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A random field is the representation of the joint probability distribution for a set of random
variables. Markov fields, in particular, have a long standing tradition as the theoretical
foundation of many applications in statistical physics and probability. For strictly positive
probability densities, a Markov random field is also a Gibbs field, i.e., a random field
supplemented with a measure that implies the existence of a regular conditional
distribution. Markov random fields have been used in statistical physics, dating back
as far as the Ehrenfests. However, their measure theoretical foundations were developed
much later by Dobruschin, Lanford and Ruelle, as well as by Hammersley and Clifford.
Aside from its enormous theoretical relevance, due to its generality and simplicity, Markov
random fields have been used in a broad range of applications in equilibrium and non-
equilibrium statistical physics, in non-linear dynamics and ergodic theory. Also in
computational molecular biology, ecology, structural biology, computer vision, control
theory, complex networks and data science, to name but a few. Often these applications
have been inspired by the original statistical physics approaches. Here, we will briefly
present a modern introduction to the theory of random fields, later we will explore and
discuss some of the recent applications of random fields in physics, biology and data
science. Our aim is to highlight the relevance of this powerful theoretical aspect of statistical
physics and its relation to the broad success of its many interdisciplinary applications.
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1 INTRODUCTION

The theory and applications of random fields born out of the fortunate marriage of two simple but
deep lines of reasoning. On the one hand, physical intuition, strongly founded in the works of
Boltzmann and the Ehrenfests, but also in other originators of the kinetic theory of matter, was that
large scale, long range phenomena may originate from (a multitude of) local interactions. On the
other hand, probabilistic reasoning induced us to think that such multitude of local interactions
would be stochastic in nature. These two ideas, paramount to statistical mechanics, have been
extensively explored and develop into a full theoretical subdiscipline, the theory of random fields.
Perhaps the archetypal instance of a random field was laid out in the doctoral thesis of Ernst Ising, the
Ising model of ferromagnetism [1]. However, although the physical ideas have been laid out mainly
by physicists, much of the further mathematical development was made by the Russian school of
probability. In particular, by the works of Averintsev [2, 3], which–along with the measure
theoretical-inspired formalization of statistical mechanics by J.W. Gibbs–, was able to specify a
general class of fields described only by pair potentials [4]. Theoretical advances were given by
Stavskaya who studied random fields bymeasure theory considering them as invariant states for local
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processes [5, 6], by Vasilyev who consider stationary measures as
derived from local interactions in discrete mappings [7] and
others.

The formal establishment of the theory of Markov-Gibbs
random fields, however, is often attributed to the works of
Dobruschin, Lanford and Ruelle [8, 9], in particular to their
DLR equations for the probability measures. Also remarkable is
the contribution of Hammersley and Clifford, who developed a
proof of the equivalence of Gibbs random fields and Markov
random fields, provided positive definite probabilities [10].
Although the authors never officially published this work, that
they thought to be incomplete given the–now known to be
essential–requirement of positive definite probabilities, several
published works have been made on top of it and even alternative
proofs have been published [11–13].

Aside from the extensive use of the Isingmodel and other random
fields in statistical mechanics–too many contributions to mention
here, butmost of them comprehensively reviewed in themonographs
by Baxter [14], Cipra [15], McCoy andWu [16], Thompson [17] and
in the simulation-oriented book by Adler [18]–; there has been also a
deep interest in development in models in biophysics, computer
science and other fields. The development of Hopfield networks as
models of addressable memory in neurophysiology (and artificial
neural networks) [19] is perhaps one of the earliest examples.
Followed by the implementation if the so-called Boltzmann
machines in artificial intelligence (AI) applications [20, 21] paved
the way to a plethora of theoretical, computational and
representational applications of random fields.

In the rest of this review paper, we will present some general
grounds of the theory of Markov random fields to serve as a
framework to elaborate on many of its relevant applications
inside and outside physics. Our emphasis here will not be to
be comprehensive but illustrative of some relevant features that
have made this quintessential model of statistical physics so
pervasive in our discipline and in many others (Markov
Random Fields: A Theoretical Framework). We will also
discuss how methodological and computational advances in
these areas may be implemented to improve on the
applications of random fields in physical models. We have
chosen to focus on applications in Physics (Markov Random
Fields in Physics), Biology (Markov Random Fields in Biology) and
Data Science (Markov Random Fields in Data Science and
Machine Learning). We are aware that by necessity
(finiteness), we are leaving out contributions in fields such as
sociology (Axelrod models, for instance), finance (volatility maps,
Markov switching models, etc.) and others. However, we believe
this panoramic view will make easier for the interested reader to
look into these other applications. Finally, in Concluding Remarks
we will outline some brief concluding remarks.

2 MARKOV RANDOM FIELDS: A
THEORETICAL FRAMEWORK

Here we will define and describe Markov random fields [8, 12]
(MRFs) as an appropriate theoretical framework useful for
systematic probabilistic analysis in various settings. An MRF

represents, in this context, the joint probability distribution for
a set (as large as desired) of real-valued random variables. There
are several extensions of the general ideas presented here, that will
be presented and briefly addressed as needed.

Let X � Xα be a vector of random variables (i.e., the features or
characteristic functions used to describe a system of interest). An
MRF may be represented as an undirected graph depicting the
statistical dependency structure of X, as given by the joint
probability distribution P(X) [22].

Let this graph be embodied in the form of a duplex G � (V , E)
consisting of a set V of vertices or nodes (the random variables
Xi’s) and a set E4V × V of edges connecting the nodes (thus
representing the statistical dependencies between random
variables). E also represents a neighborhood law N stating
which vertex is connected (i.e., dependent) to which other
vertex in the graph. With this in mind, an MRF can be also
represented as G � (V ,N). The set of neighbors of a given point
Xi is denoted NXi.

2.1 Configuration
We can assign each point in the graph, one of a finite set S of
labels. Such assignment, it is often called a configuration. We can
then assign probability measures to the set Ω of all possible
configurations ω. Hence, ωA represents the configuration ω
restricted to the subset A of V. We may think of ωA as a
configuration on the subgraph GA restricting V to points of A.

2.2 Local Characteristics
We can define local characteristics on MRFs. The local
characteristics of a probability measure P defined on Ω are
the conditional probabilities:

P(ωt |ωT∖t) � P(ωt

∣∣∣∣ωNt) (1)

This represents the probability that the point t is assigned the
valueωt , given the values at all other points of the graph. Let us re-
write Eq. 1. Since the probability measure will define an MRF if
the local characteristics depend only on the outcomes at
neighboring points, i.e., if for every ω

P(ωXi

∣∣∣∣ωG∖Xi) � P(ωXi

∣∣∣∣∣ωNXi
) (2)

2.3 Cliques
Given an arbitrary graph, we may refer to a set of points C, as a
clique, if every pair of points in C are neighbors. This includes the
empty set as a clique. A clique is then a set whose induced
subgraph is complete. Cliques are also called complete induced
subgraphs or maximal subgraphs.

2.4 Configuration Potentials
A potential η is an assignment of a number ηA(ω) to every
subconfiguration ωA of a configuration ω in the graph G. A given
η, induces an energy U(ω) on the set of all configurations ω as
follows:

U(ω) � ∑
A

ηA(ω) (3)
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Here, for fixed ω, the sum is taken over all subsets A4V
including the empty set. It is possible to define a probability
measure, called the Gibbs measure induced by U as

P(ω) � e−U(ω)

Z
(4)

Z (taken from the German word zustanssumme or sum over
states) is a normalization constant called the partition function.
As it is known, explicit computation of the partition function is in
many cases a very challenging endeavor. There is a great deal of
work in the development of methods and approaches to
overcome some (but not all) challenges in this regard. Some of
these approximations will be discussed later on.

Z � ∑
ω

e−U(ω) (5)

The term potential is often used in connection with potential
energies. In this context ηA is commonly termed a potential
energy in physics applications. ϕA � e−ηA is then called a potential.

Equations 4, 5 can be thus rewritten as:

P(ω) � ∏AϕA(ω)
Z

(6)

Z � ∑
ω

∏
A

ϕA(ω) (7)

Since this latter use is more common in probability and graph
theory, and it is also used in theoretical physics, we will refer to
Eqs. 6, 7 as the definitions of Gibbs measure and partition
function (respectively) unless otherwise stated. This will also
be justified given that Eq. 6 is a form of probability
factorization (in this case a clique factorization) [11].

2.5 Gibbs Fields
A potential is termed a nearest neighbor Gibbs potential if
ϕA(ω) � 1 whenever A is not a clique. We often call a Gibbs
measure to any regular measure induced by a nearest neighbor
Gibbs potential. However, we may define more general Gibbs
measures by considering different classes of potentials.

The inclusion of all cliques in the calculation of the Gibbs
measure is needed to establish the equivalence between Gibbs
random fields and Markov random fields. A nearest neighbor
Gibbs measure on a graph determines an MRF as follows [22]:

Let P(ω) be a probability measure determined on Ω by a
nearest neighbor Gibbs potential ϕ:

P(ω) � ∏CϕC(ω)
Z

(8)

With the product taken over all cliques C on the graph G.
Then,

P(ωXi

∣∣∣∣ωG∖Xi) �
P(ω)

∑ω
′
P(ω′) (9)

Here ω′ is any configuration which agrees with ω at all points
except Xi.

P(ωXi

∣∣∣∣ωG∖Xi) �
∏CϕC(ω)

∑ω
′
∏CϕC(ω′) (10)

For any clique C that does not contain Xi, ϕC(ω) � ϕC(ω′), So
that all the terms that correspond to the cliques that do not
contain the point Xi cancel both from the numerator and the
denominator in Eq. 10, therefore this probability depends only on
the values xi at Xi and its neighbors. P defines thus an MRF. A
more general proof of this equivalence was given by Hammersley-
Clifford theorem (see for instance [11]).

In essence, we can state that among the general class of
random fields, Markov random fields are defined by obeying
the Markov neighborhood law. Gibbs fields are usually
understood as Markov fields with strictly positive probability
measures (in particular, a strictly positive joint probability
density). These Markov-Gibbs fields are thus defined by the
Markov property and the positive definite probabilities and are
the ones that follow the Hammersley-Clifford theorem. More
general Gibbs fields can be defined by other neighborhood laws
than the Markov property [23], but these will not be addressed in
the present work.

2.6 Conditional Independence in Markov
Random Fields
To discuss the conditional independence structure induced by
MRFs, let us consider the following: An adjacency matrix Aij

represents the neighborhood law (as given by the Markov
property) on the graph G. Every non-zero entry in this matrix
represents a statistical dependency relation between two elements
on X. The conditional dependence structure on MRFs is related
not only to the local statistical independence conditions, but also
to the dependency structure of the whole graph [11, 24].

A definition of conditional independence (CI) for the set of
random variables can be given as follows:

(Xi⊥⊥Xj)
∣∣∣∣∣Xl5FXi ,Xj|Xl�Xl*(Xi*,Xj*)

� FXi|Xl�Xl*(Xi*) · FXj|Xl�Xl*(Xj*) (11)

∀Xi,Xj,Xl ∈ X

Here ⊥⊥ refers to conditional independence between two
random variables. FXi ,Xj|Xl�Xl*(Xi*,Xj*) �
Pr(Xi ≤Xi*,Xj ≤Xj*

∣∣∣∣Xl � Xl*) is the joint conditional
cumulative distribution of Xi and Xj given Xl . Xi*, Xj* and Xl*
are realizations of the corresponding random variables.

In the case of MRFs, CI is defined by means of graph
separation: Hence Xi⊥⊥GXj

∣∣∣∣Xl iff Xl separates Xi from Xj in G.
This means that if we remove node Xl there are no undirected
paths from Xi to Xj in G.

Conditional independence in random fields can be considered
in terms of subsets of V. Let A, B and C be subsets of V. The
statement XA⊥⊥Ĝ

XB

∣∣∣∣XC , which holds only iff C separates A from B
in G, means that if we remove all vertices in C there will be no
paths connecting any vertex in A to any vertex in B. This is
customarily called the global Markov property of TMFs [11, 24].
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The smallest set of vertices that renders a vertex Xi

conditionally independent of all other vertices in the graph is
called its Markov blanket, denoted mb(Xi). If we define the
closure of a node Xi as C(Xi) then Xi⊥⊥G∖C(Xi)|mb(Xi).

In an MRF, the Markov blanket of a vertex is its set of first
neighbors. This statement is the so-called undirected local Markov
property. Starting from the local Markov property, it is possible to
show that two vertices Xi and Xj are conditionally independent
given the rest if there is no direct edge between them. This is the
pairwise Markov property.

If we denote by GXi →Xj the set of undirected paths in the graph
G connecting vertices Xi and Xj, then the pairwise Markov
property of an MRF is given by:

Xi⊥⊥Xj

∣∣∣∣G∖{Xi,Xj}5GXi →Xj � ∅ (12)

Hence the global Markov property implies the local Markov
property which, in turn, implies the pairwise Markov property.
For systems with positive definite probability densities, it has been
proved that pairwise Markov actually implied global Markov (See
[11] p. 119 for a proof). This is important for applications since it
is easier to assess pairwise conditional independence statements.

2.6.1 Indepence Maps
Let IG denote the set of all conditional independence relations
encoded by the graph G (i.e., those CI relations given by the
Global Markov property). Let IP be the set of all CI relations
implied by the probability distribution P(Xi). A graph G will be
called an independence map (I-map) for a probability distribution
P(Xi), if all CI relations implied by G hold for P(Xi),
i.e., IG4IP [11].

The converse statement is however not necessarily true,
i.e., there may be some CI relations implied by P(Xi) that are
not coded in the graph G. We may often be interested in the so-
called minimal I-maps, i.e., I-maps from which none of the edges
could be removed without destroying its CI properties.

Every distribution has a unique minimal I-map (and a
given graph representation). Let P(Xi)> 0. Let G† be the
graph obtained by introducing edges between all pairs of
vertices Xi, Xj such that Xi⊥⊥Xj

∣∣∣∣X∖{Xi,Xj}, then G† is the unique
minimal I-map. We call G a perfect map of P when there are
no dependencies G which are not indicated by P,
i.e., IG � IP [11].

2.6.2 Conditional Independence Tests
Conditional independence tests are useful to evaluate whether CI
conditions apply either exactly or in the case of applications
under a certain bounded error [24]. In order to be able to write
down expressions for C.I. tests let us introduce the following
conditional kernels [25]:

CA(B) � P(B|A) � P(AB)
P(A) (13)

As well as their generalized recursive relations:

CABC(D) � CAB(D|C) � CAB(CD)
CAB(C) (14)

The conditional probability of Xi given Xj can be thus
written as:

CXj(Xi) � P(Xi

∣∣∣∣Xj) �
P(Xi,Xj)
P(Xj)

(15)

We can then write down expressions for Markov conditional
independence as follows:

Xi⊥⊥Xj

∣∣∣∣∣Xl0P(Xi,Xj

∣∣∣∣Xl) � P(Xi|Xl) × P(Xj

∣∣∣∣Xl) (16)

Following Bayes’ theorem, CI conditions–in this case–will be
of the form:

P(Xi,Xj

∣∣∣∣Xl) � P(Xi,Xl)
P(Xl) × P(Xj,Xl)

P(Xl) � P(Xi,Xl) × P(Xj,Xl)
P(Xl)2

(17)

Equation 17 is useful since in large scale data applications is
computationally cheaper to work with joint and marginal
probabilities rather than conditionals.

Now let us consider the case of conditional independence
given several conditional variables. The case for CI given two
variables could be written–using conditional kernels–as follows:

Xi⊥⊥Xj

∣∣∣∣∣Xl,Xn0P(Xi,Xj

∣∣∣∣Xl,Xn) � P(Xi|Xl,Xn) × P(Xj

∣∣∣∣Xl,Xn)
(18)

Hence,

P(Xi,Xj

∣∣∣∣Xl,Xn) � CXl ,Xn(Xi) × CXl ,Xn(Xj) (19)

Using Bayes’ theorem,

P(Xi,Xj

∣∣∣∣Xl,Xn) � P(Xi,Xl,Xn)
P(Xl,Xn) × P(Xj,Xl,Xn)

P(Xl,Xn) (20)

Or

P(Xi,Xj

∣∣∣∣Xl,Xn) �
P(Xi,Xl,Xn) × P(Xj,Xl,Xn)

P(Xl,Xn)2 (21)

In order to generalize the previous results to CI relations given
an arbitrary set of conditionals, let us consider the following
sigma-algebraic approach:

Let Σij be the σ-algebra of all subsets ofX that do not containXi

or Xj. A relevant problem for network reconstruction is that of
establishing the more general Markov pairwise CI conditions,
i.e., the CI relations for every edge not drawn on the graph. Two
arbitrary nodes Xi and Xj are conditionally independent given the
rest of the graph iff:

Xi⊥⊥Xj

∣∣∣∣∣Σij0P(Xi,Xj

∣∣∣∣Σij) � P(Xi

∣∣∣∣Σij) × P(Xj

∣∣∣∣Σij) (22)

By using conditional kernels, the recursive relations and Bayes’
theorem it is possible to write down:

P(Xi,Xj

∣∣∣∣Σij) �
P(Xi,Σij) × P(Xj,Σij)

P(Σij)
2 (23)
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The family of Eq. 23 represent the CI relations for all the non-
existing edges in the graph G, i.e., every pair of nodes Xi and Xj

not-connected in G must be conditionally independent given the
rest of the nodes in the graph. This is perhaps the most important
features of MRFs in connection with potential applications as
probabilistic graphical models. CI conditions often lead to
simpler (or at least computationally tractable) ways to
factorize the PDF or compute the partition function.

The algorithmic complexity of doing so in general (since the
number of CI relations grows combinatorially with the size of the
graph), makes it prohibitive in the case of a large number of
variables/relationships, in spite of recent advances on optimizing
large dimensional space CI testing for discrete distributions [26].
This is the biggest advantage of the present approach. As long as
one deals with strictly positive probabilities (that one can often
attain via regularization) and Hammersley-Clifford conditions
apply, modeling with nearest neighbor Gibbs potentials ensure CI
conditions in the graph (recall that global Markov property
implies pairwise Markov property and vice versa).

Now that we have presented the fundamentals of MRFs at an
introductory level, this may allow to discuss on how these features
have impact on their wide range of applications, as the basis for
probabilistic graphical models. Let us start by considering some
recent applications in physics.

3 MARKOV RANDOM FIELDS IN PHYSICS

From the pioneering work of the Ehrenfests, to the foundational
Izing models and its extensions (Potts, XY, etc.), MRFs have been
thoroughly used and developed inmany subdisciplines of physics,
ranging from condensed matter and mathematical physics to
geophysics, econophysics and more. There are numerous in-
depth reviews and monographs summarizing research along
these lines (see, for instance [27–30]). Since the main goal
here is to present some of the characteristic features of the
usefulness of MRFs as probabilistic graphical models, in terms
of their mathematical properties and broad scope of applicability,
both within and outside physics; our discussion will be somehow
biased toward work showing one or more of such features.

3.1 MRFs in Statistical Mechanics and
Mathematical Physics
Due to their intrinsic simplicity and generality, MRFs have
attracted the attention of mathematical physicists and
probability theorists looking to extend their associated
theoretical foundations. Important work has been done, for
instance, to incorporate geometrical properties and generalized
embeddings to the theory of random fields. Extremely relevant in
this regard is the monumental work presented in the monograph
by Adler and Taylor [31]. There, the authors expand on the
consideration of a random field as a stochastic process in a metric
space (discrete, Euclidean, etc.) to consider random fields as
stochastic mappings over manifolds. This extension is given
via writing down differential geometry characterizations of the
fields based on a measure-theoretic definition of probability.

Though this work may seem quite abstract, it was indeed born
out of an idea for an application of random fields to neuroscience.
Nurturing from similar ideas, recent work by Ganchev [32] has
expanded the notion of locality of MRFs and assimilate it to the
geometric features present in lattice quantum gauge theories, to
generate a gauge theory of Markov-Gibbs fields. Again, even if the
setting seems to be quite theoretical, an application to the
modeling of trading networks in finance is given.

Other mathematical extensions of Markov random fields are
related to the nature of the graphical model considered. In
general, probabilistic graphical models may belong to one of
two quite general classes: Markov networks (such as MRFs)
which are undirected graphs or Bayesian networks which are
directed graphs. The difference between undirected and directed
graphical models impose consequences in the kind of
fundamental mathematical objects of the theory: joint
probabilities or conditional probabilities, loopy graphs or
trees–directed acyclic graphs–, clique factorization vs.
conditional probability factorization via the chain rule, etc.
Whether the model is undirected or directed also has
modeling and computational consequences. To be fair, both
models have pros and cons.

Trying to overcome the limitations of both general
approaches, Freno and Trentin [33] developed a more general
approach to random fields termed Hybrid random fields (HRFs).
The purpose of HRFs is to allow the systems to present a wider
variety of conditional independence structures. As we will discuss
later, allowing for a systematic incorporation of more general
classes of conditional independence structures in indeed one of
the current hot topics in computational intelligence and machine
learning. Actually, even when HRFs are theoretical constructs
(much alike MRFs) they were designed to be learning machines,
i.e., to be supplemented with training algorithms to deal with high
dimensional data. HRFs were developed for logical inference in
the presence of partial information or noise. As in the case of
MRFs and of their gauge extensions just mentioned, HRFs were
developed to rely on a principle of localitywhich is an extension of
the Markov property that allows for sparse stochastic matrix
representations amenable for the computation on actual
applications. Once a (graph) structure has been given (or
inferred) HRFs are able (as is the case of MRFs) to learn the
local (conditional or joint-partial) probability distributions from
empirical data, a task commonly known in statistics as parameter
learning [34]. Hence HRFs are theoretically founded, but
developed thinking in applications. The scope of applicability
of MRFs has also become broader by expanding its applicability
to model tensor valued quantities [35], giving rise to the so-called
multilayer graphical models, also called multilayer networks
[36–39].

Aside from expanding the fundamental structure of MRFs,
mathematical physics applications of Gibbs random fields are
abundant. In particular, the so-called Random Field Ising model
(RFIM) has gained a lot of attention in the recent years. By using
the monotonicity properties of the associated stochastic field,
Aizenmann and Peled [40] were able to prove that there is a
power law upper bound on the correlations on a two-dimensional
Ising model, supplemented with a quenched random magnetic
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field. The fact that by combining random fields (the intrinsic Ising
field and the quenched magnetic field), the nature of the phase
transitions may drastically change has made the RFIM a current
topic of discussion in mathematical statistical mechanics. The
consequences of the induction of long range order in the RFIM,
leading to the emergence of the so-called Imry-Ma phase or Imry-
Ma states (named so since Imry and Ma were actually behind the
first proposal of the RFIM [41]) have been the object of intense
study recently. Berzin and co-workers [42] used MRFs to analyze
the dynamic fluctuations of the order parameter in the Imry-Ma
RFIM and its coupling with the static fluctuations of the
structural random field (accounting for the defects).
Interestingly, anisotropic coupling arises from two non-
absolutely overlapping local fields [43]. The effects of the non-
overlapping fields in anisotropy and disorder has been studied
since several decades ago [44], but the actual relationship with
non-locality was established relatively recently. For instance, it
was until 2018 that Chatterjee was able to quantitatively describe
the decay of correlations of the 2D RFIM [45] in a relevant paper
that led Aizenmann to re-analyze his former, mostly qualitative
proposal [40, 46].

Local stochastic phenomena in non-homogeneous and
disordered media in the context of the RFIM has also attracted
attention in relation to critical exponents and scaling. Trying to
expand on the origins of long range order from local interactions,
Fytas and coworkers have studied the 4DRFIM and its hyperscaling
coefficients [47]. This is particularly interesting since it has been
shown, via perturbative renormalization group calculations, that the
critical exponents of the RFIM in D dimensions are the same as the
exponents of the pure Ising model in D − 2 dimensions [48].
Related work has been carried out by Tarjus and Tissier, but
they instead resort to the use of the so-called functional
renormalization group approach in the multi-copy formalism
setting [49]. Their work has extended the predictive capabilities
of MRFs by incorporating ideas from symmetry breaking allowing
to characterize not just long-range order (LRO) but also
intermediate states characterized by quasi-long range order
(QLRO). The fact that QLRO may be attained from purely
Markov statistics (localized interactions) is in itself appealing for
statistical physics. The fact that local dependencies may suffice to
account for LRO and QLRO under certain conditions that do not
violate the Markov property of the MRFs, will have relevant
consequences for the applications of MRFs outside physics, such
as in the case of image reconstruction and pattern recognition in
machine learning. We will come back to these ideas later on.

Locality as depicted in MRFs can also have important
consequences for the theory of fluctuations in fields of
interacting particles. Reconstructing Boltzmann statistics from
local Gibbs fields (that as we have repeatedly stated are formally
equivalent to MRFs, provided strictly positive probability
measures) imply that under central limit scales the fluctuation
field of local functions can be represented instead as a function of
the density fluctuation field, in what is known as the Boltzmann-
Gibbs principle (BGP). It has been shown that the BGP induces a
duality whose origins are purely probabilistic, i.e., is independent
of the nature of the interactions provided their compliance with
the tenets of MRFs [50].

It is worth noticing that these contemporary developments in
the formal theory of MRFs are actually founded on seminal work
by probability theorists and mathematical physicists such as
Dobrushin, Ruelle, Gudder, Kessler and others. For instance,
Dobrushin laid out the essential conditions of regularity that
allow to make explicit the conditional probabilities in MRF
models [8]. This work, further developed by Lanford and
Ruelle [9] gives rise to the so called Dobrushin-Lanford-Ruelle
(DLR) equations that established, in a formal way, the properties
of general Gibbs measures. Later on, Dobrushin expanded on
these ideas by applying perturbation methods to generalize Gibbs
measures to even wider classes of interactions (i.e., to include
other families of potentials) [51]. An application of these ideas in
quantum field theory can be found in [52] within the context of
(truncated) generalized Gibbs ensembles.

Aside from measure-theoretical and algebraic foundations of
MRFs, important developments were made by considering
explicit dependency structures. In particular, the introduction
of strong independence properties led to the formal definition of
Gaussian random fields by Gudder [53]. Much of this earlier work
has been summarized in the monograph by Kindermann and
Laurie Snell [22]. The fact that MRFs are characterized by Gibbs
measures even for many-body interactions (under special
conditions), and not only for paired-potentials, was already
envisioned by Sherman [54], though it remained an unfinished
task for decades. Many body effects have actually been reported in
the context of localization in the random field Heisenberg chain
[55]. One step ahead toward generalizing MRFs consisted in
exploring the equivalence of some properties of random fields in
terms of sample functions. In this regard, Starodubov [56] proved
that there are random fields stochastically equivalent to an MRF,
but defined on another probability triple whose sample functions
belong to a map associated with the original MRF. The existence
of such mappings has relevant implications for applications, in
particular in cases in which explicit computation of the partition
function is intractable.

3.2 MRFs in Condensed Matter Physics and
Materials Science
Discrete and continuous versions of random fields have been
applied to model systems in condensed matter physics and
materials science (CMP/MS). The relevance of MRFs and its
extensions relies on their suitability to describe the onset of
spatio-temporal phenomena from localized interactions. Acar
and Sundararaghavan [57] have used MRFs to model the
spatio-temporal evolution of microstructures, such as grain
growth in polychrystalline microstructures as captured by
videomicroscopy experiments. Experimental data is the
foundation for explicit calculations of the (empirical)
conditional probability distributions.

Gaussian random fields have been used to model quenched
random potentials in fluids via mode-coupling by Konincks and
Krakoviack [58], and to model beta-distributed material
properties by Liu and coworkers [59]. These and other
extensions in CMP/MS made use of continuous, piecewise
continuous or lattice fluid extensions of Gibbs random fields.
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Such is also the case of the work of Chen and coworkers [60] who
introduced stochastic harmonic potentials in random fields to
account for the effects of local interactions on the properties of
structured materials; of the work by Singh and Adhilari [61] on
Brownian motion in confined active colloids and of the work of
Yamazaki [62] on stochastic Hall magnetohydrodynamics. A
semi-continuous approach (called smoothed particle
hydrodynamics, SPH), using discrete MRFs and extension
theorems, was used by Ullah and collaborators [63] in their
density dependent hydrodynamic model for crowd coherency
detection in active matter.

Extending the ideas of the classic RFIM, Tadic and
collaborators [64] were able to describe critical Barkhausen
avalanches in quasi-2D ferromagnets with an open boundary.
The use of MRFs with disordered field components has also
allowed to characterize embedded inhomogeneities in the spectral
properties of Rayleigh waves with application to the study of the
Earth’s microseismic field [65]. Geoacustic measurements and its
MRF modeling allowed these researchers to estimate the
mechanical and structural properties of the Earth’s crust and
upper mantle. Accurate estimates of these properties are
foundational to develop seismic-resistant devices and structures.

3.3 Applications of MRFs in Other Areas of
Physics
MRFs have also been applied in other areas of physics aside from
statistical mechanics and condensed matter. MRFs were applied for
instance, in geophysical models of marine climate patterns [66], to
study reservoir lithology [67] and subsurface soil patterns [68] from
remote sensing data. Aside from geophysics, optics and acoustics
have also incorporated MRF applications. In acoustics, for instance,
an MRF formalism can be used for the isolation of selected signals
[69]; or for the segmentation of sonar pulses [70]. In chemical
physics, MRFs are applied for the analysis of molecular structures
[71], and in the implementation of quantum information algorithms
for molecular physics modeling [72].

Disparate as the applications of MRF in the physical sciences just
presented may be, these are neither a comprehensive nor even a
representative list. However, we expect that some of the essential
aspects of its wide range of applicability and the large room for
theoretical development still available for these types of models were
captured in the previous discussion. Moving on to applications and
developments in other disciplines, such as Biology/Biomedicine and
the Data Sciences, we will try to convey, not just the usefulness of a
quintessential model in statistical physics in other realms–which is
huge, indeed–. We also intend to show how some of the
implementations and theoretical improvements in other
disciplines, can be exported back to physics and may help to solve
some of the many remaining conundrums of the theory and
applications of random fields in the physical sciences.

4 MARKOV RANDOM FIELDS IN BIOLOGY

Biology and Biomedicine are also disciplines in which MRFs have
flourished in applications and theoretical development. The

abundance of research problems and practical cases in which
stochastic phenomena dependent in spatio-temporal localization
is most surely behind. From the reconstruction of complex
imaging patterns (not far from applications in geophysics/
astrophysics imaging), to resolution of molecular maps in
structural biology, to disentangling molecular interaction
networks and ecological interactions; there are many
outstanding advances involving random fields in biology.
Again, we will discuss here just a few examples that will likely
provide us with a panoramic view and perhaps spark interest and
curiosity.

4.1 Applications of MRFs in Biomedical
Imaging
One somehow natural application of MRFs is imaging de-noizing
or segmentation. This is a quite general problem in which one
wishes to discern patterns from a blurred image. In particular an
MRF is built to discern which points in imaging space (pixels,
voxels) are locally correlated with each other, pointing out to their
membership to the same object in the image. The Markov
neighborhood structure of the MRF is hence used to un-blur
patterns and being able to accurately interpret the images. Often
MRFs (or its associated conditional Random fields) are used in
conjunction with inference machines such as Convolutional
Neural Networks (CNNs). This is the case of the work by Li
and Ping [73] who used a neural conditional random field
(NCRF) for metastasis detection from lymph node slide
images. Their NCRF approach infers the spatial correlations
among neighboring patches via a fully connected conditional
MRF incorporated on top of a CNN feature extractor. Their
modeling approach used a conditional distribution of an MRF
with a Gibbs distribution. As is often the case the energy function
(i.e., the Hamiltonian) consists of two terms, one summarizing
the contributions from unary potentials characteristic for each
patch, and the other one summing the pairwise potentials
measuring the cost of jointly assigning two neighboring
patches (i.e., the interaction potentials).

As is common in physics, estimating the marginals is an
intractable problem. Li and Ping resorted to using a mean-field
approach and then conditioning their results on this mean field
calculations. In order to do this, they trained a CNN with the
empirical data. CNN-MRF approaches have also been recently
applied to successfully discern computerized tomography
imaging (CT scans) [74] for prostate and other pelvic organs
at risk. After processing the data with an encoder/decoder
scheme, the output of CNN was used as the unary potential of
the MRF. Then via a MRF block model based on local
convolution layers, a global convolution layer, and a 3D max-
pooling layer the authors were able to calculate the pairwise
potential. The maximum likelihood optimization problem was
then solved via an adaptive loss function.

A similar approach was followed by Fu and collaborators [75]
to solve the retinal vessel segmentation problem, fundamental in
the diagnostics and surgery of ophthalmological diseases, and,
until quite recentlymanually performed by an ocular pathologist.
The authors also used a two term energy function within a mean

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6418597

Hernández-Lemus Random Fields

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


field approach. To minimize the energy function subject to
empirical constraints they used a recurrent neural network
based on Gaussian kernels on the feature vectors applying
standard gradient descent methods. Blood vessel segmentation
was also studied using conditional MRFs by Orlando and
coworkers [76]. However, instead of using a mean-field
approach and inferring the marginals using neural networks,
these authors chose to perform Maximum a Posteriori (MAP)
labeling with likelihood functions optimized via Support Vector
Machines (SVMs). Imaging segmentation via MRFs can be
applied not only at the tisular level, but also on cellular (and
even supramolecular) scales. Several blood diseases, for instance,
are diagnosed by discerning the quantity, morphology and other
aspects of leukocytes as well as their nuclear and cytoplasmic
structure. To this end, Reta and coworkers used unsupervised
binary MRFs (i.e., classical Ising-like fields) to study leukocyte
segmentation [77]. A Markov neighborhood and clique potential
approach was followed. This classic approach has been enough
since from their high quality colored imaging data, it was possible
to define an energy function based on a priori Gaussian-
distributed probabilities, then applying a maximum likelihood
approach to calculate the posterior probability. Related ideas were
used to study microvasculature disorders in glioblastomas by the
group of Kurz [78].

Application Box I: Metastasis Detection
General problem statement: Accurate detection of metastatic
events is key to proper diagnostics in cancer patients.
Pathologists often resort to the analysis of whole slide
images (WSI). Computational histopathology aims for the
automated modeling and classification of WSI to distinguish
between normal and tumor cells, thus alleviating the heavy
burden of manual image classification. Li and Ping [73] used
Conditional Random Fields together with deep convolutional
neural networks to approach this problem.
Theoretical/Methodological approach: The approach
developed by the authors consisted in using a deep
convolutional neural network (CNN) for the automated
detection of the relevant variables (feature extraction or
feature selection). Once these relevant variables have been
determined, a conditional random field (CRF) was used to
consider the spatial correlations between neighboring patches.
The approach used to determine tumor and non-tumor
regions is similar to the one used in statistical physics of
condensed matter for the determination of ferromagnetic/
anti-ferromagnetic domains.
Improvements/advantages: The use of CNNs to reduce the
number of variables (and to find the optimal ones) is gaining
relevance in computational biology and data analysis
applications of random fields. It may result useful in any
setting in which there are no a priori determined relevant
variables. By conditioning these variables on the spatial
location, the authors have turn the configuration problem
into a classifier thus solving their problem.
Limitations: Though not an actual limitation for their
particular problem, the authors resort to the use of a mean
field approach to infer the marginals. This condition can be

strengthened by using approaches such as perturbative
expansions or maximum entropy optimization with a
suitable set of constraints.

MRFs have also been used in conjunction with deep learning
approaches for the topographical reconstruction of colon
structures from conventional endoscopy images. Since the
colon is a deeply complex anatomical structure, accurately
reconstructing its structure to detect anomalies related to, for
instance, colorectal cancer is of paramount importance.
Mahmmod and Durr [79] developed a deep convolutional
neural network-conditional random field method, which uses a
two-term energy function whose parameters are optimized via
stochastic-descent back-propagation. Several convolution maps
were used since their goal was also to estimate depth from
photographic (2D) images via MAP (i.e., by an a posteriori
maximum likelihood) optimization. This was actually possible
since the authors trained their model with over 200,000 synthetic
images of an anatomically realistic colon.

To improve the automated evaluation of mammography, Sari
and coworkers [80] developed an MRF approach supplemented
with simulated annealing optimization (MRF/SA). Improved
performance was actually attained by using pre-processing
filters leading to AUC/ROC of up to 0.84, which is considered
quite high since mammograms have proved to be especially hard
to interpret with computer aided diagnostics. MRFs have also
helped improve the estimation of cardiac strain from magnetic
resonance imaging data, a relatively non-invasive test to analyze
cardiac muscle mechanics [81].

4.2 Applications of MRFs in Computational
Biology and Bioinformatics
Computational biology and bioinformatics are also disciplines
that have widely adopted the random field formalism as a relevant
component of their toolkits. There are several instances in which
MRFs can be adapted to solve problems in these domains: from
structural biology problems in which the spatio-temporal locality
is naturally mapped onto random fields, to molecular regulatory
networks in which the graph structure of the MRFs mimic the
underlying connectivity of the networks, to semantic and
linguistic segmentation problems in genomic sequences or
biomedical texts.

Regarding computational models in structural biology,
Rosenberg-Johansen and his group [82] used a combination of
deep neural networks and conditional random fields to improve
predictions on the secondary structure of proteins (i.e., the three
dimensional conformation of local protein segments, the
formation of alpha helices, beta sheets and so on). The CRF
approach was quite useful in this case (in general non-
computationally tractable), since in protein secondary
structure, there is a high degree of crosstalk between
neighboring elements (residues), then the local dependency
structure greatly shrinks the search space. Previously, Yanover
and Fromer [83] applied an MRF formalism for the prediction of
low energy, protein side configurations, a relevant problem fro
several aspects of structural biology such as de novo protein
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folding, homology modeling and protein-protein docking. The
different types of local interactions among amino acid residues:
hydrophobic, hydrophilic, charged, polar, etc.) modeled as
pairwise potentials let to semi-empirical expressions for the
potential energies used in the MRF formalism. Once explicit
expressions for the field have been written, the authors resort to a
belief-propagation algorithm to find the optimal solution to the
MRF problem given the constraints. Several improvements were
actually applied to the message-passing algorithm that allow the
authors to find a method to obtain the lowest energy amino acid
chain configurations. This kind of approach may also be relevant
to improve solving methods of random fields in statistical physics
problems since it led to approximate explicit forms of the
partition function.

Improving methods to discern the structural properties of
proteins are also quite used in the context of protein homology,
i.e., to investigate on the functions of proteins related to their
structural similarity to other proteins, perhaps in different
organisms. Local homology relationships can also be
investigated by means of Markov random field methods. Xu
and collaborators developed a method (or better, a family of
methods) called MRFalign for protein homology detection based
on the alignment of MRFs [84, 85]. Aside from purely Ising
approaches, other methods of random fields of statistical
mechanics have been adopted in the computational biology
community. One of them is the Potts model. Recently,
Wilburn and Eddy used a Potts model with latent variables for
the prediction of remote protein homology (involving changes
such as insertions and deletions) [86] importance sampling from
extensive databases was used to perform MAP optimization as
commonly done in computational biology and computer science.

A topic related to homology, but also involving space-
dependent electrostatic interactions (protein-protein
interactions, in particular) is protein function prediction.
Networked models of protein prediction have been developed:
primitive models can be used to associate a function to a given
protein given the functions of proteins in their interaction
neighborhood and probabilistic models may do this by
weighting interactions with an associated probability.
Gehrman and collaborator devised a CRF method fro protein
function prediction based on these premises [87]. To solve the
CRF, they resort to a factor graph approach [88] to write down
explicit contributions to the cliques [89] and then using an
approximate Gibbs measure calculated from this clique
factorization. The approximation is based on other relevant
feature of Markov random fields, which we will discuss later
in the context of statistics and computer science: the use of the so-
called Gibbs sampler or Gibbs sampling algorithm [90]. The
Gibbs sampler is a Markov chain Monte Carlo (MCMC)
method used to obtain a sequence of
observations–approximated from a specified multivariate
probability distribution–, in those cases for which direct
sampling is difficult or even impossible (e.g., NP-hard or
super-combinatorial problems).

Perhaps not so well known as a relevant structural biology
problem until recently, is the determination of three dimensional
chromosome structure inside the cell’s nucleus. Long range

chromosomal interactions are believed to be ultimately related to
fundamental issues on global and local gene regulation phenomena.
A recently devised experimental method for global chromosome
conformation capture is known as Hi-C. Nuclear DNA is subject
to formaldehyde treatment to enhance covalent interactions glueing
chromosome segments that are three dimensionally adjacent. Then a
battery of restriction enzymes is used to cut DNA into pieces. Such
pieces are sequenced and the identity of the spatially adjacent regions
are then discovered. The data is noisy and often incomplete. For these
reasons, a team lead by Yun Li developed a hidden Markov random
field method to analyze Hi-C data to detect long range chromosomal
interactions [91]. This method combines ideas fromMRFs, Bayesian
networks and Hidden Markov models. In a nutshell, they assumed a
mixture of negative binomials as an Ising prior [22] and
supplemented it with Bayesian inference to calculate the joint
probabilities via a Metropolis-Hastings pseudo-likelihood approach.

Application Box II: Prediction of Low Energy Protein
Side Chain Configurations

General problem statement: The prediction of energetically
favorable aminoacid chain configurations constrained on the
three-dimensional structure of a protein principal chain is a
relevant problem in structural biology. Accurate side
configuration predictions are key to develop approaches to
de novo protein folding, to model protein homology and to
study protein-protein docking. Yanover and Fromer [83] used
a Markov Random Field with pairwise energy interactions
supplemented with a belief propagation algorithm to bypass
the mean field approximation.
Theoretical/Methodological approach: The authors
developed their approach by modeling energy levels (as
obtained by simulation and calorimetric techniques) as the
relevant variables in a pairwise Markov Random Field. Since
local side chain configurations have inhomogeneous
contributions to the global energy landscape, a mean field
approach will not be accurate. In order to circumvent the other
extreme of modeling all detailed molecular interactions, the
authors used belief propagation algorithm (BPA), a class of
message passing method that performs global optimization (in
this case energy minimization) by iterative local calculations
between neighboring sites.
Improvements/advantages: We can consider the use of the
BPA on top of the MRF, as a compromise between mean field
approach (not useful to solve the actual structural biology
problem) and full-detail molecular interaction modeling
(computationally intractable due to the large combinatorial
search space involved).
Limitations: Protein side chain prediction may in many cases
be affected by subtle angular variations in the rotamer side
chains. The authors have discussed that, to improve the
accuracy of their predictions in such cases, it may be useful
to resort to continuous-valued (Gaussian) MRFs with their
associated BPAs as an avenue for further improvement within
the current theoretical framework.

The spatial configuration of proteins within protein assemblies
such as membranes it is also relevant to understand the functions
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of molecular machines in the cell. By applying a combination of
deep recurring neural networks and CRFs, it was possible to
predict transmembrane topology and three dimensional coupling
in the important family of G-protein coupled receptors (GPCRs).
These receptors are able to detect molecules outside the cell and
activate cellular responses and are of paramount relevance in
immune responses and intercellular signaling [92].

As we have mentioned molecular regulatory networks are
models that may conceptually map random fields almost straight
forward. They have a graph-theoretical structure already and
their interactions are often so complex that modeling them as
stochastic dependencies is somehow natural [93]. Depending on
the nature of the regulatory interactions to be modeled, different
approaches can be followed. Gitter and coworkers, for instance,
used latent tree models combining an MRF with a set of hidden
(or latent) variables, factorizing the joint probability on a Markov
tree [94]. In this work, the action of transcription factor (TFs) was
mapped to a set of latent variables and the MRF was used to
establish the relationships of conditional independence of groups
of neighboring genes, via their gene expression patterns obtained
from experimental data. Zhong and colleagues [95] used a related
approach to infer regulatory networks via a directed random field,
giving rise to a tree structure known as a directed acyclic graph
(DAG). In their work, all variables follow a pairwise Markov field
with conditional dependencies following parametric Gaussian or
multinomial distributions. Although they resorted to a DAG
modeling due to its ability to work with mixed data (usually
undepowered for common MRF approaches), the limitations of
these studies to account for regulatory loops has to be considered.

Application Box III: Inference of Tissue-specific
Transcriptional Regulatory Networks

General problem statement: Transcriptional regulatory
programs determine how gene expression is regulated, thus
determining cellular phenotypes and response to external
stimuli. Such gene regulatory programs involve a complex
network of interactions among gene regulatory elements,
RNA polymerase enzymes, protein complexes such as
mediator and cohesion machineries and sequence specific
transcription factors. Ma and coworkers [96] used a Markov
Random Field approach to construct tissue-specific
transcriptional regulatory networks integrating gene
expression and regulatory sites data from RNA-seq and
DNAase-Seq experiments.
Theoretical/Methodological approach: The authors
developed an MRF approach with unary (node functions)
and binary (edge functions, i.e., pairwise interactions)
potentials for transcriptional interaction within a cell line
and across cell lines, respectively. With these two potential
functions a joint probability distribution is written. To solve
the problem, the JPD is mapped to a pseudo-energy
optimization (PEO) test via logarithmic. transformation.
The PEO is in turn transformed into a network maximum
flow problem and solved by a loopy BPA.
Improvements/advantages: An original contribution of this
work is the use of belief propagation algorithms to solve for a
quadratic pseudo-energy functions (with only unary and

pairwise potentials) representation and then using iterated
conditional modes. This may open an interesting research
path for other MRF applications.
Limitations: One possible shortcoming of this approach is the
use of linear correlation measures (Pearson coefficients) and
linear classifiers (Singular Value Decomposition) for a problem
with strong non-linearities (complex biochemical kinetics
associated with gene expression). The MRF structure will
indeed allow for more general statistical dependency
relationships, making the analysis even more robust.

Undirected graphical models in the form of usual MRFs, have
been used to construct, tissue-specific transcriptional regulatory
networks [96] in 110 cell lines and 13 different tissues, from an
integrative analysis of RNASeq and DNAase-Seq data. The
authors used a method to minimize the pseudo-energy
function by converting the problem to a maximum flow in
networks and solving the latter via a loopy belief propagation
algorithm [97].

To improve on the modeling capabilities of MRFs to describe
gene regulatory networks (GRNs) it is becoming customary to
include several data sources as a means to partially disambiguate
the statistical dependency structures. Banf and Rhee implemented
a data integration strategy to their MRF modeling of GRNs in an
algorithm called GRACE which exploits the energy function
based on unary and binary terms that we previously described
in the context of MRF modeling in biological imaging. Low
confidence pairwise interactions were removed by mapping
the problem to a classification task on imbalanced sets, and
following the tenets of Ridge penalized regression [98].

A somehow related method was devised by Grimes, Potter
and Datta, who integrate differential network analysis to their
study of gene expression data [99]. Their study was based on the
idea of using KEGG pathways to construct MRFs as a means to
functionally improve differential expression profiling [100,
101]. A similar MRF method was used to improve
transcriptome analysis in model (mouse) systems for
biomedical research [102]. Data integration can be also used
to incorporate biological function information (from metabolic
and signaling pathways) to the modeling of statistical Genome
Wide Association Studies (GWAS) via MRFs [103]. The MRF
was then solved by a combination of parametric (inverse
gamma) distributed priors and MAP techniques to find the
posterior probabilities. This is relevant since the important
results of GWAS research in biomedicine (statistical in
nature and often poorly informative in the biological sense)
can be contextualized via pathway interactions as devised via
this MRF approach.

Though not properly a molecular interaction network study,
Long, et al, developed a method combining graph convolutional
networks with conditional random fields, to predict human
microbe-drug associations [104]. Since there has been a
growing emphasis on the ways in which the human
microbiome may affect drug responses in the context of
precision medicine [105], accurate methods to predict such
associations are highly desirable for the design of tailor-made
therapeutic interventions.
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Since random fields are able to capture not only spatio-
temporal and regulatory associations, but are also proper to
represent semantic or grammatical relationships, they have
been thoroughly used in text analysis in biology, being the
subjacent texts genomic sequences or pieces of biomedical
literature. The group led by Fariselli used hidden CRFs for the
problem of biosequence labeling in the prediction of the topology
of prokaryotic outer-membrane proteins. Their study was based
on a grammatically restrained approach, using dynamic
programming much in the tradition of the so-called
Boltzmann machines in AI [106]. Poisson random fields over
sequence spaces were studied by Zhang and coworkers to detect
local genomic signals in large sequencing studies [107].

Moving on to data and literature mining methods based on
MRFs, we can mention passage relevance models used for the
integration of syntactic and semantic elements to analyze
biomedical concepts and topics via a PGM. The semantic
components such as topics, terms and document classes are
represented as potential functions of an MRF [108].
Biomedical literature mining strategies using MRFs were also
developed to study automated recognition of bacteria named
entities [109] to curate experimental databases on microbial
interactions. Related methods were previously used to identify
gene and protein mentions in the literature using CRFs [110].

4.3 Applications of MRFs in Ecology and
Other Areas of Biology
Other applications of random fields in biology include
demography and selection to study weakly deleterious genetic
variants in complex demographic environments [111] and for
species clustering [112], in population genetics. MRFs have also
been applied to understand species distribution patterns and
endemism and to unveil [113] interactions between co-
occurring species in processes governing community assembly
[114]; as well as for spatially explicit community occupancy [115]
in ecology.

Another group of disciplines in whichMRFs have flourished is
comprised of Data Science, Computer Science and Modern
statistics. The next section will be devoted to presenting and
discussing some developments of random fields in that setting.

5 MARKOV RANDOM FIELDS IN DATA
SCIENCE AND MACHINE LEARNING

The term Data Science refers to a multidisciplinary field devoted
to extracting knowledge and insight from structured and
unstructured data. It shares commonalities and differences
with its parent fields: statistics, computer and information
sciences and engineering. However, much of the emphasis is
on the extraction of useful knowledge from data, putting accuracy
and usability above formal mathematical structure if needed.
Naturally, Markov random fields as a theoretically powerful
methodology that allows for the incorporation of educated
intuition and has an intrinsic algorithmic nature has called the
attention of data scientists. We will present here, but a handful of

the many uses and implementations of MRFs in data science and
computational intelligence settings. As we will see, these studies
share a lot of commonalities with the applications in statistical
physics and computational biology while, at the same time,
incorporating elements that may cross-fertilize to the modeling
schemes in the natural sciences.

5.1 Applications of MRFs in Computer
Vision and Image Classification
As we alreadymentioned in the context of applications of random
field to biomedical imaging, segmentation and pattern
identification to enhance the resolution of spatial and/or
spatio-temporal maps is a common use of MRFs. From the
many applications in the field of computerized image
processing, we will discuss some that present peculiarities or
distinctive features that may be of more general interest. For
instance, to face the challenge of capturing three dimensional
structure from two-dimensional images, the so-called depth
perception, Kozik used an MRF-based methodology [116] in
which the energy function was modeled via a polynomial
regression model and a depth estimation algorithm with
correlated uncertainties (a sort of twofold autoregressive
model). By using these entries Kozik then solved an MAP
problem to obtain the maximum likelihood solution to the MRF.

In the context of AI to enhance low-resolution images (the
super-resolution problem), Stephenson and Chen devised an
adaptive MRF method [117] based on passing-message
optimization by a loopy propagation algorithm. Also in the
context of AI approaches to image processing Li and Wand
developed a combination of MRFs as generative models and deep
CNNs to discriminate two-dimensional images to try to solve the
so-called image synthesis problem, a relevant problem in
computer vision with applications both to photo-editing and
neuroscience [118]. A problem related to image synthesis is image
classification, in which certain features of images are discerned
and used to cluster images by similitudes in these feature spaces.
Applications in image recognition in security, forensics and
scientific microscopy and imaging among others abound. To
improve the accuracy of image classification algorithms,Wen and
coworkers developed a CRF method in which machine-learned
feature functions took the place of the unary and binary terms in
the potential energy [119], as in previous cases Gaussian priors
and loopy belief propagation algorithms were used to solve the
random field.

5.2 Applications of MRFs in Statistics and
Geostatistics
Geostatistics and geographical information systems are also quite
amenable to be modeled within the MRF paradigm due to their
natural spatio-temporal dependency structures. In the context of
prediction of environmental risks and the effects of limited
sampling, Bohorquez and colleagues developed an approach
based on multivariate functional random fields for the spatial
prediction of functional features at unsampled locations by
resorting to covariates [120]. As in the case of random field
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hydrodynamics (mentioned in the physics section), an empirical
approach based on continuous field estimators was chosen.
Continuous spatio-temporal correlation structures via so-called
Kriging methods extending the ideas of discrete random fields are
commonly used in environmental analysis and risk assessment
[121, 122].

Geological modeling is another field at the intersection of
geostatistics and geophysics which has adopted the MRF
formalism to deal with their problems. A segmentation
approach was used for stochastic geological modeling with the
use of hidden MRFs [123]. Using a methodological
approximation similar to the one used in computer vision and
biomedical imaging, latent variable MRFs are used to perform
three-dimensional segmentation. The model is supplemented
with finite Gaussian mixture models for the parameter
calculations and a Gibbs sampling inference framework,
following a similar approach to the one developed by the
group of Li [124], based on the methods of Rue and Held
[125] and by Solberg et al [126] and further developed by
Toftaker and Tjelmeland [127]. More refined geostatistical
methods have been based on a clever combination of several
developments of Markov random field theory. Along these lines,
the work by Reuschen, Xu and Nowak [128] is noteworthy, since
they used Bayesian inversion (based on Markov conditional
independence) to develop a random field approach to
hierarchical geostatistical models and used Gibbs sampling
MCMC to solve them.

The combined use of ideas from Markov and Gibbs random
fields in statistical learning and other approaches in modern
statistics has indeed become a fruitful line of research with
important theoretical developments and a multitude of
applications [24, 34, 129]. The use of MRFs and CRFs as tools
for statistical learning has been used in a multitude of settings in
both generative and discriminative models [33]. Aside Ising
models and MRFs, perhaps the most widely used applications
of the random fields are Gibbs sampling and Markov chain
Monte Carlo methods that we already mentioned. Due to the
generality and the relatively low computational complexity of
these sampling/simulation methods, several methods have been
developed based on them.

Gibbs sampling is a form of Markov chain Monte Carlo
(MCMC) algorithm. MCMC methods are used to obtain a
sequence of observations of a random experiment by an
approximation from a given (specified) multivariate
probability distribution when direct sampling is challenging
(computationally or otherwise). The essence of the method is
building a Markov chain whose equilibrium distribution is
precisely the specified multivariate distribution. Then, a
sample of such distribution is just a sequence of states of
the Markov chain. The use of the Markov property of an MRF
allows to use Gibbs sampling as an MCMC method, when the
joint probability distribution is not known (or is very
complex) but the conditional distributions are known (or
easier). Due to this, by using the pairwise Markov property,
Gibbs sampling is particularly fit to sampling the posterior
distribution of Bayesian networks (understood as a collection
of conditional distributions), a quite relevant problem in both,

statistical learning and in large computer simulation
problems.

Aside from these basic issues, Gibbs sampling has been
extensively enhanced over the years. One important
improvement has been the incorporation of adaptive rejection
sampling [130, 131], particularly useful for situations in which
evaluation of the density distribution function is computationally
expensive (e.g., non-conjugated Bayesian models). Adaptive
rejection sampling can be even applied to modeling via non-
linear mixed models [131]. To further minimize the
computational burden of Gibbs sampling, Meyer and
collaborators [132] developed an algorithm which samples via
Lagrange interpolation polynomials, instead of exponential
distributions. Convergence can be also improved by double-
adaptive independent rejection sampling [133] which is based
on a scheme of minimizing the correlation among samples. Gibbs
sampling approaches also allow for the determination of dense
distribution simulated sampling from sparse sampled data [134],
even in high dimensional latent fields over large datasets [135].

Gao and Gormley implemented a Gibbs sampling scheme
based on CRFs weighted via neural scoring factors (implemented
as parameters in factor graphs) with applications to Natural
Language Processing (NLP) [136]. MCMC has also been used,
in the context of Gibbs random fields in data pre-processing, to
reduce the computational burden of data intensive signal
processing [137, 138]. Gibbs sampling can also be applied in
parallel within the context of Gaussian MRFs on large grids or
lattice models [139]. Parallel Gibbs sampling methods can also be
developed in the context of sampling acceleration for structured
graphs [140].

Markov random fields and its associated Gibbs measures can
also be used to advance statistical methods in large deviation
theory [141] and to develop methods of joint probability
decomposition based on product measures [142]. Exact
factorizability of joint probability distributions is a most
relevant question in modern probability [143–146] with
important applications in data analytics [147], applied
mathematics [148], computational biology [149] and network
science [150], among other fields. MRFs also have been applied to
embed filtrations on high dimensional hyperparameter spaces.
The main idea is using random fields as hierarchical models
projecting the relevant hyper-parameter space to a lower
dimensional filtration [135]. This general problem is closely
related with the feature selection problem in computer science
and data analytics. We will discuss applications of the MRF
formalism in that context in the next subsection.

5.3 Applications of MRFs in Feature
Selection and AI
Feature selection (FS) refers to a quite general class of problems in
computer science, data analysis and AI. Feature selection aims to
find the minimum number of maximal relevant features to
characterize a high dimensional data set. One outstanding
family of methods of feature selection is regression methods in
which a set of regression variables is used to predict one (or a few)
dependent variables via functional relationships (commonly
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linear combinations with a distribution of weights). A subset of
the whole set of regression variables is considered statistically
significant, in that context those are the selected features. FS is a
more general problem than linear, multivariate or even non-
linear regression. MRF can be used to generalize regression
procedures to more complex situations. One notable method
was developed by Stoehr, Marin and Pudio [151] who used
hidden Gibbs random fields to implement model selection via
an information theoretical optimization criterion known as Block
likelihood information. Cilla and coworkers [152] developed a FS
method to be used in sequence classification based on hidden
CRFs supplemented with a generalized Lasso group
regularization method that instead of the colinearity condition
employs L1-norm optimization of the parameters. The authors
showed that FS outcomes with this method outperforms standard
conditional random field approaches.

Feature selection efficacy of MRFs is closely related to the
actual structure of the underlying adjacency matrices. Especially
relevant is the issue of separability. Although non-trivial
separability does not preclude the use of MRFs in large
datasets, as long as the positive definite nature of the measures
is ensured; there may be computational complexity limitations for
practical uses. Recently, Sain and Furrer [153] discussed on some
general properties of random fields (in particular for multivariate
Gaussian MRFs) that need to be taken into account in the design
of computationally efficient modeling strategies with such
random fields. By designing FS schemes with MRFs based on
the optimization of parameter estimation, for instance via
structured learning it is possible to improve substantially on
the computational complexity of such algorithms [154–158].
The graph structure of MRFs can also be optimized to
enhance the FS capabilities of the algorithms [159–163]. More
information along these lines can be found in the comprehensive
review by Adams and Beling [164] and in the one by Vergara and
Estevez [165].

As already mentioned the structure of MRF may result
advantageous to solve segmentation problems or delimitation
of statistical dependencies. These are problems that are
extremely relevant in the context of computational linguistics
and natural language processing applications. We will discuss
these in the following subsection.

5.4 Applications of MRFs in Computational
Linguistics and NLP
Automated textual identification and meaning discernment are
extremely complex (and very useful) tasks in current artificial
intelligence research and applications. The ability to detect text
patches with semantic similarity is one of the founding steps in
the ability to process natural language by a computer. By combing
a deep learning approach (a convolutional neural network) with
MRF models, Liu and collaborators [166] devised an effective
algorithm for semantic segmentation [167], which they called a
Deep Parsing Network (DPN). Within the DPN scheme, a CNN
is used to calculate the unary terms of a two-term energy function,
while the pairwise terms were approximated with a mean-field
model. The mean field contributions were iteratively optimized

using a back-propagation algorithm able to generalize to higher
order perturbative contributions. Although the original
application of semantic segmentation has been applied to
image segmentation, its applications to NLP are somehow
straight forward [168, 169].

A similar method was developed earlier by Mai, Wu and Cui
and applied to improve word segmentation disambiguation in the
Chinese language [170]. Main and colleagues, however, decided
to use a CRF on top of a bidirectional maximum matching
algorithm. Parameter estimation for the CRF was performed
via maximum likelihood estimates. These ideas were further
advanced by Qiu, et al [171] who used CRFs for clinical entity
recognition in Chinese. Speech tagging from voice recordings was
performed using a CRF devised by Khan and collaborators [172].
Even computer assisted fake news detection [173] and headline
prediction [174] can be achieved using CNNs and MRFs.

5.5 Applications of MRFs in the Analysis of
Social Networks
Social network analysis, including online social networks, other
forms of interpersonal interaction networks and even some social
networks in non-human creatures, have become a relevant field of
research in recent times (though the subject has been relevant in
the contexts of sociology and animal behavior for decades) [175].
The analysis of social network via MRFs is becoming more and
more common also. As an example, Jia and collaborators have
used MRFs to infer attributes in online social network data [176].
Their model used the social network structure itself to develop a
pairwise MRF. From empirical training data, the authors used the
individual behaviors to learn a probability that each user has a
given attribute. Then used that as an a priori probability, compute
the posterior probabilities by a loopy belief propagation algorithm
over the MRF, to, finally, optimizing the belief propagation
algorithm by a second neighbor criteria that sparsifies the
adjacency matrix. Further optimization of similar ideas was
obtained by using graph convolutional networks, i.e., CNNs
over CRFs [177]. Attribute inference in social network data
via MRFs can also be used to improve cybersecurity
algorithms [178], to learn consumer intentions [179], to study
the epidemiology of depression [180] among other issues. Social
networks as well as some classes of molecular interaction and
ecological networks are also relevant to the development and
improvement of MRF and CRF learning algorithms. This is so
since often a sketch (sometimes a detailed one) of the network
dependency structure is known a priori [181, 182]. This is yet
another instance in which applications may nurture back the
formal theory of random fields.

Application Box IV: Inference of User Attributes in
Online Social Networks

General problem statement: The attribute inference problem
(AIP), i.e., the discovery of personality traits from data on
social networks, is a central question on computational social
science. It is indeed an (unsupervised) extension of the
personality analysis tests of classical psychology with
important applications from sociological modeling to
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commercial and political marketing, and even national security
issues. Jia and collaborators [176] developed an approach to
the AIP from public data on online social networks using an
MRF with pairwise interactions.
Theoretical/Methodological approach: Given a training
dataset, behaviors are used to learn the probabilities that
each user (node) has a considered attribute, these are the
prior probabilities. Based on the neighborhood structure of
a pairwise Markov random field, posterior probabilities are
computed via a loopy belief propagation algorithm. The MRF
has a quadratic pseudo-energy function with node potentials
(unary contributions) for each user and edge potentials
(pairwise interactions) for every connected pair of nodes, as
defined by node correlations. Edge potentials are defined as
discrete-valued spin-like states λuv � 1 if nodes u and v have the
same attribute state and λuv � −1 if they do not. This way,
homophily in the social networks mimics spin-alignment in
lattice models of magnetism.
Improvements/advantages: To optimize computational
performance in large networks, the authors modified the
BPA by using a loop renormalization strategy. Hence,
circular node correlations are locally computed for each pair
of nodes prior to move to another edge and then using a linear
optimization approach. Thus, there is no need to allocate
memory for all circular correlations (loops).
Limitations: More than a limitation itself, an avenue of
predictive improvement may be given by extending their
MRF approach to allow multi-categorical (or even
continuous) state variables. Doing this will make possible to
capture the fact that most behavioral attributes are not simply
present/absent, but may occur over a range of possibilities.

5.6 Random Fields and Graph Signal Theory
Graph signal theory, also called graph signal processing (GSP) is a
field of signal analytics that deals with signals whose domain (as
identified by a graph) is irregular [183–185]. In the context of
GSP, the vertices or nodes represent probes in which the signal
has been evaluated or sensed and the edges are relationships
between these vertices. Data processing of the signals exploits the
structure of the associated graph. GSP is often seen as an
intermediate step between single channel signal processing and
spatio-temporal signal analysis. The nature of the edges is
determined by the relationship (spatial, contextual, relational,
etc.) between the vertices. Whenever edges are defined via a
statistical dependence structure, GSP can be mapped to either an
MRF or a CRF, thus allowing the use of all the tools of random
field theory to perform GSP [186, 187]. The networked nature of
the domain of signals embedded in a graph, allows the use of
spectral graph theoretical methods for signal processing
[188–190]. Conversely, correlations between features on the
signals are also useful to identify the structure of the
underlying graph [191, 192].

GSP has a number of relevant applications, from spatio-
temporal analysis of brain data [193]; to analyze vulnerabilities
in power grid data [194]; to topological data analysis [195],
chemoinformatics [196] and single cell transcriptomic analysis
[197], to mention but a few examples. Statistical learning

techniques have also being founded on a combination of
MRFs and GSP [198, 199], taking advantage of both the
networked structure, the statistical dependence relationships
and the temporal correlations of the signals [200–202].
Random field approaches to GSP have also been applied in
the context of deep convolutional networks [203, 204], often
invoking features of the underlying joint conditional probability
distributions such as ergodicity [205] and stationarity [206].

6 CONCLUDING REMARKS

As already known in statistical physics for decades, random fields
are a quite powerful and versatile theoretical analytical
framework. We have discussed here some fundamental ideas
of the theory of Markov-Gibbs random fields, namely the notions
of statistical dependency on neighborhoods, of potentials and
local interactions, of conditional independence relationships and
so on. After that, we discussed a handful of (mostly recent)
advances and applications of Markov random fields in different
physics subdisciplines, as well as in several areas of biology and
the data sciences. The main goal of this presentation was not to be
comprehensive but to be illustrative of the many ways in which
research and applications of random field may be advancing both,
inside and outside traditional statistical physics.

In the theoretical and conceptual advances side, we mentioned
how random fields may be embedded in general manifolds, how
by incorporating quenched fields (or somehow equivalently, by
adding quenching potentials) to the usual Izing random field, a
whole new phenomenology can be discovered in RFIMs. How
Markov and Bayesian networks may be combined in HRFs and
how gauge symmetries and other extended fields may broad the
scope of MRFs.

By examining the applications in physics and in other
disciplines, we discover (or often re-discover)
methodological and computational improvements to the
inference, analysis and solutions of problems within the
MRF/GRF/CRF settings. In these regards, we can mention
the use of CNNs as feature extractors on top of random fields,
to refine hypotheses about marginals and (via convolution) to
improve the accuracy of pairwise potential terms. We re-
examined how to extend beyond mean-field approaches,
either via MAP optimization, via higher order perturbations
solved by neural networks or maximum likelihood approaches
(depending on data availability). How, under certain
circumstances (still dictated by physical intuition and data
constrains) factorization of the partition function may be
attained via clique potentials obtained from Gaussian (or
other multivariate parametric distributions) or even from
empirical distributions.

We also analyzed how simulations in random fields may be
supplemented with well known methods–within the statistical
physics community–, such as simulated annealing, Markov Chain
Monte Carlo and importance sampling, but also frommethods of
wide use in other fields such as stochastic descent back-
propagation, factor graph approaches, Gibbs sampling,
pseudo-likelihood methods, latent models or loopy belief
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propagation algorithms to name a few. And how, under some
circumstances, parameter estimation (fundamental in
applications involving non-trivial partition functions) can be
reframed as a regression problem and benefit from the use of
the Ridge and Lasso optimization techniques, dynamic
programming and autoregressive modeling.

We want to highlight that, in spite of being a hundred-plus
year developed formalism in statistical physics, the theory of
Markov-Gibbs random fields is indeed a flourishing one, with
many theoretical advances and applications within and outside
physics.
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188. Stanković L, and Sejdić E. Vertex-frequency analysis of graph signals. Springer
(2019).

189. Pavez E, and Ortega A. Generalized laplacian precision matrix estimation for
graph signal processing. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). (IEEE) (2016) 6350–4.

190. Sandryhaila A, and Moura JM. Discrete signal processing on graphs: graph
fourier transform. IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE (2013) 6167–70.

191. Mateos G, Segarra S, Marques AG, and Ribeiro A. Connecting the dots:
identifying network structure via graph signal processing. IEEE Signal Process
Mag (2019) 36:16–43. doi:10.1109/msp.2018.2890143

192. Ji F, and Tay WP. A hilbert space theory of generalized graph signal
processing. IEEE Trans Signal Process (2019) 67:6188–203. doi:10.1109/
tsp.2019.2952055

193. Itani S, and Thanou D. A graph signal processing framework for the
classification of temporal brain data. 28th European Signal Processing
Conference (EUSIPCO). (IEEE) (2021) 1180–4.

194. Ramakrishna R, and Scaglione A. Detection of false data injection attack
using graph signal processing for the power grid. IEEE Global Conference on
Signal and Information Processing (GlobalSIP). (IEEE) (2019) 1–5.

195. Stankovic L, Mandic D, Dakovic M, Brajovic M, Scalzo B, Li S, et al. Graph
signal processing–part iii: machine learning on graphs, from graph topology to
applications. Ithaca, NY: arXiv:2001.00426 (2020).

196. Song X, Chai L, and Zhang J. Graph signal processing approach to qsar/qspr
model learning of compounds. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020).

197. Burkhardt DB, Stanley JS, Perdigoto AL, Gigante SA, Herold KC, Wolf G,
et al. Quantifying the effect of experimental perturbations in single-cell rna-
sequencing data using graph signal processing. Cold Spring Harbor, NY:
bioRxiv (2019) 532846.

198. Colonnese S, Pagliari G, Biagi M, Cusani R, and Scarano G. Compound
Markov random field model of signals on graph: an application to graph
learning. 7th European Workshop on Visual Information Processing
(EUVIP). (IEEE) (2018) 1–5.

199. Torkamani R, and Zayyani H. Statistical graph signal recovery using
variational bayes. IEEE Transactions on Circuits and Systems II: Express
Briefs (2020).

200. Ramezani-Mayiami M, Hajimirsadeghi M, Skretting K, Blum RS, and Poor
HV. Graph topology learning and signal recovery via bayesian inference. IEEE
Data Science Workshop (DSW) (IEEE) (2019) 52–6.

201. Colonnese S, Lorenzo PD, Cattai T, Scarano G, and Fallani FDV. A joint
Markov model for communities, connectivity and signals defined over
graphs. IEEE Signal Process Lett (2020) 27:1160–4. doi:10.1109/lsp.2020.
3005053

202. Dong X, Thanou D, Rabbat M, and Frossard P. Learning graphs from data: a
signal representation perspective. IEEE Signal Process Mag (2019) 36:44–63.
doi:10.1109/msp.2018.2887284

203. Cheung M, Shi J, Wright O, Jiang LY, Liu X, and Moura JMF. Graph signal
processing and deep learning: convolution, pooling, and topology. IEEE
Signal Process Mag (2020) 37:139–49. doi:10.1109/msp.2020.3014594

204. Jia J, and Benson AR. A unifying generative model for graph learning
algorithms: label propagation, graph convolutions, and combinations.
Ithaca, NY: arXiv:2101.07730 (2021).

205. Gama F, and Ribeiro A. Ergodicity in stationary graph processes: a weak law
of large numbers. IEEE Trans Signal Process (2019) 67:2761–74. doi:10.1109/
tsp.2019.2908909

206. Segarra S, Wang Y, Uhler C, and Marques AG. Joint inference of networks
from stationary graph signals. 51st Asilomar Conference on Signals, Systems,
and Computers. (IEEE) (2017) 975–979.

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hernández-Lemus. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 64185919

Hernández-Lemus Random Fields

https://doi.org/10.1007/978-3-319-11104-9_70
https://doi.org/10.1109/tnb.2019.2908678
https://doi.org/10.1007/s10579-018-9439-6
https://doi.org/10.1609/aaai.v33i01.3301152
https://doi.org/10.1016/j.chb.2018.07.006
https://doi.org/10.1016/j.jad.2019.01.026
https://doi.org/10.1038/s41893-019-0308-0
https://doi.org/10.1038/s41893-019-0308-0
https://doi.org/10.1109/msp.2019.2929832
https://doi.org/10.1109/jproc.2018.2820126
https://doi.org/10.1109/msp.2018.2890143
https://doi.org/10.1109/tsp.2019.2952055
https://doi.org/10.1109/tsp.2019.2952055
https://doi.org/10.1109/lsp.2020.3005053
https://doi.org/10.1109/lsp.2020.3005053
https://doi.org/10.1109/msp.2018.2887284
https://doi.org/10.1109/msp.2020.3014594
https://doi.org/10.1109/tsp.2019.2908909
https://doi.org/10.1109/tsp.2019.2908909
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Random Fields in Physics, Biology and Data Science
	1 Introduction
	2 Markov Random Fields: A Theoretical Framework
	2.1 Configuration
	2.2 Local Characteristics
	2.3 Cliques
	2.4 Configuration Potentials
	2.5 Gibbs Fields
	2.6 Conditional Independence in Markov Random Fields
	2.6.1 Indepence Maps
	2.6.2 Conditional Independence Tests


	3 Markov Random Fields in Physics
	3.1 MRFs in Statistical Mechanics and Mathematical Physics
	3.2 MRFs in Condensed Matter Physics and Materials Science
	3.3 Applications of MRFs in Other Areas of Physics

	4 Markov Random Fields in Biology
	4.1 Applications of MRFs in Biomedical Imaging
	Application Box I: Metastasis Detection

	4.2 Applications of MRFs in Computational Biology and Bioinformatics
	Application Box II: Prediction of Low Energy Protein Side Chain Configurations
	Application Box III: Inference of Tissue-specific Transcriptional Regulatory Networks

	4.3 Applications of MRFs in Ecology and Other Areas of Biology

	5 Markov Random Fields in Data Science and Machine Learning
	5.1 Applications of MRFs in Computer Vision and Image Classification
	5.2 Applications of MRFs in Statistics and Geostatistics
	5.3 Applications of MRFs in Feature Selection and AI
	5.4 Applications of MRFs in Computational Linguistics and NLP
	5.5 Applications of MRFs in the Analysis of Social Networks
	Application Box IV: Inference of User Attributes in Online Social Networks

	5.6 Random Fields and Graph Signal Theory

	6 Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References


