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The Peregrine soliton is the famous coherent solution of the non-linear Schrödinger

equation, which presents many of the characteristics of rogue waves. Usually studied

in conservative systems, when dissipative effects of injection and loss of energy

are included, these intrigued waves can disappear. If they are preserved, their role

in the dynamics is unknown. Here, we consider this solution in the framework of

dissipative systems. Using the paradigmatic model of the driven and damped non-linear

Schrödinger equation, the profile of a stationary Peregrine-type solution has been

found. Hence, the Peregrine soliton waves are persistent in systems outside of the

equilibrium. In the weak dissipative limit, analytical description has a good agreement

with the numerical simulations. The stability has been studied numerically. The large

bursts that emerge from the instability are analyzed by means of the local largest

Lyapunov exponent. The observed spatiotemporal complexity is ruled by the unstable

second-order Peregrine-type soliton.

Keywords: Peregrine soliton, spatiotemporal chaos, fiber ring cavity, Lugiato-Lefever equation, Kerr

frequency comb

1. INTRODUCTION

Among a large number of the exact solutions of the Non-linear Schrödinger equation, Over the
past decade, the Peregine soliton (PS) [1] has become one of the most attractive ones within
the non-linear science community. So far, PS is the best-known coherent structure that has been
successfully proposed as a prototype solution for rogues waves in conservative systems, and it aims
its localization in both temporal and spatial directions. The interest in PS has also been reinforced
by the experimental observation in an optical fiber [2], with a suitable pulse sent through the
fiber. The Peregrine soliton has been reported to spontaneously emerge from a saturated state of
modulational instability displayed by any continuous-wave solution of the non-linear Schrödinger
equation [3, 4]. The common feature of all the aforementioned works is that they are considered
in the conservative limit. An open question is the persistence and role of Peregrine waves in the
complex spatiotemporal dynamic observed in the dissipative system. Indeed, when losses are added
into the equation of a conservative dynamical system, solutions of a family generally reduce to a
single one [5]. A classic example is how the solitons form a family in the non-linear Schrödinger
equations (NLS) equation due to infinite conserved quantities for the same set of parameters.
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From these families, only one persists in the dissipative regime
due to the additional balance between losses and energy injection.
Many dissipative systems are described by the NLS equation
alongside driving and energy loss. Examples include the driven-
damped [6–8] and, parametrically, the driven-damped [9] non-
linear Schrödinger equations. In the case of the driven and
damped [7] non-linear Schrödinger equation, the equation
becomes non-integrable. Hence, emerges the question of the
persistence of the NLS Peregrine soliton. Another open question
is the following: if the PSs persist, do they play the same role
here also as some coherent rogue wave-like solutions? Indeed,
rogue wave and extremes events were also reported in dissipative
systems. In those systems, a new mechanism has been found
to induce extreme events or rogue waves: the chaos in purely
temporal systems and the spatiotemporal chaos in large degree
of freedom systems [10–13]. To infer the existence of chaos,
it is mandatory to prove the largest Lyapunov exponent is
positive [14]. For large degree of freedom, such as systems
with a transport or coupling mechanism (diffraction, diffusion,
dispersion, etc.), there exists a continuous set of exponents: the
Lyapunov spectrum [15]. Spatiotemporal chaos is characterized
by that must have a positive range. In this work, we address
the problem of the persistence of the NLS Peregrine Soliton and
study the link with some of the rogue waves reported in the
dissipative regime.

For this purpose, we consider the paradigmatic optical
dissipative system, which consists of the synchronous injection
of a light wave in ring-type Kerr medium waveguides such as
optical fiber or microresonators. The envelope of the temporal
profile of the light inside the waveguide is well-described by
the driven and damped non-linear Schrödinger equation [6–
8]. This model was derived initially from the context of forced
plasmas with oscillatory fields [6, 7] and dipole excitations in
condensed matter. In the optics, this envelope equation is also
known as the Lugiato-Lefever equation (LLE) [16–18]. The LLE
is a non-integrable equation and, to our knowledge, no closed-
form solution has been reported, yet. However, neglecting only
the dissipation may allow us to find some solutions [9, 19]
in the form of rational periodic or localized solutions. Even
in this limit, intriguingly, no rational solution of Peregrine-
type was reported. Likewise to the conservative systems, rogue
waves have been reported in the LLE [18, 20, 21]. For one of
the operating modes, the bistable regime–three possible outputs
for a same value of the driving–the rogue waves emerge in
the dynamics where the spatiotemporal chaos is seeded by a
breathing cavity solitons [18, 20]. However, the analytical profile
itself and the features of these spatiotemporal chaotic rogue waves
are not well-known. The purpose of this report is an attempt to
open up a discussion about this point. Therefore, we use the
dissipationless limit to write a closed-form rational polynomial
solution of the LLE. This analytical result is then compared
to the numerically integrated solution. Next, we consider the
persistence of this ideal case solution in the full LLE, and it
can be linked to the dissipative rogue wave previously reported.
In particular, we will show that the complexity in the LLE
is mediated by rogue waves approximated by second-order
Peregrine-like solitons.

2. THE PEREGRINE-TYPE SOLUTION

As mention in the introduction, the propagation of light in
the optical fiber loop is modeled without loss of generality by
the non-linear Schrödinger equation augmented with boundary
conditions or an Ikeda map [17, 22, 23]:

∂zA (z,T) = −i
β2

2
∂2TA (z,T)+ iγA (z,T) |A (z,T)|2 , (1)

A (0,T + TR) =
√
θEi (T)+

√
ρA (L,T) e−i80 , (2)

where TR stands for the round-trip time, which is the time taken
by the pulse to propagate along the cavity with the group velocity,
80 is the linear phase shift, θ (ρ) is the mirror transmission
(reflection) coefficient, and L is the geometrical cavity length.
The complex amplitude of the electric field inside the cavity is
A. Each of the coefficients β2 is responsible for the second order
dispersion, and γ is the non-linear coefficient of the fiber. The
independent variable z refers to the longitudinal coordinate while
T is the time in a reference frame moving with the group velocity
of the light and Ei(T) is the amplitude of the pump field. For
large enough cavity finesse F = π/α, with α the effective losses
of the cavity, the evolution of the electric field inside the loop is
well-described by the Lugiato-Lefever equation [16, 17]:

∂ψ

∂t
= S− (α + iδ)ψ − iη

∂2ψ

∂τ 2
+ i|ψ |2ψ , (3)

where α = θ/2, S = 2Ei
√
γ L, ψ = A

√
γ L, t = αT/TR

t = αm, and τ = T/Tn with Tn =
√|β2L| /2. δ =

(2kπ − 80) is the detuning with respect to the nearest cavity
resonance k. The integer m gives the roundtrip number and
the coefficient η = ±1 is the sign of the group velocity
dispersion term (β2). In the following, we will consider η = −1
as corresponding to an anomalous group velocity dispersion.
Despite its apparent simplicity this equation is non-integrable
and closed form solution have been found only for α = 0 [9, 19],
which corresponds to a Hamiltonian equation. Numerically and
experimentally, almost all the solutions obtained in this limit of
α = 0 have been observed [24]. Among these solutions, the
localized structure and cavity solution have been themost studied
but have never been described by a Peregrine-like profile. This is
the purpose of the following. Considering α = 0, assuming a
constant phase, and introducing u(t, τ ) = ψ(τ ) exp(iπ/2), the
equation for the steady solution of the LLE reads as follows:

uττ − δu+ u3 = −S. (4)

Multiplying Equation (4) by uτ , integrating over τ and
introducing f = u+ a, its follows

fτ = f

√

f 2/2+ 2af + (δ − 3a2), (5)

where a is solution of the cubic equation

a3 − δ a− S = 0. (6)
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FIGURE 1 | Localized structure of the driven dissipative non-linear Schrödinger Equation (3). (a) Evolution of the driven dissipative non-linear Schrödinger obtained by

integration of Equation (3) with α = 10−5, δ = 10−2, and S = 4× 10−4. In the right panel, (b–d), the black dashed lines correspond to the initial condition given by the

stationary Peregine profile (7), blue diamonds correspond to the numerical profile at T = 1, 000 and the red dash line to the solution from [19], respectively.

Namely, a accounts for a uniform solution of the driven
dissipative non-linear Schrödinger Equation (3). Hence, for δ −
a2 > 0 we can recover the solution founded in [9, 25]. Then, for
the special case of a2 = δ/3 the solution is as follows:

uP(τ ) =
δ√
3

[

−1+ 12

(τ/τ0)2 + 3

]

, (7)

where τ0 = 2δ. Note that this function corresponds to a decent
Lorentzian, that is, a Lorentzian supported on a negative value.
Then u2P(τ ) has the shape of a Mexican hat as illustrated in
Figure 1. uP(τ ) has the same profile as themaximally compressed
Peregrine soliton.

The result of the numerical integration of the LLE (3) for
α = 10−5, δ = 10−2, and S = 4 × 10−3 starting with uP(τ )
(Equation 7) is shown in Figure 1. These parameters are chooses
for the purpose to numerically test the stability of the solution

of Equation (7). As can be seen from the left panel this figure,
the solution remains stable. The right panel of Figure 1 gives
the instantaneous profiles in linear (b) and logarithmic (c) scales,
respectively. This chart reveals that uP(τ ) (black dashed line) is a
good approximation of the numerical solution (blue diamonds).
The red dashed line corresponding to the solution provided by
[25] is plotted for comparison. The spectra profiles Figure 1c are
also in a good agreement.

Increasing, the detuning parameter, the solution uP(τ )
develops an instability and shows a breathing dynamical
behaviors [26]. By increasing the detuning or forcing strength
further, the localized structure gives rise to a complex
spatiotemporal dynamic, as illustrated in Figure 2, characterized

by two counter-propagating fronts between the homogeneous
and the complex spatiotemporal states [20, 24]. The inserts
of Figure 2 account for the profile of the highest peak in the
spatiotemporal map. Hence, the destabilization of the localized
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FIGURE 2 | Evolution of the LLE obtained by integration of Equation (3) with α = 10−5, δ = 5× 10−2, and S = 4.3× 10−3. The bottom panels show the

instantaneous profile of the highest peak obtained in the red, cyan, and magenta box and the red line correspond to the best fit using the maximally compressed

second order Peregrine soliton (8), respectively.

solution corresponds to a process of self-replication [27]. In turn,
the complex spatiotemporal dynamical behavior observed is a
consequence of the interaction of these localized structures that
self-replicate. For comparison, we have also plotted in the same
figure the profile of uP(τ ) (dash line). It clear that uP fails to
describe this local profile. However, using the expression of the
maximally compressed second-order Peregrine soliton given by

uSP(τ ) =
[

a0 +
τ 4 + a1τ

2 + a2

τ 6 + a3τ 4 + a4τ 2 + a5

]2

. (8)

the best fit profile corresponds to the red solid lines in the bottom
panel of Figure 2. This suggests that the complex behavior
observed may be mediated by a higher-order Peregrine soliton.
The current instability scenario of the stationary non-dissipative
solution uP(τ ) qualitatively preserve in the dissipative regime [18,
20, 24]. In this limit, the dynamics have been demonstrated to be
of spatiotemporal chaos [20], and statistics on the bursts emitted

have revealed rogue waves [18]. In the following, we investigate
the local dynamics in the dissipative case to see how the emerging
rogues waves relate to the undamped solutions.

3. PEREGRINE-TYPE SOLITONS IN THE
SPATIOTEMPORAL CHAOS OF THE LLE

Strictly speaking, to prove a spatiotemporal chaotic dynamic
one may have to compute several quantities. In particular, it
is mandatory to compute the Lyapunov spectrum. Next, this
spectrum must have a positive part and a continuous region
that has an area to linearly increase along with the size of the
system. The computation of the Lyapunov spectrum itself is very
well-documented [28] and is not the purpose here. Let us recall
the main steps.

From the state of the system at a given time, the linear
evolution of any small perturbation δX can be described by
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FIGURE 3 | Evolution of the driven dissipative non-linear Schrödinger obtained by integration of Equation (3) for α = 0.2, δ = 1, and S = 0.43. The blue line

correspond to the local largest Lyapunov exponent, while the red circles are the local maxima detected. The gray bars mark the location of these local maxima.

∂tδX = JδX, where J is the respective Jacobian. In the present
case, we introduce ψ = ψr + iψi, with ψr and ψi being the
real and imaginary part of ψ respectively. At a time t = t0,
introducing ψ = ψ0 + δψ , with δψ ≪ ψ(t = t0) = ψ0 the
matrix J reads as follows:

J =





−(α + 2ψ0rψ0i) δ − ψ0
2
r − 3ψ0

2
i − ∂2τ

−δ + ψ0
2
i + 3ψ0

2
r )+ ∂2τ −(α − 2ψ0rψ0i)



 , (9)

and δX = (δψr , δψr)
t . Suppose that we want to compute the n-

th first dominant exponents of the spectrum, we introduce the
matrix L, which contains n orthonormal vectors vi to be used as
initial conditions when solving ∂tδX = JδX:

L (t = t0) ≡ [v1 v2 . . . vn] =









x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

. . . . . . . . . .
xd1 xd2 xd3 . . . xdn









,

(10)
where d is the dimension of the system. After a time increment
dt, the matrix L evolves to L

(

t0 + dt
)

= ÛL (t0) where Û =
eJ∗dt . Using the modified Gram-Schmidt QR decomposition on
L

(

t0 + dt
)

, the diagonal elements of R account for the Lyapunov

exponents λ̃i (i = 1, . . . , n) at time t0 + dt, that is

λ̃i(t0 + dt) = 1

dt
ln

(

Rii(t0 + dt)
)

. (11)

Repeating this procedure several time, after a large number of
iterations N, the Lyapunov exponents can be approximated by

λi ≡ 〈λ̃i〉 =
1

Ndt

N
∑

k = 1

ln
(

Rii(t0 + kdt)
)

. (12)

From the spectrum {λi} an estimator of the dimension of the
chaotic attractor is given by the York-Kaplan dimension DkY =
p +

∑p
i = 1 λi/|λp+1| where p is such that

∑p
i = 1 λi > 0 and

∑p+1
i = 1 λi < 0 [29]. For a one-dimensional system of size L,

a spatiotemporal chaos implies that DKY increase linearly with
L. The spatiotemporal chaotic nature of the current dynamic
has already been proven [20] and is not the purpose here. Our
purpose now is to go inside the local dynamics. Indeed, from
the whole process of computing the Lyapunov spectrum, only
average quantities are used tomake conclusion. However, looking
at the spatiotemporal evolution such as that shown in Figure 3

(bottom panel) it is obvious that local bursts may impact the
average value. To verify this point, we have also plotted the
evolution of the largest Lyapunov exponent. The local maxima
of this exponent, marked by gray lines, always correspond to
a spatiotemporal local maximum. This shows that local bursts
are those with the largest contribution to the average of the
first Lyapunov exponent. After all, this also means that the
spatiotemporal local maxima are the highest unstable structures
that can appear in the dynamics. We can now extract from
the temporal local maxima the profile of the local maximally
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FIGURE 4 | Probability density function (A) of intensity bursts observed in the spatiotemporal chaos of Equation (3) for α = 0.2, δ = 1, and S = 0.43. Light red bars

correspond to the values above the characteristic wave height. (B) Mean intensity profile from the five larger pulses and the result of the best fit of this profile with

Equation (8). Xevents in (A) correspond to the bursts with peak values above twice the significant wave height. This height is defined as the average value of the

largest 1/3 burst.

compressed spatiotemporal bursts. As expected in the parameters
used [18], a fraction of the peak values represent extreme events,
as can be seen from Figure 4A. The mean profiles of the five
highest peaks have been used with the Equation (8) to find the
best-fit parameters. The result is given in Figure 4B and shows
a good agreement between the two profiles. This confirms that
the persistent of the behavior observed in the non-dissipative
limit comes also with the fact that the spatiotemporal chaos
observed in the dissipative limit is mediated by second-order
Peregrine-type solitons.

4. DISCUSSION

The Peregrine soliton is the famous coherent solution of the
nonlinear Schrödinger equation that presents many of the
characteristics of rogue waves. As a result, it became one of the
most studied localized solution of the Non-linear Schrödinger
equation. Despite the great interest around this solution, the
studies in dissipative systems are few relatively compared to
those in conservative systems. In this work, we have considered
the emergence of the Peregrine solitons in the paradigmatic
dissipative system and the driven and damped Non-linear
Schrödinger equation. Using the dissipationless limit, we were
able to obtain a Peregrine-like solution of this system. Even in
this limit, such a rational polynomial solution was not reported
up to now. The comparison of our solution to the result of the

numerical simulation is in quite good agreement (cf. Figure 1).
With the dissipation as no closed-form solution can be found, we
have performed numerical integration. The stationary Peregrine
soliton bifurcates to a breathing state. The local maximally
compressed state was successfully interpolated by the profile of
a second-order Peregrine soliton (see Figure 2). Unfortunately,
as a result of a bifurcation, the derivation of the corresponding
closed-form solution can not be done from the dissipationless
limit. The instability that can develop this intrigued solution
leads to the emergence of the second-order type Peregrine
soliton. In the dissipative limit, the complex behavior observed
in the conservative case persevere. Indeed, using the tools of
the theory of chaos, we were able to follow the local dynamics
(see Figure 3). In this spatiotemporal complexity shown to be
extensive chaos, we have shown that the dynamics are ruled
by the same profile of the second-order Peregrine-type soliton.
Indeed, we show that burst in local metric entropy occurs at
the same time as the emergence of a maximally compressed
second-order Peregrine soliton. Despite the effort made to find
configurations of the Non-linear Schrödinger equation, such as
variable parameters, the fact is that losses and dissipation are the
rules instead of the exceptions in real-world systems. Hence, we
believe that as with dissipative solitons, dissipative systems are
the opportunity to investigate new dynamics for the Peregrine
soliton. This work attempts to that this is possible, and we are
convinced that many other works will follow this one.
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