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The investigation of dynamical behaviors for fractional-order chaotic systems is a new
trend recently. This article is numerically concerned with the Shimizu-Morioka model with a
fractional order. We find that chaos exists in the fractional-order model with order less than
three by utilizing the fractional calculus techniques, and some phase diagrams are also
constructed.
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1 INTRODUCTION

In the past twenty years, many scientists paid their attention on the fractional-order chaotic
dynamical systems (see Genesio-Tesi system [1], Rabinovich system [2], and Lü system [3]
et al.). They presented chaotic attractors indeed occur in the fractional-order model with order
less than 3. Sheu and Chen [4] found that the lowest order of the fractional-order Newton-Leipnik
system is 2.82. In 2004, Li and Peng [5] discovered the rich dynamical behavior displayed in the
fractional-order Chen system such as the fixed points, limit cycles, periodic motions, and chaotic
motions.

The original Shimizu-Morioka model [6] is described by the following ordinary differential
equation:

⎧⎪⎨⎪⎩
_x � P(x, y, z) � y
_y � Q(x, y, z) � x − ~βy − xz
_z � R(x, y, z) � −~αz + x2

(1.1)

where (x, y, z) ∈ R3 are the state variables and ~α, ~β are positive real parameters. This model has been
proposed as a simplified and an alternative model for studying the dynamics of the well-known
Lorenz system [7] for large Rayleigh numbers (Ra), in which the complex behavior of the trajectories
has been discovered by means of computer simulation. As in the Lorenz model, the Shimizu-
Morioka model is invariant, with respect to the substitution (x, y, z)→ (−x,−y, z). The model
received much attention due to its stability to describe bifurcation of the associated Lorenz-like
strange attractors [8], for example, taking ~α � 0.45 and ~β � 0.75 (Figure 1).

Intrigued by the above interesting work, many researchers [9, 10] focused their study on the
dynamical behavior analysis of the Shimizu-Morioka model. In particular, articles [11, 12] use
feedback control laws and the delay feedback control method [13, 14] to study the local and global
stabilization and bifurcation of the Shimizu-Morioka chaotic model.

If the dynamical system of Eq. 1.1 follows

zP
zx

+ zQ
zy

+ zR
zz

� −(~α + ~β)< 0 (1.2)

then the system is known to be a dissipative one.

Edited by:
Jia-Bao Liu,

Anhui Jianzhu University, China

Reviewed by:
Biao Liu,

Anhui Jianzhu University, China
Weiliang Wang,

West Anhui University, China
Mingzhe Sun,

Yanbian University, China

*Correspondence:
Xin Zhang

9120191062@nufe.edu.cn
orcid.org/0000-0001-8475-6662

Specialty section:
This article was submitted to

Mathematical and Statistical Physics,
a section of the journal

Frontiers in Physics

Received: 01 December 2020
Accepted: 15 January 2021

Published: 14 April 2021

Citation:
Wei Z and Zhang X (2021) Chaos in the

Shimizu-Morioka Model With
Fractional Order.

Front. Phys. 9:636173.
doi: 10.3389/fphy.2021.636173

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6361731

BRIEF RESEARCH REPORT
published: 14 April 2021

doi: 10.3389/fphy.2021.636173

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.636173&domain=pdf&date_stamp=2021-04-14
https://www.frontiersin.org/articles/10.3389/fphy.2021.636173/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.636173/full
http://creativecommons.org/licenses/by/4.0/
mailto:9120191062@nufe.edu.cn
http://orcid.org/0000-0001-8475-6662
https://doi.org/10.3389/fphy.2021.636173
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.636173


In 1992, British scholar Rucklideg studied two-dimensional
convection problems of solute gradients and magnetic fields, and
introduced the following chaotic system [15]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
_x
�_ � −ax� + by

� − y
�
z
�

_y
�_ � x

�

_z
�_ � −z� + y

�2

(1.3)

where (x�, y�, z�) ∈ R3 are the state variables and a, b are the
positive real parameters. When ~α≠ 0, by transformation:

x � ~α
3
2y
�
, y � ~α

5
2x
�
, z � ~α2z

�
, t � ~α− 1 t

�
(1.4)

transformed system Eq. 1.1 to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
_x
�_ � −~βα−1x� + ~α− 2y� − y

�
z
�

_y
�_ � x

�

_z
�_ � −z� + y

�2

(1.5)

Therefore, system Eq. 1.5 and system Eq. 1.3 are equivalent
when a � −~β~α− 1, b � 1/~α2, and ~α≠ 0.

In this article, Section 2 provides a brief review of the
fractional-order operator and discretization fractional-order
Shimizu-Morioka model using numerical algorithm. In
Section 3, the complex dynamical behaviors of the Shimizu-

Morioka model with a fractional order are studied numerically in
four cases. Finally, conclusions are given in Section 4.

2 FRACTIONAL ORDER OPERATOR AND
NUMERICAL ALGORITHM

In this section, we first give out the fractional-order differential
operator and the Shimizu-Morioka model with a fractional
order. Furthermore, we use the predictor–correctors scheme
to discrete the fractional-order Shimizu-Morioka model. Last,
we discuss the necessary condition for the existence of chaotic
attractors.

There are several definitions of the fractional differential and
integral operator, including Grünwald-Letnikov operator,
Riemann-Liouville operator, and Caputo operator [16–18]. In
this study, we use the following Caputo-type fractional
derivative [19].

Dα
py(x) � Jm−αym(x), α> 0 (2.6)

wherem � [α] is the first integer which is not less than α, ym is the
ordinary m-order derivative, Jβ is the β-order Riemann-Liouville
integral operator defined by

Jβz(x) � 1
Γ(β) ∫

x

0
(x − t)β− 1z(t)dt, β> 0 (2.7)

where Γ(β) is the gamma function.

FIGURE 1 | Phase portraits of system Eq. 1.1.
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The classical Riemann-Liouville fractional derivative is
defined by

Dαy(x) � dm

dxm
Jm−αym(x) (2.8)

which requires the homogeneous initial conditions. The main
reason why we chose the Caputo-type fractional derivative is that
the inhomogeneous initial conditions are also permitted.

The integer-order Shimizu-Morioka model Eq. 1.1 has been
extended to the fractional-order Shimizu-Morioka model, which
could describe the memory and hereditary properties of the
model better. The fractional-order Shimizu-Morioka model is
described as follows—in which the standard derivative will be
replaced by the fractional-order derivative.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1x
dtq1

� y

dq2y
dtq2

� x − ~βy − xz

dq3z
dtq3

� −~αz + x2

(2.9)

where 0< q1, q2, q3 ≤ 1 and the order is denoted by q � (q1, q2, q3).
As for model Eq. 2.9, we derive the predictor–correctors

scheme which is the generation of Adamas-Bashforth-Moulton
one [16, 20]. The following fractional-order differential
equation

Dα
py(t) � f [t, y(t)], 0≤ t ≤T

y(k)(0) � y(k)0 , k � 0, 1,/,m − 1 (2.10)

is equivalent to the Volterra integral equation

y(t) � ∑[α]−1
k�0

tk

k!
y(k)0 + 1

Γ(α) ∫
t

0
(t − s)α− 1f [s, y(s)]ds (2.11)

Set h � T/N , tn � nh, and n � 0, 1, . . . ,N ∈ Z+, then (2) can
be discretized as follows:

yn(tn+1) � ∑[α]−1
k�0

tkn+1
k!

y(k)0 + hα

Γ(α + 2)
⎧⎨⎩f [tn+1, yph(tn+1)]

+∑n
j�0

aj,n+1f [tj, yh(tj)]⎫⎬⎭
where

yph(tn+1) � ∑[α]−1
k�0

tkn+1
k!

y(k)0 + 1
Γ(α) ∑

n

j�0

hα

α
[(n − j + 1)α

− (n − j)α]f [tj, yh(tj)]
aj,n+1 �

⎧⎪⎨⎪⎩
nα+1 − (n − α)(n + 1)α, j � 0(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1, 1≤ j≤ n
1, j � n + 1

The error estimate is max
j�0,1,...,N

∣∣∣∣∣y(tj) − yh(tj)
∣∣∣∣∣ � O(hp), p �

min(2, 1 + α).
Applying the above formula, system Eq. 2.9 can be discretized

as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1�x0+ hq1

Γ(q1+2)⎛⎝ypn+1+∑n
j�0

α1,j,n+1yj⎞⎠

yn+1�y0+ hq2

Γ(q2+2)⎡⎢⎢⎣xpn+1−~βypn+1−xpn+1zpn+1
+∑n

j�0
α2,j,n+1(xj−~βyj−xjzj)]

zn+1�z0+ hq3

Γ(q3+2)⎡⎢⎢⎣−~αzpn+1+(xpn+1)2+∑
n

j�0
α3,j,n+1(−~αzj+x2j )⎤⎥⎥⎦

(2.12)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xpn+1 � x0 + 1
Γ(q1)∑

n

j�0

hq1

q1
[(n− j+1)q1 −(n− j)q1]yj

ypn+1 � y0 + 1
Γ(q2)∑

n

j�0

hq2

q2
[(n− j+1)q2 −(n− j)q2](xj −βyj −xjzj)

zpn+1 � z0 + 1
Γ(q3)∑

n

j�0

hq3

q3
[(n− j+1)q3 −(n− j)q3](−αzj +x2j )

and

αi,j,n+1�
⎧⎪⎪⎪⎨⎪⎪⎪⎩
nqi+1−(n−qi)(n+1)qi , j�0(n− j+2)qi+1+(n− j)qi+1−2(n− j+1)qi+1,

1≤j≤n, i�1,2,3
1, j�n+1

The fractional-order Shimizu-Morioka model of system Eq.
2.9 discretes to system Eq. 2.12.

Now, we discuss the necessary condition for the existence of
chaotic attractors in the fractional-order Shimizu-Morioka
model. Set dq1x/dtq1 � 0, dq2y/dtq2 � 0, dq3z/dtq3 � 0, we get the
following equilibrium points of system Eq. 2.9.

E0 � (0, 0, 0), E1 � (   
~α

√
, 0, 1)

The Jacobian matrices at the equilibrium points E0 and E1 are

J(E0) � ⎡⎢⎢⎢⎢⎢⎣ 0 1 0
1 −~β 0
0 0 −~α

⎤⎥⎥⎥⎥⎥⎦, J(E1) � ⎡⎢⎢⎢⎢⎢⎣ 0 1 0
1 −~β −   

~α
√

0 0 −~α
⎤⎥⎥⎥⎥⎥⎦

The eigenvalues at E0 are λ1 � −0.45, λ2 � −1.443, and
λ3 � 0.693, and the eigenvalues at E1 are λ1 � 0.1061 + 0.7912i,
λ2 � −1.412, and λ3 � 0.1061 + 0.7912i. E0 and E1 are saddle
points.

Suppose λ is the unstable eigenvalue of the saddle points, then
the necessary condition for the fractional-order system Eq. 2.9 to
remain chaotic is keeping the eigenvalue λ in the unstable region.
By [21], if the eigenvalue λ is in the unstable region, then the
following condition is satisfied.

∣∣∣∣arg λi∣∣∣∣> qπ2
where

∣∣∣∣arg λi∣∣∣∣ denotes the argument of the eigenvalue λ. That is,
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q> 2
π

∣∣∣∣arg λi∣∣∣∣
So, the necessary condition for the existence of chaotic

attractors in the fractional-order system Eq. 2.9 is

q> 2
π

∣∣∣∣arg λi∣∣∣∣ � 2
π
arctan

0.7912
0.1061

� 0.9151

which implied that when qi(i � 1, 2, 3)> 0.9151, system Eq. 2.9
has chaos, and when qi(i � 1, 2, 3)< 0.9151, system Eq. 2.9 has
no chaos.

3 NUMERICAL SIMULATIONS

In what follows, some numerical simulations of system Eq.
2.12 will be studied. We chose the parameters ~α � 0.45,
~β � 0.75, and the initial value (x0, y0, z0) � (1, 1, 2). The
phase portraits and time histories are used to research the
dynamical behaviors of system Eq. 2.9. Four cases are
considered as follows.

3.1 Commensurate Order q1 � q2 � q3 � α
System Eq. 2.9 is calculated numerically against
α ∈ [0.89, 0.99], while the incremental value of α is 0.01.
Figure 2 shows the phase portraits in the x − y space at
qi(i � 1, 2, 3) � 0.99, 0.92, 0.912, and 0.89, respectively. We
find that system Eq. 2.9 behaves chaotically when
α ∈ [0.92, 0.99] is greater than 0.9152; when

α � 0.912 is less than 0.9152, system Eq. 2.9 exhibits
periodic motion; and when α � 0.89, the chaotic motions
disappear and the system stabilizes to the fixed point. The
numerical simulation results coincide with the necessary
conditions for the existence of chaotic attractors that were
observed in the last section. The lowest order to yield chaos
is 2.76.

3.2 q1 � q3 � 1 and Let q2 Vary Less
Than one
System Eq. 2.9 is calculated numerically against α ∈ [0.61, 0.97],
while the incremental value of α is 0.01. Figure 3 shows the phase
portraits in the x − y space at qi(i � 1, 3) � 1,
q2 � 0.97, 0.73, 0.71, and 0.61, respectively. We find that
system Eq. 2.9 behaves chaotically when α ∈ [0.73, 0.97]; when
α � 0.71, system Eq. 2.9 exhibits periodic motion; and when
α � 0.61, the chaotic motions disappear and the system stabilizes
to the fixed point.

3.3 q1 � q2 � 1 and Let q3 Vary Less
Than one
Simulations of system Eq. 2.9 are performed against
α ∈ [0.74, 0.99], while the incremental value of α is 0.01.
Figure 4 shows the phase portraits in the x − y space at
qi(i � 1, 2) � 1, q3 � 0.99, 0.779, 0.77, and 0.74, respectively.
We find that system Eq. 2.9 behaves chaotically when

FIGURE 2 | Phase portraits of model Eq. 2.9 with qi(i � 1,2, 3) � α.
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α ∈ [0.91, 1]; when α � 0.77, system Eq. 2.9 exhibits periodic
motion; and when α � 0.74, the chaotic motions disappear and
the system stabilizes to the fixed point.

3.4 q2 � q3 � 1 and Let q1 Vary Less
Than one
System Eq. 2.9 is calculated numerically against α ∈ [0.73, 0.99]
incrementally. Figure 5 shows the phase portraits in the x − y
space at qi(i � 2, 3) � 1, q1 � 0.99, 0.81, q1 � 0.78, and 0.73,
respectively. We find that system Eq. 2.9 behaves chaotically
when α ∈ [0.81, 0.99]; system Eq. 2.9 exhibits periodic motion
when α � 0.78; and when α � 0.73, the chaotic motions disappear
and the system stabilizes to the fixed point.

4 CHAOS CONTROL

4.1 Theoretical Basis
The following three-dimensional fractional-order system is considered:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqx(t)
dtq

� f (x, y, z)
dqy(t)
dtq

� g(x, y, z)
dqz(t)
dtq

� h(x, y, z)
(4.13)

where q ∈ (0, 1). The Jacobian matrix of system Eq. 4.13 at the
equilibrium is

J �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zf
zx

zf
zy

zf
zz

zg
zx

zg
zy

zg
zz

zh
zx

zh
zy

zh
zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.14)

The corresponding characteristic equation is

P(λ) � λ3 + a1λ
2 + a2λ + a3 (4.15)

and the discriminant is

D(P) � 18a1a2a3 + a21a
2
2 − 4a3a

3
1 − 4a32 − 27a23 (4.16)

Lemma 4.1. Fractional-order system Eq. 4.13 is locally
asymptotically stable if and only if any eigenvalue λ of the
Jacobian matrix at the equilibrium satisfies

∣∣∣∣arg(λ)∣∣∣∣> qπ
2 .

Lemma 4.2. The Routh-Hurwitz criterion [22] of system Eq.
4.13 is as follows:

(i) ifD(P)> 0, then equilibrium of system Eq. 4.13 is locally
asymptotic stability if and only if a1 > 0, a3 > 0, a1a2 > a3;

(ii) if D(P)< 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then system Eq. 4.13 is
locally asymptotic stability when the order q< 2/3; if
D(P)< 0, a1 < 0, a2 < 0, q> 2/3, then all the eigenvalues
of Eq. 4.15 satisfy

∣∣∣∣arg(λ)∣∣∣∣< qπ
2 ;

(iii) if D(P)< 0, a1 > 0, a2 > 0, a1a2 � a3, then for 0< q≤ 1,
system (4.15) is locally asymptotically stable;

(iv) the necessary condition for the local asymptotic stability
of the equilibrium of system Eq. 4.13 is a3 > 0.

FIGURE 3 | Phase portraits of model Eq. 2.9 with q1 � q3 � 1.
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FIGURE 5 | Phase portraits of model Eq. 2.9 with q2 � q3 � 1.

FIGURE 4 | Phase portraits of model Eq. 2.9 with q1 � q2 � 1.
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4.2 Chaos Control
We will apply feedback control and the fractional Routh-
Hurwitz criterion to suppress the three-dimensional
fractional Shimizu-Morioka chaotic system. The three-
dimensional fractional Shimizu-Morioka chaotic controlled
system is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqx
dtq

� y + k1(x − x)
dqy
dtq

� x − ~βy − xz + k2(y − y)
dqz
dtq

� −~αz + x2 + k3(z − z)

(4.17)

where q ∈ (0, 1), k1, k2, k3 are control parameters. E � (x, y, z) is
the equilibriumof systemEq. 4.13.Wewill apply linear feedback to
stabilize the equilibrium E0 � (0, 0, 0) of system Eq. 4.13. When
~α � 0.45, ~β � 0.75, the Jacobian matrix of system Eq. 4.17 at E0 is

J(E1) � ⎡⎢⎢⎢⎢⎢⎣ k1 1 0
1 k2 − 0.75 0
0 0 k3 − 0.45

⎤⎥⎥⎥⎥⎥⎦ (4.18)

The corresponding characteristic equation at E0 is

λ3 + a1λ
2 + a2λ + a3 � 0 (4.19)

and the discriminant is

D(P) � 18a1a2a3 + a21a
2
2 − 4a3a

3
1 − 4a32 − 27a23 (4.20)

where

a1 � (0.75 − k1 − k2) + (0.45 − k3)
a2 � k1(k2 − 0.75) − 1 + (0.75 − k1 − k2)(0.45 − k3)
a3 � (0.45 − k3)[k1(k2 − 0.75) − 1]

(4.21)

According to (i) of Lemma 4.2 above, we have the following
theorem.

Theorem 4.3. For system Eq. 4.13, when

k1 <
0.05(200k2k3 − 200k23 − 90k2 + 30k3 + 227)

10k2 − 10k3 − 3
, k2 < k3

+ 0.3, k3 < − 1.55

the equilibrium E0 is locally asymptotic stability.

5 CONCLUSION

This article mainly discussed the dynamical behaviors of the
fractional-order Shimizu-Morioka model. We find that chaos
does exist in the fractional-order model with order less than 3.
Future work that requires further consideration regarding this
topic includes theoretical analysis of system Eq. 2.9, the largest
Lyapunov exponent in the state space, the linear and nonlinear
feedback controller, synchronization of this kind of system, and
in-depth studies on chaos control for the fractional state.
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