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Superoscillations naturally arise in optical fields with dense packing of nodal points of
amplitude. Airy wave packets are highly oscillatory and rich of phase singularities. We study
to the best of our knowledge, for the first time, the superoscillatory behavior in a band-
limited Airy beam whose spectrum is sharply truncated. Our results show that not as
expected, the superoscillations occur outside of the Airy-like region, but in regions above a
defining line where the beam stops being Airy-like. The degree of superoscillation can be
very high there.
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1 INTRODUCTION

The phenomenon that a band-limited signal can oscillate faster, although locally somewhere in its domain,
than its largest frequency is called superoscillation. The discovery of this phenomenon dates back to the
studies in quantum mechanics by Aharonov et al. [1]. This topic stimulates recent interest in optics [2-4]
because of its close connection to, in particular, super-resolution imaging. The latter is usually achieved in
the scheme of recovering evanescent waves. More interestingly, the desired large local frequency, or local
wave number in optical case, naturally occurs near phase singularities, where it diverges. This connection
leads to a recent method of achieving superoscillation using optical vortexed waves [5].

In fact, the superoscillatory behavior is ubiquitous in optics. Dennis et al. [4] showed that for
certain speckle patterns, the area of the superoscillating region can be of 1/3 in fraction. Makris et al.
[6] constructed diffraction-less beams that can transport subwavelength features into the far field.
These studies stimulate us to study the superoscillations embedded in optical Airy beams. Our
motivation comes from the facts that Airy beams are oscillatory and rich in optical singularities,
hinting that super large local wave numbers may occur even though the beam is inherently paraxial.
First discovered by Berry and Balazs [7] as a set of solutions to the Schrodinger equation, Airy wave
packets raise great interest [8, 9] in the context of beam optics due to their peculiar features as
diffraction-less propagation, self-acceleration, and self-healing. However, a complete Airy beam is of
unlimited spectrum. To facilitate our current task, after briefly reviewing the theory of and the
criterion for superoscillation in Section 2, we introduce in Section 3 the method of sharply
truncating the Airy beam spectrum; in Section 4, we give the method to compute the local
wave number through its relation to optical currents, and then study the superoscillatory area in
both a longisection and a transverse section; finally, we give a conclusion of the study.

2 SUPEROSCILLATIONS IN LIGHT FIELDS

Suppose we have a general optical wave field, denoted by ϕ(r), propagating in free space, then the
vector r denotes the position in three-dimensional space. We write ϕ(r) in terms of its amplitude ρ(r)
and phase φ(r):
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ϕ(r) � ρ(r)exp[iφ(r)]. (1)

If ϕ is a plane wave, that is, the eigenfunction of momentum,
associated with ϕ, then there is a unique and global wavenumber
k, with corresponding spatial frequency v � k/2π. However, for
general waves that have complicated distribution of φ(r), no such
global wave number can be designated. What we have instead is
the local wave vector k, defined as the gradient of the phase
function:

k � ∇φ(r), (2)

where∇ stands for gradient operation whose form depends on the
dimensionality and coordinate chosen. For a band-limited optical
signal with maximum wave number kmax, we define the criterion
of superoscillation as: ∣∣∣∣∇φ(r)∣∣∣∣> kmax. (3)

For most complex fields, even φ itself cannot be explicitly
given. For such cases, one can use a relationship between the
phase gradient and the optical current [11] J,

J � I[ϕ*(r)∇ϕ(r)] � ρ2(r)∇φ(r), (4)

where the symbol I[·] denotes the imaginary part. We will use
Eq. (4) to calculate the phase gradient of Airy beams.

3 OPTICAL INCOMPLETE AIRY BEAMS

In this article, we will formulate the propagation problem in
the 2 D scenario, that is, one transverse plus one longitudinal
dimension. We will assign the x coordinate to be the
transverse position and ξ coordinate to be the longitudinal
one. A full 3 D formulation can be obtained by incorporating
another transverse dimension (the y coordinate), which is
formally identical to x. Let ϕ(x,ξ) be the amplitude of a light
wave, satisfying the normalized paraxial wave

i
zϕ(x, ξ)

zξ
+ 1
2
z2ϕ(x, ξ)

zx2
� 0. (5)

One way to construct the Airy beam is to conceive that the
wave is propagated from an initial, say ξ � 0 plane, with its
distribution ϕ(x,0) being the Airy function Ai(x):

Ai(x) � ∫∞

−∞
ds exp[i(1

3
s3 + sx)]. (6)

This equation indicates that the spatial spectrum of the Airy
function is given by the unimodular cubic phase factor exp(is3/
3). To obtain the beam profile at any longitudinal position
Ai(x,ξ), we model the paraxial propagation through the
method of angular spectrum. The wave number along ξ,
denoted as kξ, can be computed under the Fresnel
approximation:

kξ �






1 − s2

√
≈ 1 − 1

2
s2. (7)

Thus, we have

Ai(x, ξ) � ∫∞

−∞
ds exp(i 1

3
s3)exp[i(1 − 1

2
s2)ξ]exp(isx),

∝ exp(iξ)∫∞

−∞
ds exp{i[1

3
(s + a)3 + (s + a)(x + b)]}. (8)

The second line of Eq. (8) shows that the beam is propagation
invariant up to translation, as long as we set the parameters a and
b in the integration to be

a � − ξ

2
, b � −a2 � − ξ2

4
. (9)

When exp(iξ) is decreased, we finally have the complex
envelope of the Airy beam.

Ai(x, ξ) � exp[i(xξ
2
− ξ3

12
)]Ai(x − ξ2

4
). (10)

From Eq. (10), we can readily see that the point of peak
intensity of the wave packet moves from x � 0 in the initial plane
to the point x � ξ2/4 for a particular ξ. This phenomenon is the so-
called self-acceleration of Airy beams. The path of the peak
intensity in the x−ξ plane is evidently a parabola.

So far what we obtain from Eq. (10) is an Airy beam with
unlimited spectrum. However, for the purpose of tracking the
superoscillatory behavior, we are in need of a band-limited light
field with a sharp spectrum limit. There are different ways of
truncating the beam, leading to different modulations of the
spectrum. The exponential truncation introduced in [9] will
introduce a long-tailed Gaussian filter to the spectrum. A
sharp limiting spectrum can be achieved by imposing a
rectangular window, as was done in [11]. We choose the
maximum spectrum to be S and use (11), and now the Airy
beam changes to the incomplete one:

AiS(x, ξ) � exp[i(xξ
2
− ξ3

12
)]∫S−ξ/2

−S−ξ/2
ds exp[i(1

3
s3 − 1

4
sξ2 + sx)].

(11)

For the sake of clarity, we omit the integration limits of Eq.
(11) and rewrite it into a compact form:

AiS(x, ξ) � U(x, ξ)∫V(s, x, ξ)ds. (12)

We use the subscript S to denote the maximum transverse
wave number. Note that due to the truncation, the second term in
Eq. (12) is generally no longer a real function of x and ξ, as is the
complete Airy function.

4 SUPEROSCILLATIONS IN INCOMPLETE
AIRY BEAMS

4.1 Superoscillations in a Longisection
Now our task is to compute the phase gradient of the incomplete
Airy beam given by (12). As the second term of (12) is complex,
the overall phase φ(x,ξ) of the beam is not explicit, and we invoke
formula 4:
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∇φ(x, ξ) � I(Ai*S∇AiS)
I(x, ξ) , (13)

where I(x,ξ) � |Ais|
2 is the beam intensity. Using Eqs. (11) and

(12), we expand the gradient in the numerator as:

zxAiS(x, ξ) � ( i
2
ξ)U∫​

V ds + U∫​

isV ds,

zξAiS(x, ξ) � i(x
2
− ξ2

4
)U∫​

V ds + U∫​ (− i
2
sξ)V ds.

(14)

Substituting Eq. (14) into Eq. (13), we obtain:

zxφ(x, ξ) � ξ

2
+I{ ∫Vds∫ is′Vds′}

I
,

zξφ(x, ξ) � x
2
− ξ2

4
+I{ ∫Vds∫( − is′ξ/2)Vds′}

I
. (15)

We have numerically solved Eqs. (11) and (15) for an incomplete
Airy beam truncated at S � 10, with x being in the range of 2π
[−12.8,12.8] and the propagation range ξ ∈ [0, 15].Figure 1 shows the
beam intensity distribution normalized with respect to its maximum.

According to [10], regions satisfying x > Sξ−S2, that is, fields
above the dashed white line, lost Airy-like features.

Both the total and the x− component phase gradients are computed
and shown in Figure 2. Please note that for the total gradient ∇φ(r),
we plot the function log10(

∣∣∣∣∇φ∣∣∣∣ − 1) because the overall wave
number is 1. We use the log function because negative
arguments are automatically identified as invalid and
rendered in white. It is interesting that superoscillations
appear excluding the non–Airy-like regions for the transverse
local wave number. However, for the total gradient, the entire
beam region is superoscillatory. This means that the z−
component of the gradient compensates that of the x−
component. But this is clearly not due to evanescent waves
(for which s > 1), as it is readily seen that as ξ increases,

∣∣∣∣∇φ∣∣∣∣ is
getting larger, while the contribution from evanescent waves
diminishes. The physics of such phenomena can be ascribed to
the wave contents demonstrated by Eq. (11). For different
longitudinal positions, the wave is a sum of different spectra
because the limits of the integral are controlled by a window
sliding with ξ; this induces the rapid change along ξ direction.
From the integrand, we know that the integral can be
approximated by contributions from the two saddle points,

given by s � ±








ξ2/4 − x

√
. As the window slides, the window

edges eventually cross the saddle points and leave only
contributions from oscillatory regions, marked by the
defining line x � Sξ−S2.

4.2 Superoscillations in Transverse Cross
Sections
Now, we turn to the superoscillations in cross sections of a three-
dimensional Airy beam.Without loss of generality, we concentrate on
the x–y symmetric beam, that is, the beam is just the simple product

FIGURE 1 | Density plot of the normalized beam intensity of the
incomplete Airy beam, Ais�10(x,ξ). The white dashed line is the defining line x �
Sξ−S2, separating Airy-like and non–Airy-like regions. The beam retains Airy
features to the right of the line. The white solid line is the main lobe
parabola, x � ξ2/4.

FIGURE 2 | Density plots of the local phase gradients: a, log10(
∣∣∣∣∇φ∣∣∣∣ − 1) and b, log10(

∣∣∣∣zxφ∣∣∣∣ − S). In colored regions, the fields superoscillate, while in regions in
white, the local wave number is smaller than the corresponding wave number. The defining line and the parabola are plotted in blue.
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of two incomplete one-dimensional Airy beams, one along each of
the two transverse coordinates. The two-factor beams have the same
truncations and other parameters. We denote the three-dimensional
beam as Ai3, and it is given in the simple separable form:

Ai3(x, y, ξ) � AiS(x, ξ) × AiS(y, ξ). (16)

We denote the overall phase function of Ai3 by Ѱ(x,y) in a
transverse cross section specified by ξ � ξ0. Simple calculations
give the following relation:

Ai*3(x, y, ξ0)zxAi3(x, y, ξ0)∣∣∣∣Ai3(x, y, ξ0)∣∣∣∣2 � Ai*S(x, ξ0)zxAiS(x, ξ0)∣∣∣∣AiS(x, ξ0) 2,|
Ai*3(x, y, ξ0)zyAi3(x, y, ξ0)∣∣∣∣Ai3(x, y, ξ0)∣∣∣∣2 � Ai*S(y, ξ0)zyAiS(y, ξ0)∣∣∣∣AiS(y, ξ0) 2.| (17)

This means

zxΨ(x, y, ξ0) � zxφ(x, ξ0), zyΨ(x, y, ξ0) � zyφ(y, ξ0), (18)

and we can use the computational results in the longisection to
construct the local phase gradients in the transverse plane.

We used the same parameter set as in the 2 D case, for both
the x and y directions. As shown in Figure 3, the main lobe
position in each sub-figures is the intersection point of the two
white solid line, which is computed using the parabola equation
for a specified ξ0 position. The dashed black lines are the
defining lines separating different regions. Regions to the
right of and above the horizontal black lines are Airy-like. As
shown in Figure 1, the dashed and solid lines get tangent to each
other at a particular value of ξ.

It is obvious that as the beam propagates, the Airy-like region
(squares circumscribed by the white and black lines) gets
increasingly smaller, while the superoscillating region gets
increasingly larger. For small distance, ξ � 0.176, part of the
lower left corner enclosed by the parabola is Airy-like, and part is
not, while superoscillations occur only on discrete lines. For
moderate distance, the beam region becomes totally non–Airy-
like, but continuous area emerges as superoscillatory. For all the
three cases, the Airy-like regions are always non-superoscillatory,
agreeing with cases in the longisection.

5 CONCLUSION

In conclusion, we studied the superoscillatory behavior in an
incomplete Airy beam in both a longisection and transverse
cross sections. Sharply truncating the beam spectrum leads to
the emergence of non–Airy-like regions in the beam area
which gradually enlarge during propagation. However, in
such regions, the fields can oscillate much faster than those
in both the largest frequency and the Airy-like region. No finite
area in the Airy-like region is found to support
superoscillations.
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FIGURE 3 |Shaded contour plots of the transverse phase gradient
∣∣∣∣∇Ψ(x, y, ξ0)∣∣∣∣ − /




2

√
S for three different propagation distances: a, ξ0� 0.176; b, ξ0� 7.5; and c, ξ0�

14.063. Positive regions are superoscillatory, while negative ones are not. Solid white and dashed black lines are, respectively, the projections of the parabola and
defining lines.
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