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This paper considers methods to extract exact, explicit, and new single soliton solutions

related to the nonlinear Klein-Gordon-Schrödinger model that is utilized in the study

of neutral scalar mesons associated with conserved scalar nucleons coupled through

the Yukawa interaction. Three state of the art integration schemes, namely, the

e−8(ξ )-expansion method, Kudryashov’s method, and the tanh-coth expansion method

are employed to extract bright soliton, dark soliton, periodic soliton, combo soliton,

kink soliton, and singular soliton solutions. All the constructed solutions satisfy their

existence criteria. It is shown that these methods are concise, straightforward, promising,

and reliable mathematical tools to untangle the physical features of mathematical

physics equations.

Keywords: traveling wave solution, tanh-coth method, e−8(ξ )-expansion method, Kudryashov’s method,

Klein-Gordon-Schrödinger equation

1. INTRODUCTION

Many of the problems arising in mathematically-oriented scientific fields such as physics and
engineering are described by partial differential equations (PDEs). PDEs are used to depict an
ample variety of phenomena such as dislocations in crystals, superconductivity, laser pulses in
two-phase [1, 2], waves in ferromagnetic materials, and many more [3–6]. Many theories such as
electromagnetism, diffusion, fluid flow, etc. are presented to understand the dynamics of PDEs
[7, 8]. Therefore, exploring exact solutions for PDEs plays an important role in such fields.
These solutions might be essential and important for exploring some physical phenomena. The
majority of PDEs are not exactly solvable with existing mathematical techniques. Especially for
higher order nonlinear PDEs, existing methods are not able to find exact solutions. However, due
to the invention of algebraic system solvers such as Mathematica and Maple, many integrating
schemes have been proposed, such as the e−8(ξ )-expansion method, Hirota’s bilinear method,
the homogeneous balance reduction of the PDE to a quadrature problem, the truncated Painlevé
expansion, etc. [9–13].

Solitons are formed because of an interplay between nonlinear and dispersive effects. The
importance of such waves lies in their roles in telecommunication systems as well as other physical
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sciences such as nonlinear optics, acoustics, convictive fluids,
condensed matter, and solid-state and plasma physics [14–19].

The main successes of quantum mechanics in the quantitative
description of non-relativistic systems are connected with the
Schrödinger equation. Schrödinger used the Klein-Gordon
equation (KGE) to model a system of motion of massive spinless
particles in a quantum field hypothesis [20, 21]. The quantum
wave model is thought of as the non-relativistic limitation of the
KGE. The KGE is a second order differential equation in both
spatial and temporal coordinates, reduced to two coupled first
order differential equations. To obtain explicit exact solutions,
various techniques have been implemented such as the Jacobi
elliptic expansion method, the mapping method, and the F-
expansion method but these methods produce very complex
solution expressions [22–24].

The nonlinear Klein-Gordon-Schrödinger (KGS) framework
depicts the association of neutral scalar mesons connecting
with scalar nucleons. This model depicts complex processes and
has attracted the consideration of researchers from different
fields. Many authors examined the behavior of solutions by
employing numerical and analytical techniques. Solitary wave
solutions are studied in [20], the behavior of the equations is
evaluated by a modified decomposition method in [25], Biswas
and Triki [26] scrutinize the KGS model alongside power law
nonlinearity to attain the solution in the form of solitons, the
Chebyshev pseudo spectral multidomain strategy was taken into
consideration for the mathematical solution of the given system
in [27], Yumak et al. analyzed the exact periodic and solitary
wave polynomial solutions of nonlinear KGS equations in [28],
a high-order compact finite difference technique is examined for
a governing model in [29]. In addition, various techniques are
applied in [30, 31].

The aim of this paper is to establish some novel and
widely applicable traveling wave solutions of the non-linear
KGS equation through effective methods such as the tanh-coth
expansion method, e−8(ξ )-expansion method, and Kudryashov’s
method. This model depicts the scalar nucleons associating with
neutral scalar mesons linked by the Yukawa potential in quantum
field theory [32, 33]. These methods are used to obtain a new
explicit solution of the KGS system which can be useful to study
the physical nature of many nonlinear phenomena in a number
of fields such as modern physics, fluid dynamics, quantum
mechanics, and plasma physics.

This paper is arranged as follows: In section 2, we proposed the
model. In section 3, solutions of the KGS system are formulated
through integration schemes and graphical interpretation.
Section 4 contains the results and discussion. In section 5,
concluding points are expressed.

2. PROPOSED MODEL

The proposed model [20] has the form

iWt + Wxx + NW = 0, (1)

Ntt − c2Nxx + N + |W|2 = 0. (2)

This coupled system describes the interplay of a meson field
with a nucleon field and is significant in modern physics. Here
N = N(x, t) is a meson field, W = W(x, t) is a complex scalar
nucleon field, and c is a real constant.

3. SOLITON SOLUTIONS OF
(1+1)-DIMENSIONAL KGS EQUATIONS

In this section, three state of the art integration schemes, Raza
et al. [34], Asokan and Vinodh [35], and Ullah et al. [36] are
employed to extract bright soliton, dark soliton, dipole and
combo soliton, kink soliton, and singular soliton solutions.

The following wave transformation

W(x, t) = w(ξ )ei(−kx+ωt), N(x, t) = n(ξ ), (3)

is applied, where ξ = x − αt, to obtain traveling wave solutions
for the proposed model given by Equations (1) and (2). In the
above transformation the wave number is ω, k is the frequency,
and α is the velocity of the soliton.
Plugging Equation (3) into Equations (1) and (2), then equating
the real parts gives

(w(ξ ))
′′
+ w(ξ )n(ξ )− (k2 + ω)w(ξ ) = 0, (4)

(α2 − c2)(n(ξ ))
′′
+ n(ξ )+ (w(ξ ))2 = 0. (5)

The imaginary part of Equation (1) gives the velocity of soliton,
i.e., α = −2k.
Solving Equation (4) for n(ξ ), we get

n(ξ ) =
(k2 + ω)w(ξ )− (w(ξ ))

′′

w(ξ )
. (6)

After plugging the value of n(ξ ) in Equation (5), we obtain the
following ODE as

(α2 − c2)

(

(k2 + ω)w− w
′′

w

)′′

+

(

(k2 + ω)w− w
′′

w

)

+ w2 = 0.

(7)

In accordance with the e
−8(ξ )-expansion scheme [34], the

solution of Equation (7) has the form

w(ξ ) =
N
∑

i=0

ai(e
−8(ξ ))i. (8)

The homogenous balance method gives N = 1. For N = 1,
Equation (8) becomes

w(ξ ) = a0 + a1e
−8(ξ ), (9)

here 8(ξ ) is the solution of the following ODE

8
′
(ξ ) = e−8(ξ ) +me−8(ξ ) + l. (10)
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FIGURE 1 | 3D plots of |W(x, t)| and |N(x, t)| given in Equations (11) and (12) with suitable choose of values of parameters as l = 3, s = 1, m = 2, k = 1, ξ = x + 2t

and C = 0.

By substituting Equation (9) into Equation (7) a system of
equations for a0 and a1 is retrieved by comparing the coefficients
of e−8(ξ ) equal to zero. By finding unknowns a0 and a1 from the
obtained system and inserting them into Equation (9), solutions
of the coupled KGS Equations (1) and (2) are obtained.
The obtained results are summarized in the following sets.
SET 1

a0 = −
l

√
2
, a1 = −

√
2,

ω = −k2 −
l2

2
+ 2m, c = −α.

SET 2

a0 = 0, a1 = ±
√
2, l = 0,

ω = −k2 + 2m, c = −α.

Soliton solutions for Set 1 are calculated.
When s > 0 andm 6= 0, then

W(x, t) = −ei(−kx+ωt)

[

l
√
2

+
2
√
2m

−l−
√
s tanh[ 12

√
s(C + ξ )]

]

(11)

and

N(x, t) =

−

[

s
(

−2m+ (s+ 2m) cosh[
√
s(C + ξ )]+ l

√
s sinh[

√
s(C + ξ )]

)

2
(

l cosh[ 12
√
s(C + ξ )]+

√
s sinh[ 12

√
s(C + ξ )]

)2

]

(12)

The Figure 1, depicts the graphical representation of the absolute
values of the obtained soliton solutions given in Equation (11)
and Equation (12). In Figure 1A represents the kink soliton and
Figure 1B represents the bright soliton.
When s < 0 andm 6= 0, then

W(x, t) = ±ei(−kx+ωt)

[

l
√
2

+
2
√
2m

−l−
√
−s tan[ 12

√
−s(C + ξ )]

]

(13)

and

N(x, t) = −
s

2

+
2sm

(

l cos[ 12
√
−s(C + ξ )]−

√
−s sin[ 12

√
−s(C + ξ )]

)2

(14)

The Figure 2, depicts the graphical representation of the absolute
values of the obtained soliton solutions given in Equation (13)
and Equation (14). In Figure 2A represents the periodic soliton
and Figure 2B represents the singular soliton.
When s > 0 andm = 0 and l 6= 0 then

W(x, t) = −ei(−kx+ωt) l coth[
1
2 l(C + ξ )]
√
2

(15)

and

N(x, t) = 2m−
1

2
l2 coth2[

1

2
l(C + ξ )] (16)

Frontiers in Physics | www.frontiersin.org 3 April 2021 | Volume 9 | Article 637964

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Raza et al. Soliton Solutions of KGS Equation

FIGURE 2 | 3D plots of |W(x, t)| and |N(x, t)| given in Equations (13) and (14) with values of parameters as l = 1, s = − 3, m = 1, k = 1, ξ = x + 2t and C = 0.

When s = 0 andm 6= 0 and l 6= 0, then

W(x, t) = ±ei(−kx+ωt) l
√
2(−1+ l(C + ξ ))

(17)

and

N(x, t) = 2m+ l2
(

−
1

2
−

2

(−1+ l(C + ξ ))2

)

(18)

When s = 0 andm = 0 and l = 0, then

W(x, t) = ±ei(−kx+ωt)

√
2

C + ξ
(19)

and

N(x, t) = −
λ2

2
+ 2µ −

2

(C + ξ )2
, (20)

where C is the constant of integration and s = l2 − 4m.
Soliton solutions for Set 2 are calculated.

When s > 0 andm 6= 0, then

W(x, t) = ∓ei(−kx+ωt)

√
2m coth[

√
−m(C + ξ )]

√
−m

, (21)

provided thatm < 0.

N(x, t) = 2m(coth2[
√
−m(C + ξ )]), (22)

provided thatm < 0.
When s < 0 andm 6= 0, then

W(x, t) = ±ei(−kx+ωt)
√
2m cot[

√
m(C + ξ ), (23)

provided thatm > 0.

N(x, t) = −2m(cot2[
√
m(C + ξ )]), (24)

provided that m > 0, where C is the constant of integration and
s = l2 − 4m.
According to the the tanh-coth method [35], the estimated
solution of Equation (7) has the form

w(ξ ) =
N
∑

i=0

ai tanh
i(mξ )+

N
∑

i=1

bi tanh
−i(mξ ). (25)

The homogenous balance method, gives N = 1. For N = 1, the
above equation takes the form

w(ξ ) = a0 + a1 tanh(mξ )+ b1 coth(mξ ). (26)

Substituting Equation (26) into Equation (7), a system of
nonlinear equations for a0, a1, and b1 is obtained by the
comparison of the coefficients of tanh(mξ ) to zero. Upon solving
the obtained system for a0, a1, and b1 and plugging them in
Equation (26), the solutions of the coupled KGS Equations (1)
and (2) are obtained.
The obtained results are summarized in the following sets.
SET 1

a0 = 0 = a1, b1 = ±
√
2m, (27)

ω = −k2 − 2m2, α = −c

SET 2

a0 = 0, a1 = ±
√
2m, b1 = ±

√
2m, (28)

ω = −k2 − 8m2, α = −c
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FIGURE 3 | 3D plots of |W(x, t)| and |N(x, t)| given in Equations (32) and (33) with values of parameters as m = 1, k = 1 and ξ = x + 2t.

FIGURE 4 | 3D plots of |W(x, t)| and |N(x, t)| given in Equations (38) and (39) with values of parameters as m = 1, d = 1, k = 1 and ξ = x + 2t.

SET 3

a0 = 0 = b1, a1 = ±
√
2m, (29)

ω = −k2 − 2m2, α = −c

Singular soliton solutions relative to SET 1 are obtained as

W(x, t) = ± ei(−kx+ωt)
√
2m coth[mξ ], (30)

and

N(x, t) = −2m2 coth2[mξ ] (31)

A dark-singular combo soliton solution relative to SET 2 is
attained as

W(x, t) = ± ei(−kx+ωt)
√
2m

(

coth[mξ ]+ tanh[mξ ]
)

, (32)

and a singular soliton is calculated as

N(x, t) = −8m2 coth2[2mξ ] (33)

The Figure 3, depicts the graphical representation of the absolute
values of the obtained soliton solutions given in Equation (32)
and Equation (33). In Figure 3A represents the dark-singular
combo soliton and Figure 3B represents the singular soliton.
A dark soliton solution relative to SET 3 is attained as

W(x, t) = ± ei(−kx+ωt)
√
2m tanh[mξ ], (34)
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and bright soliton is calculated as

N(x, t) = −2m2(1− sech2[mξ ]) (35)

According to Kudryashov’s method [36], the predicted solution
of Equation (7) has the following form

w(ξ ) =
N
∑

i=0

ai

(

1

1+ d(cosh(ξ )+ sinh(ξ ))

)i

. (36)

The homogenous balance method gives N = 1. For N = 1,
Equation (36) becomes

w(ξ ) = a0 +
a1

1+ d(sinh(ξ )+ cosh(ξ ))
. (37)

Inserting Equation (37) into ODE Equation (7), an algebraic
system of equations for a0 and a1 is obtained by equating every
coefficient of different powers of 1

1+d(cosh(ξ )+sinh(ξ ))
to zero. The

obtained system is solved for a0 and a1, and replacing these values
in Equation (37) gives solutions of the coupled KGS Equations (1)
and (2).
The following solution set arises
SET 1

a0 = ±
1
√
2
, a1 = ∓

√
2, c = −α,

ω =
1

2
(−1− 2k2)

A kink soliton solution is given as

W(x, t) = ei(−kx+ωt)
√
2m

(

±
1
√
2
∓

√
2

1+ d(cosh[ξ ]+ sinh[ξ ])

)

(38)

and a bright soliton solution is obtained as

N(x, t) = −
(−1+ d(sinh[ξ ]+ cosh[ξ ]))2

2(1+ d(sinh[ξ ]+ cosh[ξ ]))2
. (39)

The Figure 4, depicts the graphical representation of the absolute
values of the obtained soliton solutions given in Equation (38)
and Equation (39). In Figure 4A represents the kink soliton and
Figure 4B represents the bright soliton.

3.1. Novelty of the Results
It is worth mentioning here that the proposed model has been
solved for the first time by the e−8(ξ )-expansion method, tanh-
coth expansion technique, and Kudryashov’s method to extract
solitonic structures. The results presented in this piece of research
could be very useful in discussing the physical properties of the
different nonlinear evolution equations emerging in quantum
mechanics, fluid dynamics, and plasma physics. The solitonic
structures obtained in this study could attract the attention of

researchers working in the field of optical fiber communication
systems. The comparison of our results, with the outcomes of
[20, 21], show that bright and dark solitons as well as dipole
soliton, singular soliton, and kink soliton solutions have been
found for the first time in this article.

4. RESULTS AND DISCUSSION

It is important to clarify that the analytical methods utilized in
this article are truly state of the art techniques for extracting
the soliton solution of the non-linear Klein-Gordon-Schrödinger
model. It is important to note here that each integration
method has its own benefits and disadvantages compared to
other accessible strategies. For example, the inverse scattering
method is not useful for log-law, power law, and dual-
power law nonlinearities. Only bright solitons are recovered
by the semi-inverse variational algorithm. Likewise, here, the
e−8(ξ )-expansion technique gives bright soliton, kink soliton,
periodic soliton, and singular soliton solutions. The second
method applied in this research extracts dark soliton, dark-
singular combo soliton, and singular soliton solutions. The
third method employed here obtains bright soliton and kink
soliton solutions.

5. CONCLUSION

In this article, new soliton solutions have been obtained by
utilizing three well-known integration architectures namely,
the tanh-coth expansion strategy, Kudryashov’s strategy, and
the e−8(ξ )-expansion strategy. To the best of our knowledge,
these fresh examples of soliton solutions have been obtained
for the first time for the KGS model. Since the invention
of symbolic computation tools, the solution procedures have
been simplified, and therefore the described methods are
becoming more efficient in solving many physical problems.
The outcomes of this paper consist of dispersive solitons
incorporating CQS and cubic nonlinearities. Kudryashov’s
method along with the generalized tanh method extract
singular, bright, singular periodic, and a combo type of solitons
for the given model. The advantage of these techniques
is quite evident as they have no limitations in finding
such wave profiles.
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