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Information spreading on social media is a crucial issue to build a safe society. In particular,
during emergencies, misinformation and uncertain information can lead to social disruption
and cause significant damage to our lives. Here we built a retweet network from 24 million
radiation-related tweets by 1.3 million accounts in the immediate aftermath of the
Fukushima nuclear power plant accident in 2011. Then we simulated the information
spreading on the network to explore ways to spread scientifically accurate information. Our
simulation replicated the reality in which the number of scientific evidence-based tweets
experienced a gradual decline while the number of emotional tweets increased. We also
showed that increasing new direct retweets from the influencers could effectively spread
scientific evidence-based information in our hypothetical simulations.
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INTRODUCTION

In ancient and modern times, all sorts of uncertain information appear during and after disasters
whether natural or human-made. It has been documented since Roman times that rumors have been
used as a sort of weapon. During World War II in the 1940s, people were at the mercy of much
uncertain information, and innocent people were harmed in places where they were not on the
battlefield [1]. Uncertain information was also spread in many countries during the COVID-19
pandemic in 2020. The new term “infodemic” (it comes from information and pandemic) was
created, and experts warned of the risks [2, 3]. During the infodemic in 2020, since people were at
home due to the lockdown, uncertain information came and went mainly on social media.

The same thing happened in 2011 when the Great East Japan Earthquake struck Japan. Damages
caused by the earthquake itself, the tsunami and the collapse of buildings were enormous. Moreover,
the accident at the Fukushima Daiichi nuclear power plant (1F), located 220 km from the Tokyo
metropolitan area, affected many people extensively and long-lasting. Due to this accident, many
people in certain areas of Fukushima Prefecture were forced to evacuate. At the peak time, 165
thousand people evacuated and still, 30 thousand people continue to live away from their hometown.
During this decade, some people have died of illness or committed suicide due to the stress of being
forced to suddenly leave their homes and live in new communities in temporary housing. These are
called disaster-related deaths.

The 1F accident was the cause of the confusion [4, 5]. After the accident, people shared
information about radiations. Because radiation cannot be seen directly and scientific knowledge

Edited by:
Miguel Angel Fuentes,

Santa Fe Institute, United States

Reviewed by:
Juan Pablo Cárdenas,

Net-Works, Chile
Woo-Sung Jung,

Pohang University of Science and
Technology, South Korea

*Correspondence:
Yukie Sano

sano@sk.tsukuba.ac.jp

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 12 December 2020
Accepted: 07 June 2021
Published: 23 June 2021

Citation:
Sano Y, Torii HA, Onoue Y and Uno K

(2021) Simulation of Information
Spreading on Twitter Concerning

Radiation After the Fukushima Nuclear
Power Plant Accident.
Front. Phys. 9:640733.

doi: 10.3389/fphy.2021.640733

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6407331

ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fphy.2021.640733

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.640733&domain=pdf&date_stamp=2021-06-23
https://www.frontiersin.org/articles/10.3389/fphy.2021.640733/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.640733/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.640733/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.640733/full
http://creativecommons.org/licenses/by/4.0/
mailto:sano@sk.tsukuba.ac.jp
https://doi.org/10.3389/fphy.2021.640733
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.640733


is necessary to understand accurate information about radiation,
many people looked for various details regarding radiation on
social media. This information was shared largely, especially in
Twitter space in 2011, Japan.

Despite being a crucial case, there has been little in-depth
social media analysis of Fukushima and the radiation aftermath of
the disaster. To tackle the issue, Tsubokura et al. collected and
analyzed the data from the Japanese Twitter space, using
technical terminology to comprehensively describe the
information exchanged about the 1F accident [6]. They
showed that retweets (RTs) accounted for more than half of
the information exchanged about the 1F accident. Furthermore,
RTs from influential sources, known as “influencers,” accounted
for 80.3% of the total RTs, even though they occupy only 2% of
Twitter accounts.

These influencers could then be broadly divided into three
groups by applying the document vector analysis. The first group
of people tweeted rationally which described the effect of
radiation based on science-based facts. The second group of
people tweeted emotionally and criticized the government and
Tokyo Electric Power Company. The third group consists of news
agencies and journalists who are related to mass media [6].
Hereafter we refer to the second group of people who tweeted
with an emotional expression as Group B and the remaining two
groups as Group A.

To empirically identify each group’s impact and explore ways
to spread scientifically accurate information about radiation
efficiently, it is crucial to go ahead with Tsubokura’s study [6]
and discuss information spreading under the various scenarios.
However, information spreading, which is also known as complex
contagions [11], is difficult to understand, unlike a physical
phenomenon whose motion is deterministically delivered by
kinetics laws. Therefore, we developed a simulation using a
modified voter model with a real RT network. Specifically, by
using the same data set in Ref. [6], we simulated the information
spreading on a real RT network immediately after the 1F accident,
originating from the real influencers. As a result, we showed that
Group A was influential during the first week after the accident.
However, Group A lost its influence after a month, and the tweets
from Group B cover the majority of discussion about radiation on
Japanese Twitter space. These simulation results replicated the
fact that the tweet from Group B spread more widely than Group
A in real data analysis [6]. Here we performed simulations under
hypothetical scenarios to respond accurately and quickly to social
crises, especially in the age of infodemic.

MATERIALS AND METHODS

Network Data
We used the same Japanese Twitter data as used in Ref. [6] related
to the 1F accident and/or radiation fromMarch 2 to September 15
in 2011 (i.e., the first six months after the Great East Japan
Earthquake). The total number of tweets and retweets during
the period was 24,287,299 from 1,397,941 accounts. From this
data, we built a weighted directed network in which the nodes are
Twitter accounts, and the links are RT relations. If there was an

object in the retweeted_status in the original JSON data, we
treated it as RT. Therefore, we only used direct retweets. The code
for this pre-processing is available at the following URL (https://
github.com/likr/twitter-analysis2018/edit/master/scripts/). The
link direction is from the RT origin to the RT destination (a
tweet author), representing the information flow (Figure 1A).
Thus, the number of outgoing links indicates retweeted
frequency, while the number of incoming links indicates
retweet frequency.

We built the network the way mentioned above because we
assume that if an account i retweets another account j, i agrees
with and supports j’s opinion. If i retweets jmore than once, then
i strongly agrees with j. Of course, it is also possible that i may
retweet to refute j’s opinion especially when they are quoted
tweets. However, we made this assumption because as of 2011,
only about three years since Twitter became widespread in Japan,
and most people used RT to show their agreement.

During the whole period under the study, the number of nodes
and links were 813,876 and 7,528,370, respectively, with the
largest connected component accounting for 99% in total.
When we look at the RT network weekly, the size of the
network decreases over time as the number of tweets about 1F
accident and/or radiation decreases (Figure 2A). Degree
distribution of the whole period shows a highly skewed
distribution in both incoming and outgoing links. When
compared with the lognormal and power-law distributions
[27], the incoming link was significantly (p < 0.01) closer to
the lognormal distribution. There was no significant difference
between the two distributions for the outgoing link, and the
power-law exponent is 1.87 for power-law distribution
(Figure 2B). This skewed distribution in number of RTs is
similar to the result of an earlier work showing that the
retweet and retweeted frequency follows a power-law function
with its exponent being 1 [7]. A simple Barabási-Albert (BA)
model—growth and preferential attachment process—generates
its power-law exponent three analytically [8]. Our degree
distribution and the power-law exponent are not exactly the
same as in the previous studies. This could be limited to tweets

FIGURE 1 | (A) An example of drawing directed and weighted link from
tweets. (B) Our opinion model. An example where the node i changes its
opinion si(t) at time t + 1.
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about 1F accident and/or radiation in our research. We do not
go into the detail of the mechanism in this paper but will discuss
RT dynamics at another time. The number of links for most
nodes is small, and the percentage of nodes with less than three
links is 63.3% for incoming and 58.8% for outgoing links
(Figure 2C).

Model
There are a variety of opinion dynamics models [9–12]. One of
the most representative and longest established ones is the voter

model. The voter model is also called the Ising model in physics
literature [13, 14]. A simple voter model in which nodes have
binary opinions with externalities is also well-known in
economics [15]. In a voter model, the nodes choose one of
their neighbors to mimic their opinions at each time step. A
voter model’s dynamics is not direct voting by all neighbors, but
the majority will have a probabilistic advantage. A natural
extension of the binary voter model is that a node chooses its
opinion, i.e., state, from multiple opinions, called the Potts
model [16].

FIGURE 2 | (A) The number of nodes and links of the retweet network built from the radiation-related tweets after the 1F accident per week. There were large
numbers of nodes and links immediately after the 1F accident but gradually decreased with time. (B) Degree distribution of both incoming (retweeted) and outgoing
(retweet) link. For incoming link, lognormal distribution (green solid line) is selected p < 0.01 while outgoing link distribution is not statistically selected. Power-law
exponent is 1.93 for incoming link and 1.87 for outgoing link in the figure. (C) Pie chart of the number of links in the retweet network for the whole observed period.
More than half of the nodes have less than two in both incoming and outgoing links.
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There is another model that has binary opinions as in the voter
model, but all of its neighbors directly influence each node [17,
18]. In these models, nodes have a threshold and make decisions
according to that threshold. Both in analytical solutions and
numerical simulations, Watts has confirmed that the threshold
and an average number of neighbors to determine whether a
global cascade occurs [17]. Watts’ cascade model was initially
studied in networks without link directions and weights. Since
then, the model has been largely extended to include the case with
link direction and weights [19, 20] as well as degree correlations
[21]. Furthermore, Watts and colleagues have confirmed the
“social influence” assumed in the model in an experiment
using an artificial music market [22].

Running the simulation on real data gives us a new
perspective. Karimi et al. ran Watts’ cascade model on six real
networks and found that the temporal network structure
increases the cascade size [23]. Combining real Twitter data
with simulations is also underway to analyze information
spreading in what-if scenarios [10, 24, 25]. Takayasu et al.
used SIR-like model and showed that the false rumor cascade
size decreased in case that the timing of anti-rumor transmission
was earlier than the reality [24]. Tripathy et al. ran the twomodels
on a real network with about 50,000 nodes to propose an anti-
rumor strategy on Twitter [25]. However, these simulations do
not fully take into account the link directions and weights that the
real network contains.

We built our opinion model based on the Watts’ cascade
model with three opinions that takes into account the RT
dynamics. We consider a model that incorporates the strength
of one’s own opinions to update his/her opinions, because we
assume that nodes are influenced by their neighbors and their
own beliefs when they update their opinions. This own opinion
corresponds to the threshold in Watts’ cascade model.

Assume that each node i has one of the internal states of si(t) �
{−1, 0, 1} at time t.Here, we assign si(t) � +1 to Group A and si(t)
� −1 to Group B. The state si(t) � 0 corresponds to a neutral state
that does not belong to either of these groups. Initially, all nodes
are set at the neutral state of si(t) � 0, except for the influencers. At
time t, node i receives an input from its neighbor node j that has
retweeted. Here we consider the direction and the weight wij(t) of
the link. When a node i does not have an incoming link from a
node j, then wij(t) � 0. A node i determines its next internal state
si(t + 1) based on the value mi(t), which is the sum of the inputs
from its all neighbors (Figure 1B):

mi(t) � aisi(t) + (1 − ai) 1ni
∑
j≠ i
wij(t)sj(t), (1)

where ni is the number of links directed to node i (i.e., number of
incoming links of node i), and ai is the parameter that describes
the strength of node i’s own opinion. Let us assume that ai is
normalized 0 ≤ ai < 1, and that it does not change with time.
When ai∼1, node i refers its own state, and no update occurs
when si(t) ≠ 0. On the other hand, when ai � 0, si (t + 1) is
determined entirely by inputs from the i’s neighbors. This
corresponds to the situation that a node updates its opinion
fully depending on its neighbors. Therefore, when ai is small, a

node is more likely to change its opinion. A node i updates its
opinion next time si (t + 1) based on mi(t) with the following
threshold.

si(t + 1) �
⎧⎪⎨⎪⎩

−1,
0,
+1,

mi(t)< 0
mi(t) � 0
mi(t)> 0

(2)

Due to this rule, when ai > 0.5, once a node i has its opinion
si(t) ≠ 0, a node i is unlikely to change its opinion. Only when
wij(t) has a large value, a node imay change the sign of mi(t) and
update si (t + 1). We count the number of nodes in each internal
state si(t);VA(t) is the number of nodes with si(t) � +1 andVB(t) is
the number of nodes with si(t) � −1. Finally, we evaluate R(t) �
VB(t)/VA(t) as the ratio of the Group B to Group A.

Network Data Assimilation Simulation
We simulate the proposed model on the real RT network as
follows:

(1) Set the target period

We bring out the real network data for the target period t,
where t denotes a week starting from t days after the date of the
earthquake. To see R(t)’s gradual fluctuations, we use the
overlapping time windows; t � 1 from March 12–19 in 2011,
and t � 2 from March 13–20 in 2011. Finally, t � 181 � T is from
September 8–15 in 2011.

(2) Set the initial conditions and influencers

For the initial condition, based on the previous study [6], we
set the top nine influencers in each group who retweeted most
during the whole period. Here we set si(t) � +1 as influencers in
Group A. Also, we set si(t) � −1 as influencers in Group B. All
remaining nodes were set to si(t) � 0.

(3) Update opinion with the model

We repeat the simulation with our model. Here we repeat 50
steps because the number of nodes in each state does not change
anymore (Figure 3). After 50 steps we count the number of nodes
with si(t) � +1 as VA(t) and the number of nodes si(t) � −1 as
VB(t), and calculate the ratio R(t).

(4) Shift the target period and repeat the simulation

We change the target period from t to t + 1 and repeat the
simulation.

RESULTS

Real Data Case
In the previous study [6], the number of RTs from influencers
belonging to Groups A and B were identified. Therefore, we used
the values as a benchmark to replicate the influence of Groups A
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FIGURE 3 | Examples of simulations at step t. The vertical axis indicates the number of nodes as a function of simulation steps in the one simulation at t � 2 and
t � 181. The number of nodes does not change after 50 simulation steps.

FIGURE 4 | (A) The 7-daysmoving average ratioR(t) between the number of nodes that belong to Group B divided by the number of nodes that belong to Group A
by our simulation.When the parameter is around a � 0.3, it is the closest to the realRreal(t). (B) Error E between simulation result and real data with changing parameter a.
When a � 0.31, error E becomes the smallest.
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and B. In the real data, the number of RTs from Group B,
VB

real(t), begins to increase around t � 20 (i.e., April in 2011).
Then Rreal(t) � 2.4 at t � 181 (i.e., September in 2011). This
indicates that the number of retweets from Group B containing
emotional expressions about radiation accounted for more than
that of Group A containing more scientific description. In fact,
around t � 10 (i.e., March in 2011), Groups A predominated
because many scientists and mass media repeatedly tweeted their
evidence-based facts and people retweeted them. However, the
number of tweets from influencers in Group A declined, instead,
the tweets from influencers in Group B increased.

To check the validity of our simulation, we compared R(t), the
ratio of the nodes in Group B to that in Group A. We compared
the real number Rreal(t) from the data and simulation results
Rsim(t) for the same target period t. Because the value of R(t)
fluctuates widely with t, we compared the 7-days moving average
R(t) within t ± 3 days for R(t) to check the rough variation. Note
that our real data of Rreal(t) and simulation data of Rsim(t) are not
directly comparable. Thus, one is the number of RTs, and the
other is the number of nodes that belongs to each group. Here we
assumed that the nodes belonging to each group have a certain
probability of retweeting their belonging group. Because we do
not have the data that each account belongs to each group, we
apply this way to grab a gradual trend of each group. This method
is reasonable to a certain extent because previous study [6] have
considered the number of RTs as the influence of each group.

Optimization of Fixed-Parameter ai
Figure 4A shows the simulation results with a fixed ai value for
every node. Since we never know ai for each node, we fixed the
value a for simplicity. First, when a < 0.2, the sum of error E �
∑T
t�1

����������������
(Rreal(t) − R

sim(t))2
√

between the R
real(t) and the R

sim(t) is

very large. On the other hand, the sum of error E decreases
sharply around a � 0.2 and becomes the smallest at a � 0.31

(Figure 4B). This result suggests that each node is influenced by
its neighbors and has a certain amount of intention of its own.

We will discuss the obtained value of a � 0.31 in more detail: if
a is greater than 0.5, nodes do not change their opinion once they
are in either si(t) � +1 or si(t) � −1 by its definition in Eqs 1, 2. On
the other hand, if a is close to zero, nodes easily change their
opinion depending on their neighbors. Original Watts’ cascade
model is known that global cascades do not occur when the
threshold value exceeds about 0.25, even smaller average degree
[17]. In our simulation with real network data, which most nodes

FIGURE 5 | Simulation results for 〈ai〉 � 0.31, which is the most accurate reproduction of the real data. The error bars represent the standard deviation calculated
from ten iterations.

FIGURE 6 | Schematic diagram of our hypothetical scenarios. Orange
nodes and arrows are the hypothetical setup parts. In Scenario (1), we add
new nodes to retweet influencers directly; in Scenario (2), we increase the
number of RTs for nodes that have already retweeted; and in Scenario
(3), we added new nodes to retweet nodes which have already retweeted the
influencers.
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have a smaller number of neighbors (Figure 2C), the global
cascade does not occur when a exceeds 0.3. Furthermore, when
a is large, nodes hardly change their opinions once they are si(t) ±1.
As a result, the value ofR

sim(t) is less likely to change when a > 0.3.
The above results for a fixed parameter ai showed that a � 0.31

yields the simulation results most similar to the real results.
However, fixing ai for all nodes is not practical to simulate
real social phenomena. Therefore, we add noise to ai so that ai
� 0.31. Here we set a uniform random number [0, 0.62] for each
ai. Figure 5 shows the mean and standard deviation of the values
over ten iterations of the simulation with ai � 0.31, changing ai for
each node. We can confirm that the parameter ai with noise also
replicate the real data.

Application of Simulation with Hypothetical
Scenarios
Finally, we present the simulation results under hypothetical
scenarios based on the simulation with ai � 0.31. Comparing
hypothetical scenarios will help us consider a new strategy to
convey scientific evidence-based tweets instead of emotional
tweets. Here we apply the following three scenarios (Figure 6).

• Scenario (1): Add a new node to retweet influencers directly
• Scenario (2): Increase the number of RTs from nodes which
have already retweeted the influencers

• Scenario (3): Add a new node to retweet nodes which have
already retweeted the influencers

We compared these three scenarios, with a 10% increase in
RTs for nine influencers in each group. Since increasing RTs
corresponds to adding new links to the network, therefore, in the
actual simulation, we randomly added and changed the link
connections, and compared them on average over ten
iterations. Here we simulated six scenarios. With scenarios
(1A), (2A), and (3A) where scenarios (1), (2), and (3) were
applied to only nine influencers in Group A. With scenarios
(1B), (2B), and (3B) when scenarios (1), (2), and (3) were applied
to only nine influencers in Group B.

In Figure 7, we compared the mean 〈R′(t)〉 which is the
hypothetical simulation result, and the mean R(t) which is the
original simulation result over the entire period for the six
scenarios (1A)–(3B). When we apply the scenarios (1)–(3)
only to the influencers in Group A, R′(t)/R(t)< 1, we can
reduce the influence of Group B. Especially the scenario (1A),
which is adding new node who retweet influencers in Group A
directly, has the largest impact to reduce the influence of Group B.
On the other hand, when we apply the scenarios only to the
influencers in Group B, it yields R′(t)/R(t) > 1. When we
compared the absolute value |R’(t)/R(t) −1|, the most
impactful of these scenarios is (1A). Our result suggests that
to increase the influence of Group A with science-based and less
emotional tweets, increasing the number of nodes who retweet
the key influencers directly is effective.

DISCUSSION

Although we cannot see radiation nor information directly, it
continues to affect our lives. Here we have analyzed and
simulated radiation-related tweets after the 1F accident in
2011. Over the first six months after the accident, scientifically
based tweets decreased. Instead, tweets containing more
emotional expressions began to spread among the radiation-
related tweets in the Japanese Twitter space.

To explore the ways to spread scientifically accurate
information about radiation efficiently, we first built a
weighted directed network from the tweet data. Next, we
introduced a model of opinion dynamics where each node has
its own intentions but is also influenced by its RT neighbors.
When the strength of each node’s opinion ai is 0.31, it best
reproduces the real data. This suggests that each node is
influenced by its neighbors, taking also into account its own
opinion. Then we have introduced this model on the built RT
network with real influencers in various hypothetical scenarios.
The hypothetical simulation allows us to quantify what kind of
RTs can increase a particular group’s influence. Although our
simulation setup is simple, it can provide suggestions on how to

FIGURE 7 | Comparison of hypothetical simulation result of 〈R′(t)〉, which is the average ratio between the number of nodes that belong to Group B divided by the
number of nodes that belong to Group A, in each scenario, with the result of the original simulation set to unity. Scenario (1A) can reduce the average ratio of Group B
most effectively.
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make the informationmore widely available, even on complicated
RT networks.

There remain limitations of our research both in developing
network and simulation models. For developing the network, we
employed that direction of the link is from RT source to tweet
author assuming endorsement in RTs. Using Twitter data in
2011, when Twitter is relatively new in Japan, we believe that this
was an appropriate assumption to some extent since RTs played a
major role in information spreading. However, especially
nowadays that RTs are often used to argue for opposing views,
the way of developing a network will need to be considered more
carefully. For the simulation model, we assumed that each node
has three discrete states (opinions) by majority vote
deterministically. However, it is also clear that real opinions
have shades and are not discrete in just three states. Moreover,
people do not decide by simple majority vote. For example, the
bounded-confidence model [26], which has continuous values in
opinions and incorporates the opinions of people whose opinions
are similar to one’s own, is a strong candidate in the information
spreading about a radiation-related issue such as this.

Our analysis shows that the role of influencers is crucial from
the view of the network. In the future, it will also be important to
analyze the nodes which are directly connected to the influencers.
Also, more in-depth knowledge about networks, such as time-
varying networks and analysis using multilayer networks, can
provide a more accurate picture of information spreading. Not
only in radiation information spreading, but uncertain
information spreading has also been observed in political and
vaccine information [28, 29]. Behind these phenomena, it has
been pointed out that the information that spreads easily has
novelty and attractive narratives. Although we did not go into the
text of these tweets in-depth, we hope to work with psychologists
to analyze the tweets in more detail in the future and reflect the
results in our simulations.

In addition to network analysis, it is essential to develop the
simulations as well. By varying the parameter ai over time or
fixing the ai of a particular influencer, we can expect more realistic
simulations. For example, introducing ai proportional to the
number of RTs (outgoing links of node i) is a strong
candidate because it reflects the fact that influencers often act
as opinion leaders and are unlikely to change their opinions. Also,
in the hypothetical scenarios, we performed the simulation with
increasing RTs from influencers this time. However, measuring
the impact of the simulation with decreasing RTs from
influencers in Group B will also give a new perspective to

spread information from Group A. Another important
direction is to examine the timing of the information
transmission. For example, examining how many RTs from
Group B can be reduced if the timing of information
spreading from Group A is earlier than reality. Our simulation
could be widely applied in information spreading social media,
not only for radiation-related information, but also for e.g.,
delivering correct vaccine information.
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