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A True Random Number Generator is an essential component in data encryption,

hardware security, physical unclonable functions, and statistical analyses. Conventional

CMOS devices usually exploit the thermal noise or jitter to generate randomness,

which suffers from high energy consumption, slow bit generating rate, large area, and

over-complicated circuit. In this mini review, we introduce the novel physical randomness

generating mechanism based on the stochastic switching behavior of magnetic tunnel

junctions. As compared to CMOS technologies, the random number generator based

on spintronic devices can have many inherent advantages, such as simpler structure,

compact area, higher throughput, and better energy-efficiency. Here, we review and

compare various existing schemes at the device and circuit levels to achieve high

performance magnetic tunnel junctions based on a True Random Number Generator.

Future research trends and challenges are also discussed to stimulate more works in

this area.
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INTRODUCTION

Random numbers play a crucial role in modern information technology. Conventionally, random
number arrays are used in encryption algorithms, fromwidely-used RSA encryption to basic digital
signature, to generate uncrackable ciphertext [1]. Recently, the development of deep learning
and neural networks has led to new scope in the application of random numbers: to initialize
matrixes with random elements so that the network could converge efficiently. Similar stochastic
behavior is also favored by the artificial neurons or synapses in a spiking neuron network, which are
fundamental to building next generation brain-inspired computing platforms. Biological neurons
in the human brain fire pulses stochastically, which is considered one of the key strategies in the
low power computation of the brain. Noise or random numbers can also be used to control the
behavior of artificial neurons or synapses and to reduce the computational power [2, 3]. Aside from
the areas mentioned above, random numbers are also the basis for performing the Monte Carlo
method in numerical simulations, which simulates a system with random variables.

The computer component that generates random numbers is called a Random Number
Generator (RNG). The output numbers of an RNG are supposed to be uniformly distributed
within the range required by users. One typical category of RNGs is Pseudo Random Number
Generators (PRNGs). PRNG is not a hardware device, but a series of algorithms that output
uniformly distributed numbers based on certain seeds (such as the system clock). Strictly speaking,
PRNGs are not fundamentally random because their seemingly random outputs are still based on
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a fixed calculation process and/or the system parameters. In
comparison, True RandomNumber Generators (TRNG) are thus
defined as physical devices that output random numbers without
the dependence of any algorithms or seeds. TRNGs output
sequences of zeros (“0”s) and ones (“1”s) at an equal probability
of 50% to form uniformly distributed binary numbers. The
quality of a TRNG is usually assessed in the following four
aspects: (i) throughput capability, i.e., the generation speed of
random bits; (ii) energy efficiency, i.e., the energy consumption of
harvesting one random bit; (iii) randomness, which is quantified
by the pass rate of NIST Special Publication 800 Statistical Tests
Suite (NIST-SP800); and (iv) simplicity and scalability of the
design itself, which is indicated by the area of the core circuit.

Conventional CMOS-based TRNGs extract bits from classical
random phenomena, such as thermal noise [4–6] or oscillator
jitter [7, 8]. Although the designs can achieve sufficient
randomness, noticeable drawbacks still exist in these relatively
mature CMOS-based TNRGs. Some of the designs suffer from
poor generation speed and energy inefficiency, e.g., 0.011 Mb/s
and 181.81 nJ/bit [9]; while others need complicated assisting
circuits to modify the output that yields a minimum size of
hundreds or thousands µm2 for the core circuit [10, 11]. A
stable power supply for the oscillators is also often needed, which
further limits the scalability of the device [12]. A recent state-
of-art design by Intel gives a reference for the performance
standard of CMOS-based TRNGs: 162.5 Mb/s, 9 pJ/bit, NIST
pass rate over 99% with a circuit area of 1,088 µm2 [13].
However, such performance is not able to fully meet the demands
of emerging applications of neural networks, in particular the
energy consumption of fJ for the artificial neuron or synapse
devices [14].

To extend the fundamental limits of CMOS-based TRNGs,
researchers have turned their attention to spintronic devices
based on magnetic tunnel junction (MTJ). A typical MTJ
has a sandwich structure, consisting of one non-magnetic
middle tunneling layer (usually made of MgO) nipped by two
ferromagnetic (FM, usually made of CoFeB) layers: i.e., the
pinned and free layer (Figure 1A). If the magnetization of the
two FM layers has the same orientation (parallel or P state),
the resistance of the whole structure is low. On the contrary, if
the magnetizations are staggered (anti-parallel or AP state), the
junction shows a larger resistance. Conversely, the magnetization
of the free FM layer can be orientated so that the MTJs are
switched between parallel and anti-parallel states to encode
information (Figure 1B). There are three main types of physical
mechanisms that change the state of MTJ, namely the toggle
switching by charge current induced Oersted field [15, 16], the
spin transfer torque (STT) [17–21], or the spin orbit torque
(SOT) by spin current mediated angular momentum transfer
[22, 23]. Aside from these different switching mechanisms,
the structure of MTJ itself also differs in different forms,
such as the conventional in-plane magnetized MTJs [24], the
perpendicular MTJs (p-MTJ) with magnetizations perpendicular
to the film plane [25], and the orthogonal MTJs with in-
plane free FM layer and perpendicular pinned FM layer [26].
Despite these differences, the MTJ with low thermal stability
always tends to flip its free layer randomly at room temperature.

This thermal instability causes trouble when MTJs are used
in Magnetic Random Access Memory (MRAM) applications,
but inspires researchers to create random numbers through
inherent randomness.

As illustrated in Figure 1B, once the MTJs are perturbed
by appropriate approaches, they would resolve into AP or P
states that can be read by sensing amplifiers (S.A.) as “0” or
“1” correspondingly. As long as the probability to generate “0”
or “1” is equal, the MTJ functions as a TRNG. Compared
to the CMOS transistors, the dynamics of the MTJ switching
process can happen within the time scale of around 10 ns [27]
at an energy cost down to 80 to 200 fJ for spin torque driven
mechanism [28, 29]. These fundamental advantages guarantee a
high throughput capability and low energy consumption, which
makes the spintronic devices a promising candidate for the next
generation of high performance TRNGs.

This mini review introduces recent technology developments
in spintronic TRNGs. In particular, it is focused on TRNGs that
are built on the MTJs with P or AP states driven electrically by
the current induced spin torques. The design concepts, testing
methods, and performances of MTJ-based TRNGs (hereafter
referred to as MTJ-TRNG for simplicity) are emphasized at
the device and circuit levels. Section Different Designs of MTJ-
TRNGs first briefly introduces the main obstacle to realize a
random bit in the MTJ, followed by a detailed discussion of
different proposed strategies in the literature. Based on the
operation principles or hardware requirements, the strategies
are divided into four main categories, which include: (i) the
addition of peripheral current correction circuit, (ii) the adoption
of parallel sensing MTJ arrays, (iii) the alternative method to
harness switching-time stochasticity, and (iv) the replacement of
superparamagnetic free layer in theMTJ structure. Consequently,
Section III compares state-of-art performances for these
strategies with regards to the key criteria including throughput,
energy-efficiency, randomness, and circuit area size. Finally,
the possible research trends and challenges are forecasted and
discussed to stimulate more studies on spintronic TRNGs
in the future.

DIFFERENT DESIGNS OF MTJ-TRNGS

The general principle to create a random bit from an MTJ is to
perturb it with an appropriate external stimulus to a metastable
state at which the MTJ has an exactly equal tendency to settle
into the P or AP state (Figure 1B). After the MTJ is stabilized
in either one of the states, a randomly generated “0” or “1” is
thus obtained. This process is as if throwing the so-called “spin
dice” with two facets of “0” and “1.” In a practical STT driven
MTJ device, one operation cycle to generate a random bit usually
includes three main steps [30]: the reset step to initialize MTJ
into either a stable AP or P state; followed by the perturb step
to destabilize MTJ, and the final read step to wait and readout
the final MTJ state. By repeating the cycle a few times in a
single MTJ or operating multiple MTJs at the same time, a
true random binary number with required bits can eventually
be generated.
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FIGURE 1 | (A) The simplified version of the typical sandwich structure of MTJ. (B) The switching between a parallel state and anti-parallel state for in-plane and

perpendicular MTJ. The arrows inside the MTJ indicate the magnetization direction of free and pinned FM layers. Schematic of the four main strategies for optimizing

the randomness of spintronic TRNG. (C) Peripheral Current Correction Circuit. The perturb current is determined by correction logic based on previous output or

preset. (D) Parallel designed MTJ cells. The overall deviation is leveraged by this structure. (E) Switching-time Dependent Stochasticity. The counter together with the

oscillator records switching time as entropy instead of recording final states. (F) Adoption of Superparamagnetic tunnel junction. The switching happens

spontaneously and the sensing amplifier gives output directly.

Although MTJs are fundamentally superior in terms of
operation speed and energy consumption a major issue still exists
in the perturb step, which brings the MTJ into a state with
switching probability (Psw) of exactly 50%. Any deviation of Psw
from the ideal value of 50% would lead to a compromise in the

randomness of the TRNG. Hereafter, we use the word “bias”
interchangeably with the deviation of Psw from the ideal balanced
value of 50% for simplicity. However, the switching of MTJ
depends on many parameters, not only the material properties
of MTJ itself, but also the environmental parameters, and thus it
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is not an easy task to perturb into the desired metastable state.
For example, the switching probability of a nanopillar p-MTJ
driven by thermally activated STTmechanism could be expressed
as [31, 32]:

Psw = 1− exp

{

−
t

τ0
exp

[

−1

(

1−
I

IC0

)2
]}

(1)

where I and t are the pulse current amplitude and pulse duration,
respectively, τ0 the attempt time, and IC0 the critical switching
current at 0 K. 1 is the thermal stability parameter that is further
defined as Eb/kBT, where Eb is the energy barrier between the
P or AP states, kB the Boltzmann constant, and T the absolute
temperature. As can be seen, during the normal operation cycle,
the input of I and t are actively controlled to achieve the state
with Psw = 50%. But the passive temperature drift of the working
environment, and/or the common fluctuation of the current
source, could cause an unwanted deviation of Psw even for a single
MTJ during multiple operation cycles. Different MTJs on the
same wafer tend to exhibit slightly different material properties
(e.g., Eb), which could lead to variation in the switching phase
diagram, and cause troubles in the operation of multiple MTJs.
Therefore, it is crucial to take proper actions to eliminate the
deviation of Psw from 50% so that the randomness of MTJ-TRNG
can be ensured.

There are various proposals to tackle the difficult and stably
extract bits with sufficient randomness. Depending on the
methodology, they can be mainly categorized into four types.
Intuitively, based on the importance of the input current,
the peripheral current correction with preset configurations or
external logic can be added to restrict the switching probability
(Figure 1C). Alternatively, parallel arranged MTJ-TRNGs can be
used to leverage the biases of different MTJs by reading several
MTJs at the same time (Figure 1D). Other examples manage to
find an entropy source from the switching-time characteristic of
theMTJ under a low current that is several times smaller than the
critical one, known as switching-time dependent MTJ-TRNGs
(Figure 1E). Finally, the design of MTJ itself could be optimized
to give random bits without an extra control unit, such as the
incorporation of a superparamagnetic free layer (Figure 1F).
These proposed MTJ-TRNGs are introduced in detail in the
following section.

Peripheral Current Correction Circuit
In the seminal work by Fukushima et al. [31], a functional
MTJ-TRNG device with eight p-MTJs was implemented. The
schematic of one of such p-MTJ unit is illustrated in Figure 1C.
The p-MTJ consists of a 2 nm FeB free layer, a 1 nm MgO non-
magnetic layer, a CoPt/Ru/CoPt pinned layer, and the switching
of the p-MTJs is driven by the current induced STT. As a
result, the phase diagram of Psw with respect to current and
temperature is pre-calibrated from 4× 103 events so that any Psw
drift during normal operation can be compensated by presetting
the amplitude of the input current (green frame in Figure 1C)
through the current control unit (black frame in Figure 1C).
Experimental evidence after generating 109 bits shows that the
numbers generated by different MTJs are independent without

correlation, which ensures the randomness between output
bits. But as mentioned above, the simple current correction
circuit cannot eliminate all Psw deviation sources, especially the
disturbance caused by current source fluctuation. Indeed, it is
found that the Psw of two MTJs collected after the generation
of 109 bits exhibits an evident difference, and deviates from the
ideal value of 50% by more than 10%. To perfect the quality
of random bits, an additional exclusive OR operation (XOR)
is applied on the two MTJs. The output Psw was improved
to 50.036% compared with 51.3% for one MTJ and 48.7% for
the other. Nested XOR operation was later tested on these
MTJs. XOR∧2 (two rounds of XOR operations) and XOR∧3
could further narrow the distribution of Psw and improve
the output distribution to close-binomial. The overall NIST
pass rate after XOR∧3 operation climbs up to 99.7% for 188
tests. The throughput of this TRNG is estimated to be 0.6
Mb/s by generating one bit through the complete cycle with a
XOR∧3 operation.

In the same year, 2014, another TRNG based on the STT
mechanism was designed and simulated by Won Ho Choi et al.
[33]. They proposed a feedback system that corrects the input
current in real time, which consists of two 10-bit counters
working as recorders (blue frame in Figure 1C). For every 1
Kbit generated from the MTJ, one counter counts the number
of the generated “1”s and the other counter records the total
number of bits. The count number from the former counter
is multiplied by two and compared with the total bit number
by a correction logic (red frame in Figure 1C). Depending on
the result, the perturb current pulse width is adjusted through
the current controller (black frame in Figure 1C) to optimize
the randomness. Additionally, a conditional perturb scheme was
proposed to improve the MTJ endurance, which replaces the
conventional reset step with another reading step to checking the
status of MTJ. Afterward, the control circuit decided whether to
apply a positive or a negative perturb current. The improvement
of MTJ endurance comes from the absence of a strong reset
current. This TRNG device passed all NIST randomness tests
after 65 Kbits of adjusting process, but no energy consumption
and throughput capacity were mentioned.

Another digitally controlled probability tracking circuit design
was simulated by Satoshi Oosawa et al. [34]. The correction
logic works similarly to the tracking-feedback circuit in another
example [33]. It records output random bits and adjusts the
amplitude of current so that the output current limits the
MTJ’s switching probability between 48.625% and 51.375%.
Compared with previous works, this probability-locked loop
replaces all high-gain analog amplifiers in the circuit with digital
components, which is more suitable for the integration in scaled
CMOS process. Later in 2016, an array of MTJs with similar
feedback circuits was simulated and passed 151 of 187 NIST
tests [35].

Novel spintronic device technologies are also introduced into
current correction TRNG designs. In the past decade, other
than the STT driven p-MTJs as mentioned above, SOT is a
more efficient mechanism to switch the state of p-MTJ at
faster operation speed and lower power consumption [27]. As
a result, SOT driven p-MTJs have also proved to be reliable
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random number sources as long as the input current can be
properly controlled [36–38]. Different from the conventional
STT one, the reset and perturb steps in SOT based MTJ-
TRNG can be combined in a single step. Due to the additional
symmetry requirements, the torque of SOT drives the free layer
magnetization to in-plane orientation so that the input current
always perturbs the MTJ into a metastable state regardless of its
previous state.

It is worth pointing out that the SOT based MTJ-TRNG
with p-MTJs can improve the pass rate of NIST to 95–100%
and decrease the energy consumption down to 57.1 fJ/bit in
simulation [37]. Similarly, in the unconventional orthogonal
MTJs based TRNG, the current induced torque is also orthogonal
to the free layer magnetization since the magnetizations of the
free and pinned layer are built-in to be orthogonal during
fabrication. Because of the short perturb time and resolve time for
orthogonal MTJs, the throughput could hit as high as 208 Mb/s
[39] under simulation by solving the Landau-Lifshitz-Gilbert
equation, which describes magnetic dynamics. The adoption of
these novel technologies opens a new avenue for the optimization
of MTJ-TRNG performances.

Parallel Designed MTJ Cells
Aside from the strategy to stabilize Psw with preset static
parameters or external correction circuits, efforts have beenmade
to find a design that can obtain high quality random numbers
directly from the MTJ bit cells. One method abstracts the
random numbers from different MTJs as independent Gaussian
distributed random variables, it is natural to minimize the total
deviation by a simple average operation [40]:

σx1+...+xN

N
=

√

σ
2
1 + . . . + σ

2
N

N

(

=
σN√
N

, if x1 = . . . = xN

)

(2)
where xN is a random variable, N is the total number of
variables, σx1+...+xN is the overall standard deviation and σN

is the deviation of variable xN . This equation indicates that
N paralleled MTJs will have their overall probability deviation
divided by

√
N.

Based on this approach, Qu et al. proposed a design with
N paralleled MTJs, as shown in Figure 1D, which could in
principle adjust the overall probability to close to 50% without
any external correction circuits. These parallel MTJs are reset
and then perturbed simultaneously, which is counted as two
operations, and followed by N read operations after perturbance.
Assuming that each of the operations (including reset, perturb,
and read) takes only 5 ns, one operation cycle would thus take
(N + 2) × 5 ns. With N = 16 MTJs, the throughput capacity
reaches 177.8 Mb/s (throughput = N × 1s

(N+2)×5 ns
, N bits per

cycle multiplied by total cycle number in 1 s). The simulation also
shows that the average energy consumption is 0.64 pJ/bit. The
passing rate of NIST is above 98.1% for all tests and will increase
with more MTJs. More importantly, the area of core circuits is
improved to 7.64 µm2 as compared to hundreds or thousands of
µm2 in CMOS TRNG designs.

The same research group also simulated another design of
multiple MTJs in 2018 with a focus to minimize the effect from
global parameters rather than decreasing the overall Psw bias
[41]. Assuming that the switching probabilities of two identical
MTJs are noted as x1 and x2, the probability that x1 is smaller
than x2 always equals 50% since they are equally affected by
external parameters. Based on this concept, this design places two
identical MTJs in symmetric positions to leverage any possible
disturbance caused by global parameters. The output bit is
determined by the first switched MTJ after perturbance. In the
ideal case, the switching of one of the two MTJs would cause a
decrease of the overall current (a decrease by 33% if the resistance
of MTJ in P state is half of that in AP state) in the circuit, which is
sensed by a current detector (not shown in Figure 1). The writing
process is interrupted immediately to ensure that only one of
the MTJs switches and its state is output. To avoid malfunction
situations where both or neither one flips, the perturb pulse
width is moderated to 5 ns, which is a balance between bit-
generating speed and switching effectiveness. Additionally, the
switching properties of two MTJs cannot be identical in reality,
and therefore it is necessary to apply a quality improvement
circuit to minimize any inherent bias by the adoption of XOR
gates. Under simulation, the pass rates of NIST tests are also
no less than the critical line of 98% with a throughput of 66.7
Mbit/s and energy consumption of 0.81 pJ/bit. Compared to their
previous work in the last paragraph, the area of the core circuit is
further improved to 3.84 µm2.

Switching-Time Dependent Stochasticity
The TRNGs discussed thus far in this review all use MTJ
switching success rate as the entropy source. The physical nature
of this method needs either peripheral circuits or a sophisticated
anti-bias design, both of which are relatively expensive and
complex to manufacture. Hence, Yang et al. proposed another
TRNG design based on the fact that MTJ switching time itself
can be a practical entropy source, and the proposal was verified
with a commercial MRAM die [42].

The key experimental finding in their work is that when
writing “1”s into MTJs with a low current, two or three times
smaller than the nominal values, the switching time follows a
skewed distribution (mean value of 28–56 ns). Such skewed
distribution might be a result of both systematic delay mismatch
and random jitter, which is similar to CMOS oscillation collapse
time [43]. The stochasticity of the MTJ switching time allows it
to record time itself as the random bit. To realize such a function,
a ring oscillator (the blue frame in Figure 1E) together with an
asynchronous counter (the green frame in Figure 1E) records the
time circles that the MTJ writing process takes. A continuous
comparator (red frame in Figure 1E) also works as a sensing
amplifier to monitor the bit line and sends the stop signal to
the counter once the MTJ flips to a P state. Consequently, the
counter’s least significant bits are used directly as random bits
output. To avoid any false triggering, the comparator is activated
slightly after the bit line sets up. To save energy, the random
numbers are only harvested while writing “1”s after resetting
all MTJs into AP state (“0”s). This design with an area of 180
µm2 experimentally achieved the NIST pass rate above 98%. The
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maximum random number generation speed is 66 Mbps and
the best energy efficiency is 18 pJ/bit (11 pJ/bit if neglecting the
shared reference current used by comparator S.A.). Moreover,
these performance indexes can be further improved by expanding
the circuit and arranging more MTJs in parallel.

In 2019, Ben Perach proposed STT-ANGIE—an
asynchronous MTJ based TRNG that can work in low frequency
circuits [44], and tested it with simulation. The entropy of this
TRNG also comes from switching time but random bits are still
read fromMTJs’ final AP/P states. The perturbance is carried out
by capacitors which give out charge to eachMTJ asynchronously.
Without strict current control, the final states of MTJs are
different due to switching time variation, which can be used as a
random bit. The generation speed of this type of TRNG with 8
MTJs could hit 99.7–127.8 Mb/s and the energy consumption is
merely 6–7.7 pJ/bit. However, the area of the circuit is relatively
large, being over 400 µm2.

Superparamagnetic Tunnel Junction
As mentioned in Section Introduction, the MTJs with low
thermal energy barriers between AP and P states inherently
have stochasticity against thermal noise. Figure 1F shows
the extreme case to replace the FM free layer in MTJ
with a superparamagnetic layer, which is dubbed as the
superparamagnetic tunnel junction (SP-MTJ). Consequently,
thermal fluctuation at room temperature would be strong enough
to switch the SP-MTJ repeatedly without invoking any external
power source. In 2017, Vodenicarevic et al. experimentally tested
SP-MTJs as a random number source, then demonstrated SP-
MTJ based TRNG through circuit-level simulation. The energy
consumption under simulation was decreased to 20 fJ/bit, and
the core circuit was simplified to 2 µm2 [45].

The fabrication of their SP-MTJ follows standard sputtering
procedure [46] with common MTJ materials. The structure from
top to bottom is Au(200)/Cr (5)/Ru (8)/Ta (7)/Free Layer(not
specified)/MgO(1.075)/CoFeB (3)/Ru(0.85)/CoFe(2.5)/PtMn
(15) (the number in the parenthesis indicates the thickness in
nanometers). However, the lateral size of this type of MTJ should
be carefully controlled (50 × 150 nm2 elliptic pillar) to attain
a superparamagnetic free layer with low thermal stability. In
addition, to read the state without biasing its switching behavior,
a negligibly small current is also needed to eliminate any
current induced thermal fluctuation. The experimental test upon
SP-MTJs over a 10-s period shows that the dwell times of both
AP and P status follow a Poisson characteristic and the mean
switching frequency is 1.66 kHz. Since the superparamagnetic

switching happens spontaneously, a random number array could
be generated by simply sampling the voltage outcome, with the
maximum frequency of 100 kHz.

However, the Psw deviation still exists due to the stray field
induced by pinned layer. The free layer tends to stay longer
in the P state than in the AP state, producing a mean state
of 60.5% if AP is “0” and P is “1.” Again, XOR operation
is introduced in the randomness optimization. The outcome
random bits get exponentially closer to 50% after several rounds
of XOR operations. Ultimately, with eight raw numbers and three
rounds of XOR operations for one bit output, at a sampling rate
under 5.9 kHz, the passing rate of NIST tests reaches 100%. This
design also employs a special CMOS pre-charge sensing amplifier
[47] to further eliminate any disturbance on MTJ switching
performance. The whole circuit is simulated in CADENCEwhich
shows that the reading current is relatively independent from the
tunnel junctions, with an ultra-low reading energy consumption
of approximately 2 fJ per bit. While using 8 bits to generate 1
bit through XOR operations, the average energy consumption is
20 fJ/bit. Unfortunately, the switching process is dominated by
environment temperature, which limits the generating speed to
merely several kHz. This design may only be suitable for slow
missions such as neuro-inspired computing.

COMPARISON AND PERSPECTIVE

Up till now, four main types of strategies have been proposed
to realize MTJ-TRNGs with sufficient randomness, fast speed,
low energy, and compact area. As described in the last section,
the TRNG performances in most of these spintronic devices
are tested under simulation except [31, 42] where the circuit-
board of the MRAM die was used for verification. Bearing this
fact in mind, the comparison of the best performances of each
strategy is summarized in Table 1. As listed in the table, all the
strategies can achieve sufficient randomness in the sense that the
pass rates for NIST tests are no <95%. Due to the existence of
an upper monitor or external logic, the area of the peripheral
current correction circuit is hard to be quantified; while other
types of MTJ-TRNGs are significantly smaller than their CMOS
counterparts. Even for the mediocre output speed of 66.6 Mb/s
[34], it is still three times better than the CMOS-TRNG [11].
It is worth pointing out that the maximum throughput can be
elevated to above 200 Mb/s when orthogonal MTJs are adopted.
The TRNG with parallel-designed MTJ cells hits the second
highest output speed, but it may pose fabrication difficulty in
the requirement of identical MTJs. The TRNG based on SP-MTJ

TABLE 1 | A comparison of the best performances of the four main categories of MTJ-TRNGs described in Section Different Designs of MTJ-TRNGs.

Peripheral current correction

circuit

Parallel designed MTJ

cells [40]

Switching-time dependent

stochasticity

Super-paramagnetic

tunnel junction [45]

Throughput capability 0.6 Mb/s (31)−208 Mb/s [39] 66.7–177.8 Mb/s 66 Mb/s [42]*-127.8 Mb/s (44) 0.5–100 Kb/s

Passing rate of NIST tests >65% (35) to >95% [36] >98.1% >98% [42]* 100%

Energy consumption 57.1–122 fJ/bit [37] 0.64–0.81 pJ/bit 6–18.3 pJ/bit [44] 2–20 fJ/bit

Area Not mentioned 3.84–7.64 µm2 180 µm2 [42]*-408 µm2 (44) 2 µm2

Designs verified by experiment are marked with “*.”
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has the lowest throughput of 100 Kb/s, which is limited by
the thermal agitation process. As for the energy consumption,
the typical value is a few pJ per bit with STT driven MTJs,
and it could be improved to fJ level with the assist of SOT
technology. It should be noted that with superparamagnetic
nature, SP-MTJ has a neglectable energy consumption of merely
2 fJ/bit in best cases. In general, there are always pros and cons
accompanied with each strategy, and thus the adoption of a
specific existing strategy would depend on the real application
scenes of the TRNG.

From a fundamental point of view, further research on novel
MTJ technologies are needed to optimize the performance of
MTJ-TRNG devices. MTJs with shorter perturb and resolve
times and smaller perturb current are always in demand, as
they decrease energy consumption and increase throughput.
Development of these requires efforts in terms of materials
and the device, for example, it has been demonstrated that
the antiferromagnetic material has a much faster spin dynamic
than the FM one [48], which could boost the switching speed
of the MTJ down to ps level once adopted as the free layer.
The stochasticity of certain spin textures, such as domain walls
[49, 50] or skyrmions [51, 52] could be utilized as another type
of entropy source, which could potentially lead to a simpler
circuit structure. A novel spin torque mechanism beyond STT
or SOT [53, 54] could also be a direction to improve the
performance of MTJs, as it has the switching energy of several
fJ per bit, as mentioned above. In addition, more engineering
works are required to verify and optimize the scalability and
reliability of existing MTJ-TRNG designs at the circuit level.
The ideal size of the core circuit for MTJ-TRNGs should

be <10 µm2 to achieve a significant advantage over CMOS
TRNGs in scalability. In particular, since one of the TRNG
applications is in data security, it is necessary to conduct a failure
analysis on MTJ-TRNG considering the fact that spintronic
devices are typically vulnerable to environmental magnetic fields.
Possible attack methods against MTJ-TRNGs and the solutions
to these limitations need to be carefully evaluated to eliminate
the possibility of manipulating the behavior of the MTJ, but
this issue is scarcely considered in existing works [44]. All
this progress is needed for the commercialization of MTJ-
TRNGs as the next generation of high performance TRNG
with a simpler structure, compact area, higher throughput, and
better energy-efficiency.
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