielectric continuum. The GB method uses a high dielectric
continuum to represent the solvent and substrate as a spherical

point of charge with a low dielectric cavity to obtain potential
energy values [8]. While the PB method is an accurate model for
calculating polar solvation energy, it is not widely used as the
computational cost of solving the PB equation and its derivatives
is very high [9]. Instead, GB-based calculations that were shown
to have a reasonably accurate and cost-effective performance are
more popular [10]. GB efficiency can also be improved using a
faster method to calculate the Born radii for large scale
biomacromolecules using octree integration and Barnes−Hut
tree code scheme [11], as is discussed in the SIMONA Engine
section.

Many other approaches exist for increasing the computational
efficiency and for speeding up conformational sampling in
atomistic MC simulations. Replica Exchange MC (REMC) or
Hyper-parallel tempering MC has been used to study phase
transition on Lennard-Jones fluids [12, 13]. The REMC
method performs temperature jumps in several independent
simulations copies generated with MC simulations,
maintaining the equilibrium ensemble distribution of the
temperatures in order to get a transition probability that
allows the exchange between the ensembles of the simulations
[14]. Another approach is Multiple Try MC, which is a variant of
the classical Metropolis algorithm with the advantage that in each
new step the selection of the new conformation is over several
proposals improving the exploration over a large zone of the
sample space [15, 16]. Also, some studies employed advanced
protocols to simulate open systems such as simulation of surface
adsorption. Grand Canonical Ensemble MC simulations are
affected by the impediment regarding the insertion/deletion
probability of molecules near the surface, especially at higher
densities due to probable overlaps between the adsorbed
molecules and the new molecule unit [17]. Methods such as
Configurational Bias MC (CBMC) [18, 19] and Continuous
Fractional Component MC (CFCMC) [20–22] method had
been proposed for adsorption simulations. The CBMC method
tries to insert the gas phase optimized molecules with a growth
process that has the preference to a minimum energy
configuration, meanwhile CFCMC insert molecules in a
fractional way considering the absorbed molecules as in a
framework, scaling the strength of the neighbor interactions to
decide the insertion or deletion of molecule units. Torres-Knoop
et al. [23] have compared both methods investigating the
adsorption of alkanes in Fe2(BDP), small rigid molecules on
MgMOF-74 and xylenes in MTW-type zeolite showing that
CFCMC is superior to CBMC in accuracy and efficiency.
Furthermore, they proposed a hybrid method combining both
methods achieving higher insertion acceptance ratios [23].

Several software packages have been developed to performMC
simulations for specific systems implementing different MC
algorithms. Popular packages were created to perform de novo
design on peptides and protein modeling, such as Rosetta with
structural-based potential function [24] or MC_PRO (Monte
Carlo for Proteins) that is part of BOSS (Biochemical and
Organic Simulation System) able to use the OPLS-AA FF for
the MC simulation of proteins [25]. In the same way, other
programs have been developed for MC simulation of soft
materials namely, RASPA MC package which is capable of
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performing simulations on the adsorption of organic molecules
[26] and FEASST a Python module to perform Wang–Landau
MC, transition-matrix MC and Metropolis MC simulations [27].
Grand Canonical MC (GCMC) has been implemented in
LAMMPS, one of the most widely used and flexible open-
source MD software packages. However, it does not
incorporate enhanced sampling methods and its application is
limited to specific problems such as hybrid Monte Carlo (HMC)
simulations [28, 29]. Many packages are specifically oriented to a
particular MC application and specific soft matter system
(specifically designed MC FF is necessary) or are limited to
users with advanced programming knowledge.

Here, we present a generic simulation package for stochastic
simulations, SIMONA (Simulation Molecular and Nanoscale
System) [30]. SIMONA code was designed to offer a versatile,
efficient and adaptable tool to perform MC simulations in
different molecular systems such as polymers, including bio-
polymers (such as proteins or DNA), synthetic organic
polymers, and also single molecules and their deposition on
films. The paper is organized as follows: the first part of this
paper explains the basis of the preprocessor steps, its adaptable
engine and its performance. In the second part, we present
representative applications of SIMONA in various fields
(Figure 1) including 1) MC simulation of protein folding and
sampling conformational ensembles using two different implicit
solvation approaches providing thermodynamic averages and
understanding on major kinetic processes, 2) MC simulations
of reversible self-assembly of single-chain polymers inspired from
protein folding, with designed donor-acceptor terminals
providing a full thermodynamic characterization of their
folding behavior, 3) a special supporting tool for polymer
modeling, the Oligomer Encoder, which is able to create code-
based polymer sequences from SMILES monomer codes for
further SIMONA MC simulations, 4) deposition of molecules
on a substrate or an empty simulation box using a sticking
potential and investigating their interaction using electrostatic
and Lennard-Jones grids, 5) the implementation of a layered
implicit membrane model (SLIM) to study membrane proteins
using MC simulations and application of SIMONA as a

complement to bioinformatics programs to study the effect of
mutations on protein stability. These applications show
promising perspectives toward further code development and
usage with SIMONA.

SIMONA ENGINE

SIMONA can be used at different levels of programming
expertise (basic, expert or developer). The basic user level
allows users to perform generic MC simulations with
molecules parametrized with previously implemented methods
and force fields. The parameter files needed can be obtained from
EPQR files that must include partial charges and van der Waals
radii provided by the user and it will be converted in a SIMONA
parameter file with extension SPF (Structure Parameter File).
Coordinate inputs, such as PDB and mol2, are supported.
SIMONA offers a graphical user interface (GUI) to guide the
user in the configuration of the settings to perform the simulation
(Figure 2). The package includes Python tools to prepare the
input files required by the GUI and analyze the simulation output
files. Additionally, SIMONA is adapted to use GROMACS input
files to generate inputs for MC simulations.

The Generic Monte Carlo Simulation settings include the
selection of moves, which can be translation and rotation
moves. Rotational moves can be identified as “id moves”
which denote the dihedral locations where the moves are
going to be applied. Those ids are previously identified by
SIMONA and specified in the SPF file. Part of the simulation
settings must be provided by the user such as maximum angle
distribution and temperature regime for constant temperature
simulations or simulated annealing. The next step is the selection
of the Force Field (FF) terms that will describe the interactions of
the system and they will be used to calculate the conformational
energies. FF energy contributions such as van der Waals (vdW),
Coulomb or special physics-based FF are offered by SIMONA to
perform simulations on proteins. Finally, the user must provide
the simulation details, such as the number of the simulation steps
and the frequency of data storage. Before performing the MC
simulation, a global simulation input file is written in XML
format, where all the information about the system is
collected, it describes the system’s structural details,
movements and the MC algorithm that is going to be applied.

At the expert level it is possible to directly manipulate XML
files created by the preprocessor step. In Figure 3, the main parts
of the XML code, corresponding to the Coordinates specification,
the Structural moves definition, the FF terms and the Algorithm,
are shown. The modular structure of the XML is organized to
permit the creation of workflows, without modifying the C++
source code, to allow new features such as iterations,
administration of subtasks and applying a conditional
execution besides the standard protocols, such as nested MC
or Simulated Annealing, which are included in the GUI. These
special workflows can be achieved with logical statements on the
Algorithm part with keywords, such as Repeatedmoved,
TranformationSequence, SetDihedralRelativeRandom or
Absolute, MetropolisAcceptanceCriterion and others.

FIGURE 1 | Possible applications of SIMONA described in this review.
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Some molecular systems require a new force field
implementation to evaluate special interactions, such as
coordination bonds on metal-organic compounds or binding
energies of molecules interacting with a specific surface. For
this problem, the developer level in SIMONA offers a solution
to generate new FF terms. The new FF contributions can be
added, including new Python classes to call functions in the
source code written in object-oriented C++ engine, including a
Function Parser library that can convert text functions into C++
code from XML inputs. This procedure can be applied to
subgroups of atoms or more complex general schemes for (3,
4, 5,...N)-body interactions.

Two methods for MC move generation are provided in
SIMONA: the Generic Metropolis MC [31] and AROMoCa
[5]. The total rates of states (Γ) moving from a point p–p′,
Γ(p → p′) must be equal to the backwards rate Γ(p′ → p) to
satisfy the detailed balance condition. The transition probability,
W, can be expressed as a product of two parts π and ⍴ where π is
the probability that a move is constructed and ⍴ is the probability
that it is accepted.

W � π(p→ p′)ρ(p→ p′) (1)

If moves are drawn at random from a distribution of coordinates,
orientations, spins etc. then an acceptable approximation is that π
(p → p′) � π (p′ → p). Furthermore, the acceptance probability
can be chosen via the widely used Metropolis acceptance
criteria [32]:

ρ(p→ p′) �
⎧⎪⎪⎨⎪⎪⎩

exp(−ΔE
kbT

), ΔE < 0

1, ΔE ≥ 0
(2)

Here, the construction of each move is inefficient compared with
MD simulations because only one or a few degrees of freedom are

changed at once whereas in MD simulations all degrees of
freedom change simultaneously. Furthermore, in order to
reach thermodynamically relevant configurations collective
moves often need to be made. Such changes are often difficult
to propose as a sequence of local moves and efforts to construct
such moves in large systems may lead to low acceptance rates.

Another approach to satisfying detailed balance is by
postulating that ρ (p → p′) � ρ (p′ → p) � 1 i.e., a near
perfect move construction algorithm is needed where all
moves constructed will be accepted. Advanced sampling
schemes such as AROMoCa are able to increase the
acceptance rates achieved by identifying regions of the phase
space where the forces are high, and the system is out of
equilibrium and preferentially move there instead of to states
near equilibrium. An approach of this nature is viable for systems
the potential energy can be easily approximated at each point.
The major advantages of these accelerated schemes are much
higher acceptance rates and faster exploration of the
configurational space compared to the Metropolis MC methods.

In AROMoCa energy estimator for systems with classical
interactions, the change of the energy between both states
(ΔE) is approximated to the energy calculated with the Taylor
expansion of the energy using the force (F) and the displacement
(Δx). Since the evaluation of the forces and the probability of
accepting a move are high, the move is evaluated by the energy
acceptance criteria in order to accomplish the probability
distribution during the MC sampling. Every MC step with
AROMoCa is calculated in three main parts (Figure 4). First,
for each degree of freedom the probability to perform a
displacement between two maximum values (−Δxmax and
Δxmax) is calculated to have a set of moves. Second, a move is
picked up from the previous array that correspond to a new
displacement (Δxij) that is a fraction of the maximum
displacement used in the previous step. The selection is made

FIGURE 2 | Captions of SIMONA pre-processor and required steps using the GUI to generate SIMONA input files.
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from a uniform and random distribution equation to choose a
random coefficient. Finally, the moves with large forces and
probabilities are evaluated by the acceptance criteria [5]
(further details are in Ref. [5]).

To get an approximate potential of mean force from an
effective solvation model, the calculation with implicit
solvation models in SIMONA is currently separated into two
components: polar and non-polar interactions. Non-polar
contributions are the free energies in a SASA model, which
can account for hydrophobic/hydrophilic effects. Their
contribution is proportional to the surface area accessible to
the solvent (solvent accessible surface area, SASA). The
numerical evaluation of the accessible surface or volume of
solute using MC, involves a substantial amount of integration
points. POWERSASA is a C++ template library, available in the
SIMONA framework, that employs exact analytical formulas to
obtain the accessible surface and volume of molecules from the
creation of iterative power diagrams of groups of atoms [33]. It

was demonstrated that this approach is very stable and efficient
(linear scaling), enabling simulations of large molecular systems.

Polar contributions to the free solvation energy are commonly
calculated by the PB or GBmethod. As we mentioned before, GB-
based methods are more popular in MC simulations because of
their lower computational cost compared to PB-based methods.
However, since GB calculation captures a considerable part of the
computing effort in macromolecular simulations, development of
efficient implementation for faster GB models is still required
[34–37]. To increase the efficiency in the GB method, we have
developed PowerBorn, implemented in C++, which presents a
new method for Born radii calculation. It enhances the
performance of GB solvation method in SIMONA simulations
by creating an octree representation of the water region around
the molecule (supported by POWERSASA) by means of
subdividing the three-dimensional space and storing the data
related to each subspace. Finally, the Barnes−Hut tree code
scheme integration is performed walking through the octree.

FIGURE 3 | Example of Structure of XML SIMONA input file describing its main parts, such as the Configuration and coordinates, the Structural moves definition, FF
terms to describe the system interactions and the Algorithm related to the moves generation.
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The accuracy of this method was tested in relation to PB method
and a good agreement was observed for computed Born radii with
major correlation coefficients of 0.9978 and root-mean-square
error of ∼1% for polar solvation free energies [11].

In addition to the efficient MC simulation scheme, presented
above, SIMONA is implemented for parallel computing
architectures such as Open Multi-Processing (OpenMP). To
illustrate SIMONA’s performance, a benchmark with different
polymer chain lengths, i.e., 10-mer (280 atoms), 20-mer (344
atoms) and 30-mer (600 atoms) using OpenMP was performed
(Figure 5). The simulation times reached no more than 1–2 min
for 109 steps using a supercomputer module AMD EPYC
7702 64-Core Processor, suitable for extremely cheap
screening. The inverse relation of cores vs. CPU time in
Figure 5 shows that for the different system sizes, the
simulations get faster by increasing the number of cores,
however, for smaller system sizes, simulation speed reaches a
limit at 16 cores (Figure 5). The experience with the simulation
performance can be additionally enhanced by including
PLUMED libraries in calculation of properties such as
distances, angles, conformation energies etc. necessary for
further analysis [38, 39].

BIOMOLECULAR SIMULATIONS

Proteins are a very important group of biologically active
macromolecules, whose specific function is steered by small
conformational changes. The computational analysis of their
structure-property relationships is still a widely investigated
issue in modern science, therefore folding of proteins in

different environmental conditions and efficient sampling of
their conformational space are of extreme importance. Since a
conformational change of a protein and many natural processes
occur on timescale, ranging from microseconds to seconds, the
use of MD simulations remains fundamentally constrained by the
short individual timestep that arises from the discretization of the
underlying equations of motion, which hovers in the femtosecond
range for decades. The development of special-purpose
computers, e.g., by DE Shaw Research, has resulted in a
quantum-leap in performance and illustrated the potential of
the method and high importance of MD simulations [40–43].
Unfortunately, special-purpose computers are not publicly
accessible, therefore, there is an overwhelming majority of
researchers who could not and who cannot perform
competitive investigations.

Protein Folding
An MC-based simulation strategy, that can solve the underlying
challenge to simulate large-scale biomolecular conformational
change, is an alternative approach to understanding biomolecular
structure and function. Here, a large set of points in the
multidimensional space of the conformational degrees of
freedom of a protein is generated with relatively low
computational cost. This set contains folded and unfolded
structures, as well as intermediates and transition states,
representing the thermodynamic equilibrium ensembles that
can be also extracted from long-time MD simulations.
Thermodynamic averages in MC methods, that permit
reconstruction of the large scale kinetics of proteins even on
the basis of a thermodynamic simulation, are used to calculate
barriers between distinct conformational ensembles sampled in
MD [44]. Several MC simulation schemes for protein folding, that
employ specifically designed force fields and algorithms, were
reported. Among them are PROFASI [45], SMMP [46], Rosetta
[24, 47, 48], CABS [49, 50], MMTSB [51]. Recently, we have
illustrated a new efficient MC algorithm for modeling the large-
scale conformational change of proteins using the standard all-
atom force fields for proteins and efficient implementation of
implicit solvent model in SIMONA [30, 52]. Two simulation
protocols were used: 1) Amber99 force field Lennard-Jones and
Coulomb terms and Amber99SB for dihedral potentials with
generalized Born (GB) implicit solvent using PowerBorn [11] for
Born radii computation and Stills GB formula with exponential
factor of 4 [30]; 2) AMBER99SB*-ILDN force field with GBSA
implicit solvent with Born radii computed with the PowerBorn
[11] method and the SASA radii with the POWERSASA method
[33, 52].

In both cases, the dielectric constant of the protein and water
was taken to be ep � 1 and ew � 80, respectively, and the surface
tension of the nonpolar solvation term was c � 5.42 cal/mol·Å2.
MC calculations were performed with no long-range cutoffs or
approximate methods in the evaluation of the force field or
implicit solvent model. While the first strategy was applied for
folding of 20-residue based Trp-cage protein (PDB code 1L2Y)
and the native conformation was defined by a mean square
deviation (RMSD) below 3 Å, it initiated our further
developments of the MC algorithm in the second approach,

FIGURE 4 | Scheme of AROMOCA moves generation. Degrees of
freedom are used to generate moves to create a set of moves in a specific
displacement. The moves are selected randomly from the set and if they
obtain a high probability of acceptance and a high value of force, the
energy acceptance criteria is applied.
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where we have demonstrated successful usage of an accurate
intramolecular force field (developed for all-atom MD
simulations) and our efficient implicit solvent implementation
for reversible folding also of 36-residue Villin headpiece (PDB
code 1vii) and 35-residue WW-domain (PDB code 2f21) using
MC [52].

To sample the conformational landscape of these proteins, we
designed an individual MC step composed of either a
combination of a randomly selected backbone and sidechain
dihedral rotation or a concerted backbone move with equal
probability. The angle change in the dihedral moves was
drawn from a Gaussian distribution with a width of 18.3° for
Villin Headpiece and 20° for Trp-cage and WW domain. In the
case of a “concerted move”, a segment of four residues was
modified, changing all dihedral angles under the constraint
that the endpoints of the segment do not change. Rigid body
rotations were applied by rotating the molecule around a random
axis through its geometric center with a uniformly distributed
rotation angle of up to 5°. The Metropolis acceptance criterion
with Markov chain model was used to construct collective moves
with the average acceptance probability of 0.6 (60%), preserving
detailed balance. In such a way, the obtained effective time step of
MC simulations was 260 fs/MC step, therefore, accelerated the
sampling of the conformations by about two orders of magnitude
over all-atom explicit-solvent MD simulations.

We have illustrated the efficiency of the MC protocol and its
implementation in SIMONA in reversible folding of three
proteins, where five to ten MC simulations, each comprising
up to 200 million MC-steps at different simulation
temperatures, were performed. Similarly to the longest, to our
knowledge, MD simulations, multiple folding and unfolding
events, starting from both native and unfolded structures, e.g.,
for the Villin headpiece (Figures 6A,C), were observed [40,
53–55]. Here, an all-atom/backbone RMSD of the refolded to
the NMR native structure [56] reached 1.49 Å/0.76 Å, showing
good quality of the sampled protein conformations. The
complementary analysis was also monitoring the fraction of

the native contacts, Q (Figure 6B), which is a widely used
reaction coordinate of the folding process. The potential of
mean force (PMF) projected on the fraction of Q-values was
used to calculate the folding thermodynamic equilibrium and
predict the folding temperature (Figure 6D), i.e., 354 K after
temperature calibration of MC runs.

The obtained Cα-RMSD of the refolded Trp-cage protein
using our MC in SIMONA was also of good accuracy,
i.e., 0.86 Å (Figure 7) with the Q-values of the refolded
structure of ∼0.73 (Figure 1 in Ref. 49 [52]). This value is
slightly lower in comparison to what was observed in MD
simulations with explicit water (Q around 0.9–1) [57].
Nevertheless, the absolute Q-value at the minimum depends
on the definition of the protein native contacts taken from the
NMR ensemble.

Even if the quality of the refolded structures is in good
agreement with the experimental data, the estimated folding
temperatures are overestimated, e.g., 370 K for Trp-cage, while
in MD with explicit water and in experiment temperatures of
321–326 K [58, 59] and 315–317 K [60, 61], respectively, were
reported. We assume the effect originates from the lack of the
temperature dependence in the used GBSA implicit solvent
model and the proper description of the solvent exposed
hydrogen bonding [62]. It is known that folding and
unfolding of Trp-cage is modulated by cooperative
interactions between water and polar groups of the protein
and by the H-bonded salt bridge between Asp-9 and Arg-16
(N–H/O bond of 1.79 Å in Figure 7B) exposed to the solvent.
This bond is not properly reproduced in the refolded structures
in MC shown in Figure 7B. At the same time, the second
N–H/O hydrogen bond: between Trp-6 and Arg-16
(N–H/O bond of 2.03 Å in Figures 7B, is correctly
reproduced, enabling refolding of the protein after unfolding
(structure depicted in green in Figure 7A). Implementations of
new implicit solvent models, e.g., with advanced fitting of the
GB solvation energies and the relative solvation energies like in
ff14SBonlysc + GB-Neck2, are necessary, and can be performed
using SIMONA.

SIMONA was also used to investigate the all-atom level
folding and unfolding kinetics of the Trp zipper one protein
(PDB code 1LE0) [63], a small polypeptide that forms a β-hairpin
at the room temperature [64]. Here, dynamical properties of
protein conformational space were obtained using MC with a
transition network algorithm that permitted calculation of the
“absolute” conformational free energy and folding mechanism of
Trp zipper 1, using protein force field PFF02 with implicit solvent
[65]. This transition network consisted of the nodes that
correspond to the discrete number of conformations sampled
by theMC process. Protein dynamics was represented by a walker
that moves across the network and “jumps” from one
neighboring node to another with a certain probability. The
probability was dependent on the transition rate between
nodes connected by edges, characterized by the edge length,
i.e., RMSD distance between the corresponding nodes. Using
this approach, approximate estimations of the relative folding
times for the whole ensemble of protein conformations were
obtained, which is not possible in conventional MC simulations.

FIGURE 5 | OpenMP SIMONA performance in 300 K constant
temperature calculation of a polymer with 10, 20 and 30 monomers.
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FIGURE 6 | Sampling of the conformational landscape of the Villin headpiece protein (1VII): folding and unfolding events described by RMSD (A) and Q-values (B)
changes in the MC run at 360 K (C)Overlay of the refolded (in red, Q −0.8) and the experimental (in blue) conformation of the protein (D), Free energy profiles as a function
of Q-values at different temperatures. Native, intermediate, and unfolded ensembles were found at Q∼0.8, 0.45, 0.2, respectively. Graphics reprinted from Heilmann
et al. Sci. Rep. 10, 18211 (2020) [52] under Creative Commons Attribution 4.0 International License.

FIGURE 7 | (A) Folding of the Trp-cage miniprotein (1L2Y) in MC simulations in SIMONA: Overlay of the native structure (in blue) and the refolded structure (in red)
obtained inMCrun at 370 K starting from unfolded protein depicted in green (B), Structures of the native 1L2Y and refolded local minima with different RMSD and formed
hydrogen bonds (described in the text). Graphics reprinted from Heilmann et al. Sci. Rep. 10, 18211 (2020) under Creative Commons Attribution 4.0 International
License [52].
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Membrane Peptides
We have also used SIMONA to investigate the function of
membrane proteins in biological membranes [66] and the
phenotypic effect of protein mutations [67]. Membrane
proteins are part of the biological membranes and medically
important proteins as they are targets for about half of all
available drugs. The computational simulations of these
molecules can be used as a supporting evidence for
experimental findings, elucidating protein mechanisms, and
validating protein crystal structures [68]. The transition time
between the functional states of membrane proteins is generally
much longer than what one can currently capture with the
standard simulation methods [69]. To facilitate their
simulation, approximate membrane models with coarse-
graining or implicit membrane modeling have been proposed
[70, 71]. In the most implicit continuum models, membranes are
represented as heterogeneous dielectric environments, but their
treatment within computationally efficient GB models is
challenging. GB models are limited to two dielectric regions by
construction, which are typically chosen as the solvent and the
solute. Standard GBmodels cannot be embedded for a membrane
region with different dielectric properties. Therefore,
incorporating biological membranes in implicit solvent models
is an important prerequisite for their simulations, which has been
offered by SIMONA as SLIM (SIMONA layered implicit
membrane) model [66].

The SLIM model has been tested in MC studies of three well-
studied membrane proteins: Melittin from bee venom (PDB code:
2MLT), a single transmembrane domain of the M2 protein (PDB
code: 1MP6), and the transmembrane domain of the Glycophorin
A (PDB code:1AFO) [66]. For every system and parameter set, 20
independent SIMONA simulations were performed at 300 K with
no force field cutoffs. Simulations were performed for 2 × 104 MC
steps including random rigid body rotations and translations, as
well as all backbone and side chain dihedral rotations. Results
showed that upon the use of the proper membrane model
parameters, the SLIM model is able to reproduce known
properties of these proteins, e.g., sampling of the protein
conformations in the lipid environment. Simulation
performance of SLIM-SIMONA model was compared with
heterogeneous dielectric generalized Born (HDGB) model of
Tanizaki and Feig [72], which is implemented in CHARMM
(version 35b) [73]. It was shown that SIMONA simulation with
SLIM achieves about 4.4 times more simulation steps without
using any long-range interaction cutoffs.

SIMONA has also been used to predict the phenotypic effect of
mutations on protein mutational landscapes, which quantifies
how mutations affect the biological functionality of a protein.
Figliuzzi et al. [67] developed and successfully tested a novel
inference scheme for mutational landscapes based on the
statistical analysis of large alignments of homologs of the
protein of interest. They have used extensive all-atom
SIMONA simulations along with bioinformatics programs to
estimate TEM-1 (286 amino acids) protein stability changes,
ΔΔG, induced by single point mutations. The complete
PFF03v4-all parallel OpenMP force field was applied, which
uses the AMBER99SB*-ILDN dihedral potential with an

implicit solvent model. Locally stable configurations were
explored by performing small structural relaxations from a
reference structure, with the wild-type amino acid replaced by
the mutant amino acid. The energy function was locally
minimized and the resulting energy change ΔE � Emut−Ewt
was determined.

POLYMER FOLDING

Reminiscent of protein folding, polymer chains can be folded to
individual, single-chain polymer nanoparticles (SCNPs) by
means of intrachain interacting groups. Synthesis of well-
designed single chain polymers is one of the profound and
constantly increasing interests in polymer chemistry [74].
Novel experimental techniques of controlling nanoscale
architecture make it possible to synthesize polymeric single
chain nanoparticles where single polymer folding is driven by
a specially designed hydrogen donor–acceptor moieties [74–76].
In this regard, molecular simulation techniques can shorten the
demanding experimental trial-and-error process by identifying
“well-behaved” polymer architectures for single-chain polymer
folding and establish design principles [74]. However, the
individual macromolecular nature of the polymer molecules
and the broad spectrum of time and length scales encountered
in polymeric materials, make the efficient equilibration and
sampling of their equilibrium properties tedious sometimes
even impossible via nonstochastic approaches [77]. MC
sampling techniques proved to be ideal for problems
concerning structural equilibration or calculation of static
properties of polymers [78, 79]. In this regard, various MC
simulation techniques have been applied in polymer science to
study the structure and elastic response of end-linked polymer
networks [80], polymerization mechanism and chain relaxation
of polymer brushes [81], phase behavior of copolymer blends
[82], and the effect of chain branching on the topological
properties of entangled polymer melt etc [83].

In this section, we focus only on the overview of MC
simulations and advances to a specific problem related to the
polymer science i.e., reversible self-assembly of single polymer
chains. We have developed a MC simulation technique to study
polymer systems functionalized by reactive sites [84] that bind/
unbind forming reversible hydrogen bonds shown in Figure 8.
Polystyrenes chains of lengths L � 10, 20, 30, 40 and 50
monomers with two hydrogen bonding recognition units
based on six-point cyanuric acid(CA)–Hamilton wedge (HW)
interaction (α,ω-donor–acceptor) were designed. For each chain
length L, all-atom Metropolis Monte Carlo with 109 steps at
constant temperatures in the temperature range from 220 to
340 K were performed using SIMONA. To sample the
conformations of the whole polymer, a molecular mechanics
approach with General Amber force field (GAFF) parameters
were applied with the partial charges computed according to the
AM1-BCC method. The dielectric constant of the solvent was set
to ε � 2.6 in all simulations in order to match the energy
difference between the bound and unbound α and ω
molecules with the QM calculations. To implicitly take into
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account the effect of van der Waals (vdW) interaction with a
solvent, the vdW contribution in the force field was scaled by
factor 0.1 based on the experimental data of the vdW dispersion
forces between alkyl chains in different solvents.

Based on MC trajectories in a wide temperature range,
hundreds of open and closed conformations were observed for
each polymer chain, which is the result of reversible hydrogen
bond formation between the designed binding sites. From a MC
trajectory at a given temperature T, a probability density function
p(E) as a function of the potential energy E (illustrated in
Figure 9) was computed. It was used to deduce transition
temperature (Tm), entropy and enthalpy difference between

the closed and open states. Two measures were applied to
describe the folded structure: 1) characterizing the shape of
polymer chains in terms of anisotropy, asphericity and
acylindricity and 2) calculating chain radius of gyration along
the MC trajectory. Both disk-like and hairpin structures were
observed for the long chain polymer L � 50. Furthermore,
calculated radius of gyration for closed conformations showed
that for shorter linker lengths (L � 10–20), polymers fold into a
unique conformation with the root mean square deviation
(RMSD) of the backbone atoms being smaller than 2.5 Å (see
Figure 9C). For longer chain polymer (L � 50), no unique
conformation was recognized (Figure 9D).

FIGURE 8 | Model system of a polystyrene precision designed polymer with a,ω-donor–acceptor for single chain self-assembly.

FIGURE 9 | (A) Energy of the conformations for L 50 as function of the number of steps. Large values of the energy correspond to open, small values closed
conformations (B), probability density profile computed from the trajectory (red regions are more occupied than blue regions), indicating two-state folding behavior. At
the transition temperature (dashed line) the occupation of both states is equally probable (C), Front and side views of ten closed conformations obtained from
uncorrelated closed intervals for polymers with L 10 (D) Front and side views of ten closed conformations obtained from uncorrelated closed intervals for polymers
with L 50 (Reproduced by permission of The Royal Society of Chemistry).
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Besides the chain length, the stereochemistry of the polymer
chain also influences the folding behavior and thermodynamics.
We applied the same MC technique to study the effect of tacticity
of the polystyrenes chain of lengths L � 10, 12, 14, 16, 18, 20 and
30 monomers on their folding behavior [85]. Thermodynamic
properties of reversible folding of atactic, syndiotactic and
isotactic single polymer chains (see Figure 9A) were calculated
using probability density histograms obtained from long MC
trajectories containing hundreds of opening-closing transitions.
We demonstrated that tacticity dependence of folding
temperatures is especially pronounced for polymers of shorter
chains (shorter than L � 20) compared to longer polymer chains
(L � 30) (see Figure 10A). Reduced fluctuations of radius of
gyration showed that for small linker lengths, polymers of diverse
stereochemistry collapse into unique folded structures (see
Figure 10C).

OLIGOMER ENCODER

Natural storage information systems, such as DNA, are well-
known as sequence-defined macromolecules where long chain
sequences keep information encoded in building blocks called
nucleobases. They are the foundation to create a new living
entity, regulate processes and preserve the genetic information
from one individual to another. Recently, there has been increasing
interest in sequence-defined macromolecular synthesis for their
potential application in the field of polymer chemistry in order to
mimic enzyme activity or used as data storage systems [86]. This
new area of research aims to obtain a high degree of synthesis
control of non-natural macromolecules. They are considered as a
new class of polymers combining the classic definition of a polymer
(several repeating units) and characteristics such as
monodispersity, chemical nature and conformational topology.
A recent work by Wetzel et al. [87] revealed a synthesis strategy
using the Passarini reaction to create sequence-controlled
oligomers inspired in the genetic code and a protocol to decode
their sequences using Mass Spectroscopy [87]. They defined a dual
monomer scheme considering side chains and backbone
modifications in order to create binary codes. Nevertheless, the
synthesis of all possible code combinations is not feasible (nearly
1022 candidates) and the experimental challenge to determine their
three-dimensional structures, by techniques such as NMR or
Dynamic Light scattering, is limited to small sequences. As a
complement to experiment, MC methods can provide insights
regarding probable folded states, determining their potential
applications as nanostructured materials for data storage.

As a special supporting feature to generate arbitrary synthetic
oligomers for SIMONA simulations, we developed the Oligomer
Encoder (OE). OE creates oligomer chains {Xi} (i � 1, . . . , N),
where Xi monomer type is Xi � Ai Bi, while head and tails are
Terminal 1 (T1) and Terminal 2 (T2), respectively. Ai and Bi are
defined as side chains and backbone modifications, respectively,
that are defined in a library (see Figure 11A). Here, we create
oligomer structures and extract structural parameters of the
respective monomer structures to reduce the computational
cost. First, the oligomer structure is generated from the

SMILES code database and then, monomer structures with
head and tail terminal are generated and parameterized.
Finally, information, such as coordinates, parameters and
charges are extracted and transferred to the final model of a
polymer/oligomer. The workflow of the OE program comprises
three main steps. 1) Creation of Monomer structures and
Optimization. The monomers required to build the sequences
are created using the SMILES code [88] and optimized at DFT
level using TURBOMOLE [89, 90]. 2) Oligomer chain ensemble.
The optimized monomer structures are used to calculate charges
using AM1-BCCmethod [91], provided for Ambertools [92], and
parameters from the General Amber FF [93] are extracted with
Acpype [94] to generate GROMACS input files. 3) SIMONA
input file generation. At this step, GROMACS input files are used
to generate the input files for the Monte Carlo simulation using
the Python protocol provided by SIMONA [30]. This strategy
allows OE to be a highly scalable molecule builder.

As an example, an hexamer oligomer inspired by the sequence
B7 from Wetzel’s work [87] was created with OE. The sequence
includes aliphatic and aromatic backbone modifications while all
side chain modifications have isopropyl groups. The monomers
were optimized using hybrid B3LYP functional [95, 96] with def2-
SV(P) basis set functions [97]. A workflow simulation was
performed generating 1000 different conformations from an
annealing MC simulation heating the system from 300 to 900 K
in 106 steps and cooling from 900 to 100 K in 106 steps, starting
from different oligomer conformations. The energy convergence of
MC simulations, presented in Figure 11C, shows attainment of the
local minima. Even though MC simulations can explore the
conformational space of every single sequence in a couple of
minutes of simulation time, determining the most probable
ensemble of unique folded structures is challenging. Currently,
we are developing protocols to identify stable sequences in a
minuscule fraction of the conformational space using design
rules to identify the subspace of the library that is likely to fold.
We are considering also the impact of organic solvent, hydrogen
bonding between the backbone units, and specific interactions, like
vdW or π-π, that stabilize specific sequences. We believe that this
massively parallel iterative search is a promising tool to identify
novel foldable structures that are not accessible with any other
current technique.

THIN FILMS

The MC implementation in SIMONA can be used not only to
obtain for obtaining the three-dimensional structure of single
macromolecules, but also for generating nanoscale assemblies
and films of smaller organic molecules. The latter, for example,
lies in the basis for modern smartphone and TV displays
technology, i.e., OLED (organic light-emitting diodes), where
thin films are generated by physical vapor deposition (PVD) of
organic molecules [98–102].

Due to the typically amorphous nature of the PVD generated
films, their structure prediction, with the succeeding electronic
property calculation, is the basis for all further microscopic
simulations. To simulate the PVD thin film formation process,
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the SIMONA framework is used along with the Deposit protocol
[103]. This protocol is split into three parts (see Figure 12):
Parametrizer, Dihedral-Parametrizer and Deposit. The molecules
are deposited either on a pre-existing substrate or into an empty
simulation box with a sticky potential at the bottom. The total
energy of a molecule is described by the intermolecular
interactions consisting of an electrostatic part, EES, and a
Lennard-Jones part, ELJ, as well as the intramolecular
interaction energy, EDH, due to the dihedral rotations:

Etotal � EES + ELJ + EDH (3)

To achieve a linear scaling behavior with system size, the
molecules are kept fixed after deposition and the
intermolecular interactions are computed by interpolating
interactions with electrostatic and Lennard-Jones grids. The
electrostatic grid represents the electrostatic potential created
by charges of all previously deposited molecules in the
simulation box. For the Lennard-Jones part, a separate grid for
each element combination in the simulation is created. Therefore,
each energy evaluation of the intermolecular part can be reduced
to a lookup and a set of arithmetic operations, which do not scale
with the total system size.

In order to generate a molecule-specific potential, the
intramolecular interactions are usually parametrized by
turning each dihedral angle in 20° steps and relaxing all other
dihedral angles. On each conformation, a single point DFT
calculation is performed. After reaching a full rotation of an
angle, a spline is fitted to the DFT energies. This method, though
widely used, neglects correlations between different dihedral
angles. However, it has been shown that such effects can be
learned with a machine learning approach [104].

The deposition step is split into several simulated-annealing
(SA) cycles, which run in parallel. In each cycle, the molecular
position or conformation is changed, and the energy is re-
evaluated. Each move is accepted on the basis of the
Metropolis Monte-Carlo algorithm. The temperature of the
simulation is adjusted from a high starting value, Thigh, to a
final temperature, Tlow, during N steps via:

Tn � Thigh(Tlow

Thigh
)

n
N

(4)

From the final positions of each SA-cycle, the deposited position
is drawn with a Boltzmann probability. The described workflow
was successfully applied for PVD of OLEDs and the structures

FIGURE 10 |Molecular structure of Isotactic, Syndiotactic and atactic polymers (A), Folding temperature as a function of chain length for isotactic, syndiotactic and
atactic polymers (B), Radius of gyration (Rg) as a function of chain length (C), for atactic, isotactic and syndiotactic polymers (Reproduced by permission of The Royal
Society of Chemistry).
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generated by the DEPOSIT protocol have been used to calculate
bulk mobility [105]. Due to its versatility and computational cost,
it pathed the way for predicting and systematically improving
new OLED materials [106].

Besides charge carrier mobility of thin OLED films and stacks,
the outcoupling efficiency of dyes co-deposited in the film is
another important property [107]. Since a dye molecule emits
mostly perpendicular to the transition dipole moment (TDM) of
the specific emission, the outcoupling efficiency is higher for
TDMs oriented parallel to the surface of the OLED. This is usually
quantified in an orientation parameter Θ, which equals to ∼0.33
for a completely isotropic orientation and to 0 for a perfect in-
plane orientation:

Θ � 〈cos2αz〉 (5)

where αz is the angle between the TDM and the axis
perpendicular to the surface. To demonstrate the
functionality of Deposit in reproducing experimentally
observed orientation parameters, different iridium emitter
complexes inside an 4,4′-bis(N-carbazolyl)-1,1′-biphenyl
(CBP) host were calculated at 10 and 20% dye concentration.
The obtained results are depicted in Figure 13. The simulation
underestimates the orientation parameter, Θ, for all three
emitters, which corresponds to a more anisotropic
orientation of the emitter molecules. This may result from
the neglection of the thermally activated collective moves of
the surface molecules in the simulation protocol, which leads to
a more isotropic distribution of orientations. The best
calculation accuracy is observed for the Ir(bppo)_2(acac)
film, compared to the other two emitters.

FIGURE 11 | (A)Oligomer structure and monomer Library (B). OE workflow (C) Folded and unfolded structure of oligomer sequence and energy converged during
1000 MC annealing simulations from 900 to 100 K.
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CONCLUSION

With the help of ever-growing computational resources and
algorithm design, MC simulation has contributed a lot to
elucidate the underlying mechanisms involved on the
microscopic scale and has been proved to be a powerful tool
in complement to experiment. Here we have presented SIMONA,
a MC multi-purpose package with high versatility, which is

distributed free for academic users. It enables the user to select
between different options, use GUI, create advanced workflows
modifying the XML input files or implement new potential
functions to describe special interactions in the C++ source
code. Such features make SIMONA a high adaptable MC
framework to study versatile phenomena in molecular systems
including protein folding, sampling their conformational
ensemble and studying the effect of mutation on protein

FIGURE 12 | Thin film deposition simulation on the example of N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB): (i) Parametrizer: The
molecular geometry gets optimized at the def2-TZVP/b3-lyp level with Turbomole. For the final geometry partial charges are calculated with an ESP fit. (ii) Dihedral-
Parametrizer: The dihedral potential is scanned by turning the dihedral angles in 20° steps and performing DFT calculations at the def2-SVP/b3-lyp level. Additional
internal charges and Lennard-Jones parameters are fitted to improve the dihedral forcefield. The final forcefield energy is tested against random configurations. (iii)
Deposit: The molecule is deposited either onto a pre-existing substrate or into an empty box, where the first layers will stick to the bottom of the box via an externally
applied force field.

FIGURE 13 | Molecular structure of the iridium-emitters: Ir(bppo)2(acac), Ir(bppo)2(ppy), and Ir(bppo) (ppy)2, and the experimental and simulated values of the
orientation parameter2, which characterizes the average orientation of the TDMwith respect to the film normal, averaged in films with a 10 and 20% dye concentration.
Here, bppo, acac, and ppy are benzopyranopyridinone, acetylacetonate, and 2-phenylpyridinate, respectively. Reprinted (adapted) with permission from Friederich et al.
[101]. Copyright 2017 American Chemical Society.
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stability, MC simulations of reversible self-assembly of polymers
and deposition of molecules on a substrate allowing a deep and
thorough understanding of some phenomena observed. New
features such as the Oligomer Encoder for generating arbitrary
synthetic oligomers, will be added to SIMONA which facilitates
its application in polymer simulation. SIMONA is available for
download under http://int.kit.edu/nanosim/simona.
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