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Diamond laser engineering is of great importance for designing devices, which find
applications in radiation sensing and quantum technologies. A review of the present
state of the art of experimental and theoretical studies on ultrashort laser irradiation of
diamond is presented. For a wide range of laser parameters, the optimization of laser-
induced electronic, optical and structural modifications of diamond requires quantitative
understanding of themicroscopic processes underlying the high electronic excitation in the
material.
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1 INTRODUCTION

Diamond is an indirect wide band gap semiconductor which has numerous exceptional material
parameters like extreme hardness and thermal conductivity not matched by any solid [1, 2], high
electric breakdown field, high electron and hole mobilities [3], high carrier saturation rate, possible
implementation of several color centers with applications in quantum technologies [4, 5] and high
biocompatibility. The speed of sound propagation in diamond is also high. Some basic characteristics
of diamond are summarized in Table 1.

Diamond has extraordinary optical characteristics. It is transparent in the ultraviolet, visible,
infrared andmicrowave spectral regions. The absorption coefficient of diamond depends on the laser
wavelength and on the properties of the carbon material as shown in Figure 1 [6]. Some crystals are
almost transparent to laser light, while others strongly absorb it. Due to the high refractive index in
the visible and ultraviolet ranges, diamond is a useful material for dielectric [7] and hybrid
nanophotonic devices [8–10]. When irradiated with intense ultrashort laser pulses diamond can
be converted into a short-lived plasmonic state enabling the photoexcitation and the propagation of
surface plasmon-polaritons (SPPs). Possible applications are spatial phase modulation, high-speed
optical switching and saturable absorption [11, 12]. The availability of advanced technologies for the
production of pure single-crystal diamond [13, 14] allows to study the formation of electron–hole
liquid (EHL) [15, 16] in the material which can help to reveal the mechanisms of phase transitions
occuring in a strongly excited diamond. These technologies have also allowed the formation of
atomically flat diamond (111) surfaces that can subsequently undergo graphitization [17].

Currently, diamond can be obtained not only in the form of natural monocrystals. Technologies
have been developed that provide the opportunity to grow synthetic diamonds with parameters and
properties similar or even better than those of natural crystals. There are several ways to obtain
diamond crystals. The oldest one is based on high-pressure high-temperature (HPHT) compression
of a high purity carbon source into a metal solvent [18]. This allows growing a single or
polycrystalline diamond, generally with inclusions of impurities, mainly nitrogen that degrades
the electrical and optical properties of the material. The method to obtain the purest material [19]
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uses chemical vapor deposition (CVD) of diamond from different
gas mixtures, mainly hydrogen with a percentage of
hydrocarbons and possibly oxygen. The size of such crystals is
much larger than the size of the crystals obtained from HPHT
synthesis and their thickness varies from a few nanometers to
several centimeters. Homoepitaxial growth can also be feasible
with the CVD method. Synthetic diamond possesses the
properties of the purest natural diamond. For instance,
homoepitaxial tissue-equivalent CVD diamond has substituted
for natural diamond as a base material for dosimeters used in
radiotherapy [20]. Homoepitaxially grown monocrystalline
diamond is fabricated with a maximum size of about 1 cm2

due to the availability of diamond substrates and its
application is limited. Although comparatively large area
monocrystalline samples are obtained via heteroepitaxial
growth, their electronic quality is still a subject of intense
investigation [21]. Diamond materials can vary greatly in
characteristics according to the inclusions of impurities and
structural defects. In comparison to the traditional techniques
for laser processing intense ultrashort laser pulses interact with

diamond non-linearly, minimizing thermal diffusion and
providing low ablation threshold, reduced thickness of
graphite layer on the ablated surface and high spatial
resolution beyond the diffraction limit [22–24]. Precise
femtosecond laser profiling of diamond crystals resulted in
fabrication of X-ray refractive lenses [25]. The technology of
laser induced periodic surface structures (LIPSS) [26] is also
developing successfully. Thanks to it, there has been an attempt to
create high-quality anti-reflective surfaces on diamond with
Raman lasers [27]. Laser processing is also used to create a
variety of microstructures inside the bulk of diamond. Due to
the movement of the focus of the laser beam through the crystal, it
is possible to make structures of different shapes and sizes
[28–30]. 3D architecture has been proposed for radiation hard
detectors with timing capabilities and for dosimeters with high
spatial resolution applied in radiotherapy. This involves
fabricating columnar electrodes in the diamond bulk by laser
irradiation [31]. New high-quality methods of processing
diamond will open the way for using this material in new
industries.

2 DIAMOND SURFACE TREATMENT

Pulsed laser processing of the surface of diamond can result into a
complete conversion of diamond to monocrystalline graphite as
demonstrated by Raman spectroscopy [32]. Since the absorption
coefficient of graphitic materials is higher than that of different
forms of diamond in a broad spectral range, the decrease of
optical transmittance serves as an experimental indication of
surface graphitization of diamond [6, 33]. Figure 2 shows the
change in the transmittance of CVD polycrystalline diamond as a
function of the number of irradiating picosecond pulses for
varying laser fluence. For the highest fluence the decrease of
transmittance starts from the first irradiating pulse while the
number of pulses required to induce surface graphitization
increases with decrease of laser fluence. Raman spectroscopy

TABLE 1 | Basic characteristics of diamonds.

Characteristics Value

Optical transmission range 225 nm–RF
Thermal conductivity, W/m K 2,000–2,400
Breakdown electric field, V/cm 107

Carrier saturation velocity, cm/s 1.5 × 107

Carrier mobility (holes), cm2/V s 3,800
Carrier mobility (electrons), cm2/V s 4,500
Bandgap, eV 5.4
Dielectric constant 5.7
Resistivity, Ω cm 1013 – 1015

Hardness, MPa 81,000 ± 18,000
Acoustic wave velocity, km/s 18.4
Thermal expansion coefficient, 10–6 K-1 0.8 at 293 K
Raman frequency shift, cm−1 ∼1,330
Raman gain, cm/GW at ∼1 μm ∼10

FIGURE 1 | Dependence of the optical absorption coefficient on the
laser wavelength [6].

FIGURE 2 | Transmission properties of the CVD diamond sample with
varying fluence and number of laser pulses [30].
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showed that surface ablation of polycrystalline diamond occurred
without significant graphitization when femtosecond laser pulses
were used [34]. In [35] LIPSS were formed on CVD mono-
crystalline diamond surface perpendicular to the direction of laser
polarization with spatial periods 125 and 400 nm corresponding
to femtosecond laser irradiation with wavelengths λ � 248 and
λ � 800 nm, respectively. Wires of millimeter length composed
of 150 nm ripples (high spatial frequency–HSF LIPSS)
perpendicular to the direction of laser polarization were
obtained after irradiation of synthetic single-crystal diamond
with near-infrared femtosecond laser pulses with fluences close
to the ablation threshold [36]. Three types of LIPSS were formed
after irradiation with femtosecond laser pulses in the visible and
near infrared spectral range–first one with subwavelength
periodicity, the second one with spacial period ∼λ/3 and the
third one with a spatial period close to the laser wavelength (low
spatial frequency LSFL LIPSS) [37]. It was also found that the
spatial periods of HSF LIPSS increase from 170 to 190 nm when
laser fluence increases 1.5 times [38]. The experimental results
showed that the spatial periods of LIPSS depend on the
wavelength of the laser, the polarization of the laser electric
field, the number of pulses and the laser fluence.

High quality diamond nano-structures with surface roughness
below 1.4 nm were produced by using a Ti: Sapphire laser pulses
of 130 fs at a repetition rate of 1 kHz at a central wavelength of
800 nm. Surface structures in the 100–400 nm range [27] were
produced for λ � 400 nm. The ablation threshold was 2 J/cm2,
which corresponds to previous studies in which 100 fs pulses were

used with λ � 400 nm [39]. Figure 3A shows the values of laser
fluence and scanning speed used for the fabrication of low-
roughness LSF LIPSS with period of ∼400 nm. The high
quality LSF structures shown in Figure 3B were formed at the
irradiated location on the diamond surface for fluences ranging
from 2 to 6 J/cm2 and scanning speeds from 100 to 300 μm/s.
Figure 3C shows a lineout of the structures along the x-axis
obtained by AFMmeasurements. When there are deviations from
the obtained set of parameters, the optical quality of structures is
reduced. At energies exceeding 6 J/cm2, intense ablation occurs.
As a result, HSF structures predominate in the treated areas. It
was demonstrated that when high number of laser pulses and low
laser fluence were used HSF ripples were predominantly formed
[40], while LSF structures were obtained when the number of
pulses was low and the fluence was high. It was found that the
difference in the threshold fluences for the formation of the two
types of ripples was 5.4 J/cm2. In [41] 200 fs laser pulses with
wavelength 515 nmwere used to obtain coarse and fine ripples on
monocrystalline diamond surface. Figures 4A–C show the
ablative craters produced on the surface and the formation of
LSF (coarse CR) and HSF (fine FR) LIPSS structures with a period
∼ 100 nm, staring for number of laser pulses N > 3,4. For N > 10
the shallow FR and CR ripples become very pronounced
(Figure 4B). Coarse ripples disappear for N > 100 at the laser
modified spot center due to ablation as seen in Figure 4D. Both
LSFL and HSFL were oriented perpendicularly to laser
polarization within the ablation crater. The dependence of
HSF and LSF LIPSS on the number of pulses N was also

FIGURE 3 | (A) Formation of diamond structures depending on laser fluence and scanning speed. (B)Morphology of the nano-ripples for different scanning speeds
at a fixed fluence. Scale bar � 1 μm. (C) Line-out of the surface structures [27].
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obtained (Figure 5). Studies of the optical characteristics of laser-
treated diamonds were performed. The laser setup used is based
on Spectra-Physics Tsunami S with wavelength 800 nm, peak
power >0.7 W, pulse duration 100 fs and repetition rate 80 MHz.
The formation of LIPSS oriented perpendicular to the direction
of polarization took place using a laser beam with a fluence of
20 J/cm2 [42]. Structures were formed with a ripple period in the
range of 170 ± 10 nm with structure length greater than 5 μm. In
Figure 6A Raman spectra of CVD diamond samples before and
after the laser treatment are shown. In the inset, a clearly defined
diamond peak for the untreated sample (black line) is shown at

1,332.2 cm−1, typical of diamond [43]; the treated sample (red
line) shows a shift of the peak to 1,333.1 cm−1. This is interpreted
as an indication of compressive stress caused by laser irradiation.
No peak is exhibited at 1,560 cm−1 indicating absence of graphitic
phase. In Figure 6B the transmitance of laser irradiated
polycrystalline diamond sample in comparison to an untreated
diamond sample is shown. Since laser irradiation induces defect
states in the sample, the transmission of diamond decreases by
more than 80% in the visible range (from 32 to 4.5% for 500 nm)
and by 70% in the IR range (from 50.2 to 11.7 for 1,500 nm).

After laser treatment, the absorbance of the polycrystalline
diamond sample increases in the entire wavelength range under
consideration. For the visible and IR wavelengths it increases up
to 80% as seen in Figure 6C. In the UV range (close to the value of
diamond indirect bandgap of 5.47 eV) the absorbance is close to
95%. Femtosecond laser treatment leads to the appearance of
surface defect states in the band gap of diamond, which can act as
traps or recombination centers [29, 44–46].

3 DIAMOND BULK TREATMENT

Besides the surface treatment of diamond crystals, it is also
possible to process the bulk of the material [29, 47, 48].
Three-dimensional conductive microstructures at any depth
inside bulk diamond [30] and of arbitrary shape can be
created by translating the sample through the focus of the
laser pulse. Raman microspectroscopy showed that the laser
modified material is a mixture of amorphous and graphitic sp2

bonded carbon with sp3 bonded diamond [30, 49]. A strong
correlation between the conductivity of the obtained structures

FIGURE4 | SEM images of ablation crater edge (ABL), fine (FR) and coarse (CR) ripples formedwithin the craters on diamond surface for different number of pulses:
10 (A), 30 (B), 100 (C), and 300 (D) [41].

FIGURE 5 | Pulse number-dependence of the variation of CR and FR
periods. The dotted lines represent qualitatively the cumulative trends [41].
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and their graphitic content was also evidenced [32]. The complete
laser-induced phase transformation of diamond bulk into sp2

carbon is hindered by the fact that it produces both compressive
and tensile stresses due to substantial difference in densities of
two carbon allotropes. As a result the conductive structures
usually consists of a large number of micro-and nano-
inclusions of sp2-carbon in sp3 diamond matrix and the
conductivity of the laser-treated area is likely to be controlled
by a percolation mechanism [32]. A novel technique
demonstrated laser induced controlled generation of layered
extended defects in diamond. To study the structural
morphology of a single-crystal diamond, a titanium-sapphire
laser was used, generating 140 fs pulses at a wavelength of
800 nm with a repetition rate of 1 kHz. Figure 7A [50] shows
how the sample mounted on the XYZ translation table was
scanned at a raster speed of 50 μm/s along the Y axis with a
simultaneous slow movement 0.6 μm/s along the Z axis away
from the laser. As a result, an opaque “plate” of thickness ∼8 μm
was fabricated inside the diamond sample. After processing, SEM
microscopy of the polished surface (110) of the sample
(Figure 7B) showed numerous transparent spots of irregular
shape distributed in the XZ plane of the laser-modified region. It
was found that their number and size depend on the processing

conditions and their occurrence was due to the predominant
graphitization along the cracks formed in diamond in the path of
the laser beam. Cracks were most likely to occur along the {111}
planes [50, 51]. Scanning Spreading Resistance Microscopy
(SSRM) revealed that the nanocracks had higher conductivity
with respect to the main modified path. Based on this observation
it was concluded that the graphitization processes was mainly
localized inside the nanocracks forming thin graphitic-carbon
sheets while the gaps between them were filled by diamond. The
state-of-the-art experimental research has achieved the
fabrication of electrically conductive paths along multiple
nano-scale poorly connected sp2-bonded graphitic columns
and a network of strain-relieving micro-cracks [52]. The
control of the modified material conductivity is of paramount
importance for technological applications.

The design of optical wave-guides in the bulk of a diamond
crystal is also investigated based on the principles of diamond
bulk graphitization. The obtained electrically conductive
graphitized phase has been successfully used to fabricate
radiation detectors [53]. Due to the lower density of the sp2

phase as compared to the density of the sp³ phase, a strong
localized stress field is created in the surrounding pure diamond,
which could act as an optical waveguide. In Type II waveguide,

FIGURE 6 | Comparison of Raman spectra (A), transmittance spectra (B), absorbance spectra (C) of CVD diamond before and after fs-laser treatment [42].

FIGURE 7 | (A) Microstructuring of diamond bulk with femtosecond laser pulses, (B) transmission optical micrographs of side view of the modified region [50].
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the optical mode confinement was achieved between two closely
spaced and parallel laser-inscribed conducting wires. The scheme
of fabrication of the waveguide is shown in Figure 8 [54]. The
type II waveguides have high polarization dependence permitting
strong transmission for vertically polarized light while the
transmission for the horizontal polarization state of light is
negligible. Waveguides were fabricated using a 790 nm
wavelength laser pulse of duration 100 fs and a repetition rate
of 1 kHz. By improving and complicating the design of the
waveguide, a Y splitter can be obtained from the Type II
waveguides as shown in Figure 9A [55]. At the entrance,
there is a single type II waveguide and at a distance of 1 mm,
it is divided into two. As a result, two waveguides are formed
separated by 20 μm. The outputs coupling ratio can be varied by
translating the input fiber along the z-axis. A splitting ratio of 50:
50 is seen in the near field mode image (Figure 9D). In this case,
the overall transmission of the structure is 7 dB, which
corresponds to a propagation loss of 18 dB/cm. For the
manufacture of Type III waveguides that support both
polarization modes, it is possible to form tubular structures, as
shown in Figure 10 [55]. The radius of such structures is 10 μm.
Laser-written 32 graphite tracks are arranged in a circular manner
with a center-to-center spacing 2 μm between each two tracks.
The waveguides had an insertion loss of 5.5 dB for the vertical
polarization mode and 11.5 dB for the horizontal polarization
mode. Type III waveguides were multimode for both
polarizations, with minimal losses. Such structures cannot be
fabricated without the use of adaptive optics. Due to the
symmetrical structure of the Type III waveguide, it is
insensitive to polarization. Due to the asymmetry of the
graphite tracks as well as the asymmetry of the laser focus, a
difference in transmission is formed for vertical and horizontal
polarization. The sides of the waveguide are continuous, and the
bottom and top contain unmodified sections that separate the
graphite tracks. The ability to manufacture waveguides in the
bulk of the material and integrate them into optical fiber systems
is a promising topic. However, propagation losses are relatively
high compared with optical nanocavities obtained by plasma
etching [56]. It is nevertheless apparent that the plasma shaping

of microstructures in diamond requires a complex process of
masking and plasma etching on the surface of a sample. Laser
writing of waveguides in the diamond bulk is on the contrary a
real time process and the graphitization of the material can follow
arbitrary paths inside the diamond bulk. This can result in a new
technology of programmable laser shaping of a number of
optoelecronic devices, once the properties of the modified
material are properly understood and controlled.

In the last few years, active investigations of 3D diamond
detectors have been carried out [57, 58]. Femosecond laser
processing in the bulk of the diamond [59] leads to the
formation of graphitic electrodes. This 3D placement of the
electrodes greatly improves the radiation resistance of the
detectors compared to conventional electrodes [60]. When
machining and fabricating structures in the bulk, the laser
beam must focus in the bulk of the diamond. This is quite
difficult to do due to the presence of optical aberrations. Due
to the refraction of light on the surface of the diamond, there is a
depth-dependent shift of focus and a decrease in its intensity [61].
In order to avoid this effect, adaptive optics aberration correction
is used to remove distortions [62].

The effect of laser processing parameters on the properties of
graphite wires formed inside synthetic mono- and
polycrystalline diamonds was investigated [63]. Wires were
fabricated in CVD diamond samples using different light
polarizations, processing speeds and laser pulse energies. A
comparison of their quality was made by measuring their
electrical resistance and radius. For many of the columns a
barrier potential was observed. The output current was
negligible until the applied voltage reached a threshold value.
For values of the applied voltage exceeding the threshold voltage
the wires exhibited ohmic behavior [63]. Graphite wires with
larger diameter and lower resistance and barrier potential were

FIGURE 8 | Type II waveguide geometry and transverse view optical
microscope image of type II modification in diamond. Creative Commons
Attribution License [54].

FIGURE 9 | (A) Schematic view of the vertical Y-splitter. Transmission
images of the input (B) and output (C) facet of the splitter. (D) An image of the
output near-field mode with a 50:50 power splitting [55].
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formed with higher pulse energies. The lowest barrier potential
and resistance were obtained in wires produced by a large
number of repetitions of the graphitization process and
slow scanning. The properties of wires were almost
independent of the polarization of the laser beam. The
correction of the optical aberrations by adaptive optics,
aimed to control the laser spot size during fabrication made
a great impact on the quality of the formed wires. Applying
aberration correction resulted in a negligible barrier potential
and a minimum value of the wire resistance. The obtained
results were reproduced by multiple measurements [63].
Determining of the barrier potential could be a very
important factor for the characterization of graphite wires
fabricated by emerging methods, such as the use of Bessel
beams [64] as well as for the design of wire junctions [65,
66] or gaps in the conductive network [67].

4 EFFECT OF THE ELECTRONIC KINETICS
ON GRAPHITIZATION OF DIAMOND

Amorphization of diamond by ion irradiation has been
experimentally studied by means of spectroscopic or electron
microscopy characterization [68–70]. Solid phase transition of
diamond induced by femtosecond free-electron laser irradiation
has also been evidenced and simulated [71–73]. However, in
spite of the comparable level of excitation of the electron system
in the femtosecond laser irradiated spots, no noticeable
structure transformations were detected in diamond
irradiated with swift heavy ions (SHI) [74–78]. This can be
ascribed to the conditions of initial excitation–photons vs. ion
impact as well as to the difference in the spatial and temporal

scales of the initial electronic excitations (10 fs–1 ns and a
cylindrical laser spot 1 × 1 μm on the surface of the sample
vs. 0.1–10 fs and a diameter 5–50 nm in SHI track of 20–100 μm
length). The latter leads to different channels of energy
dissipation to the diamond lattice [79].

It has been proposed [80], that in the case of laser excitation,
the electron density can be kept above critical for times sufficient
for nonthermal melting due to the micrometer scale of the laser
irradiated region.

On the contrary, the SHI tracks have an angstrom to
nanometric size and due to the very fast lateral spreading of
electrons, their density drops quickly. Hence, relatively little
energy is transmitted to the diamond lattice in the nanometric
vicinity of the SHI trajectory. Due to the high thermal
conductivity of the diamond lattice, this excess lattice energy
quickly disappears without starting the structural
transformations in the SHI track. The lifetime of the excited
electronic system during laser irradiation is quite longer, so a
large amount of energy is transferred to the diamond lattice. As a
result, there are non-thermal effects that destabilize the lattice
itself.

A lower level of laser fluence is needed to initiate
graphitization in neutron predamaged diamond samples [81].
This points out to a large influence of the concentration of defects
on the kinetics of excitation and relaxation of laser irradiated
diamond. The neutron-induced defects enhance the coupling of
excited electrons with diamond lattice, while decreasing heat
diffusion from the laser spot to the lattice itself. Consequently,
energies delivered to the electronic subsystem and the lattice and
lifetimes of the excitations increase. Finally, this results in an
enhanced graphitization of the pre-damaged diamond material,
compared to the undamaged one.

FIGURE 10 | (A)Microscopy image of the side surface of the type III waveguide focused under the surface of the sample.(B)Microscopy image of the side surface
of the type III waveguide focused on the surface of the sample. (C) Topdown transmission microscopy image of the graphitic tracks comprising the waveguide. Image of
the end of the waveguide with (D) vertical and (E) horizontal polarization [55].
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5OVERVIEWOF THEORETICALMODELING

We present an overview of the advanced theoretical approaches
aiming at understanding the fundamental physical processes of
femtosecond laser interaction with semiconductors and
dielectrics that are relevant and important for ultrafast
diamond processing applications. In this regime of material
modification, the different stages during the transformation of
the material properties can be studied using time-resolved
techniques. In compementarity to experimental findings, the
theoretical methods describe the evolution of strongly
nonlinear and non-equilibrium carrier dynamics in diamond
and the change of its optical, electronic and structural
properties. The ultimate goal is to identify an accurate
parameter free theoretical approach suitable for interpretation
and prediction of real–time experiments and for establishing of a
connection between complex microscopic response and
macroscopic properties of the photoexcited substrate.

5.1 Electronic Band Structure
The extraordinary physical and chemical properties of diamond
are determined by its crystal structure. Diamond is a Group IV
element with six electrons occupying a ground state
configuration: 1s22s22p2. Diamond crystal comprises a face-
centered cubic lattice structure with a lattice constant equal to
the cube edge length a0 � 0.3567 nm. Two carbon atoms which
are displaced from each other by a translation of a0 (1/4, 1/4, 1/4)
along a body diagonal are associated with each lattice vertex. Each
carbon atom forms a strong sp3-hybridized covalent bond with its
four neighboring carbon atoms in this regular stable tetrahedral
configuration [82]. The C-C bond length is 0.1545 nm at 298 K.
The high strength of the C-C bond and its short length are
responsible for the extreme hardness of diamond and its large
elastic moduli.

The theoretical calculation of the energy band structure of
diamond is of key importance for interpreting the material’s
optical properties. The band structure represents the allowed
energies of an electron as a function of crystal momentum k. The
electronic energy gap Eg is defined as the minimum energy
required to excite an electron from a filled valence band to an
empty conduction band. Pseudopotentials or their form factors
were calculated from crystalline energy levels using empirical
pseudopotential [83] or nonlocal pseudopotential [84] methods
to obtain band structures for Group IV elements for the accurate
interpretation of optical reflectivity and photoemission
experimental data [85]. Crystalline diamond band structure
and electronic properties were calculated applying tight
binding model with Hartree-Fock wave functions [86, 87] and
two ab initio methods–Hartree-Fock (HF) and density functional
theory (DFT) within the generalized gradient approximation
(GGA) [88, 89].

The state-of-the-art accurate calculations of the electronic
structure of solids combine density functional theory (DFT)
[90] and many-body perturbation theory (MBPT) [91]. DFT
describes the structure of materials in their electronic ground
states and provides reliable initial wave functions and valence
eigenenergies, but an unreliable bandgap. For that reason, the

DFT wave functions are post-treated by MBPT in the GW
approximation to DFT for incorporating many-electron self-
energy effects [92]. The combined approach delivers electronic
bandgaps within 0.1–0.4 eV of the experimentally obtained
ones [93].

Most electronic structure studies are performed for static
lattices that are implicitly assumed to be at 0 K. Experimental
investigations of material properties, though, are carried out at
finite temperatures. Temperature affects the nuclear motion in
the material leading to lattice dynamics, which in turn alters the
electronic energies in the solid. The electron-phonon interaction
whose major contribution stems from the lattice dynamical
behavior is included in density functional total energy
calculations with ab initio pseudopotentials via the formalism
of Allen [94] to obtain the temperature dependent electronic
structure of diamond and silicon [95]. An ab initio method based
on the all electron quasiparticle (QP) self-consistent (QPSC) GW
approximation and Keldysh time-loop Green’s function
approach was applied for calculations of diamond electronic
structure at finite temperatures [96]. The ground state
electronic properties of diamond were calculated from first
principles using local density approximation (LDA),
generalized gradient approximations (GGA) functionals [97]
and an improved quasiparticle self-consistent GW (QSGW)
method [98, 99]. In Figure 11, the band structure of diamond
for crystal momentum varying along the ΓX and ΓL directions in
the Brillouin zone is shown. The empirical pseudopotential model
used in the calculation [100] reproduces the principal energy gaps
quantitatively. The absolute energy position of the conduction
band minimum corresponds to an indirect gap of 5.42 eV. This is

FIGURE 11 | Electronic energy bands of diamond along Δ and Λ
symmetry lines [100].
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in very good quantitative agreement with the experimental result.
Since in long-wavelength approximation a momentum changing
transition cannot be induced by the laser, the minimal energy
required to cross the energy gap at the Γ point is 7 eV.

5.2 Laser-Induced Processes
An ultrashort laser pulse (10–15 s–10−12 s) generates high peak
electric fields (>109 V/m), which are orders of magnitude larger
than the Coulomb fields binding electrons to atoms and
correspond to laser intensities exceeding 1012 W/cm2. The
highest frequency at which the electronic system responds to
the strong driving field is determined by the material band gap E
g., In this excitation regime, nonlinear absorption for laser
frequencies below the direct bandgap energy of diamond is
induced and the material absorbs energy from the field due to
the creation of electron-hole pairs across the material band gap.

The initial processes following the conventional near-
infrared (NIR) to near-ultraviolet (NUV) wavelength
ultrashort-pulse laser irradiation of diamond are carrier
photoionization and photoexcitation, buildup of coherent
polarization and carrier thermalisation. Energy deposited
onto the electron system on a timescale shorter than the
electron-phonon scattering time may induce ultrafast non-
thermal structural changes directly driven by electronic
excitation and related non-linear processes. For example,
when a certain fraction of valence electrons are excited to the
conduction band, they are removed from the bonds and move to
the interstitial regions. This causes the weakening of the
chemical bonds and affects the cohesion of diamond
material. If the electrons diffuse away, the positively charged
ions left behind repel each other and cause lattice instability.

On ultrashort time scale, shorter than that of momentum
scattering, the generated electrons and holes are described by a
coherent superposition of states in the valence and conduction
bands. At increased field strength a high number of electron-hole
pairs is generated leading to optical breakdown of the material.
Ultrafast optical breakdown is a complex, strongly nonlinear
threshold phenomenon involving a number of microscopic
prossesses and leading to structural modifications of the
irradiated material that are highly controllable and
reproducible. Conventionally the laser fluence, defined as the
time integral of the laser intensity over the pulse length, which
produces the critical electron density for which the generated
electron plasma becomes reflective, is defined as the optical
breakdown threshold (OBT) fluence for the fixed pulse
duration [101]. Properly calculated material bandgap and
dielectric function near the laser frequency are important for
obtaining the OBT. An alternative way to determine the OBT is
defined by the averaged kinetic energy deposited onto the
electrons [102].

Depending on the pulse duration, scattering with phonons
may initiate during the irradiation leading to field-assisted
collisional effects (e.g., making possible inditect transitions in
conduction band), dephasing of coherence and carrier-phonon
scattering. Usually permanent structural effects on the surface
including carrier removal and ablation occur for interaction times
longer than a picosecond, i.e., after the conclusion of the

ultrashort pulse and involves energy transfer between the
carriers and the lattice.

5.2.1 Photoionization and Photoexcitation
Photoionization and photoexcitation of electrons are the main
mechanisms of laser-pulse energy deposition, which subsequently
causes ultrafast transformation of the crystal lattice. The
conventional theoretical description of strong-field ionization
and interband transitions in solids is based on the Keldysh
approach [103–105] that provides an analytical expression for
the cycle-averaged interband transitions rate induced by a
monochromatic electric field of arbitrary strength. A
dimensionless Keldysh parameter relating the bandgap energy
of the material with the ponderomotive energy of an electron hole
pair is used to separate the interband transitions into adiabatic
tunneling, diabatic tunneling and multiphoton excitations. In the
adiabatic tunneling regime, the electron goes through the partially
suppressed potential barrier without changing its total energy,
while in the multiphoton regime transitions occur without any
penetration into classically forbidden regions. In the regime of
diabatic tunneling the electron wave function cannot adjust to the
fast changes of the external potential, so it gradually acquires
energy that facilitates its transition into the continuum of
conduction states. In this method, the two-band
approximation was used, assuming that the electric field
predominantly excites electrons from the highest valence band
to the lowest conduction band. Second order of two-band k ×
p-perturbation theory, which provides the dispersion relation
between energy and momentum of Bloch electrons, predicted
that the band gap monotonically increases with increase of the
electron crystal momentum. A nonperturbative parameter which
is the ratio of the ponderomotive and photon energies,
determines the number of additional photons that must be
involved in the excitation of an electron-hole pair in order to
overcome the increase of the band gap due to intraband motion.
Another key approximation of this theory is the neglect of the
Coulomb interaction between an electron excited to the
conduction band and the positively charged hole left behind in
the valence band.

The transition between adiabatic states, induced by ultrashort
laser pulses of arbitrary waveform was studied using quantum
mechanical formalism which was a generalization of the Keldysh
theory of photoionization [106]. It was demonstrated that
electron dynamics in strong field resulted from a nontrivial
combination of interband and intraband motion and that
photionization depended sensitively on details of the substrate
band structure [106]. The Time Dependent Schrodinger Equation
(TDSE) in single active electron approximation and velocity
gauge, combined with empirical pseudopotential method for
realistic band structure calculation, was applied to model the
high electronic excitation in CVD polycrystalline diamond
irradiated by 30 fs infrared laser pulses with varying intensity
below and close to the graphitization threshold [107]. The
modeling was carried out under the same conditions as the
experimental procedure used to produce three-dimensional
conductive paths in the bulk of diamond. It was found that in
the weak coupling regime (laser intensity I ∼ 1 TW/cm2) the
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scaling of the conduction electron density with driving laser
intensity strongly deviates from the conventional multiphoton
ionization due to Stark effect creating a highly polarizable
transient state in the bulk of the material that ionizes very
efficiently. In the strong coupling regime (I ∼ 50 TW/cm2),
nonadiabatic effects of electron-hole pair excitation result in
the generatation of high carrier densities which cause the
optical breakdown of diamond. The comparison of theoretical
prediction with experimental data of laser-generated charge as a
function of laser energy density provides a good quantitative
agreement over six orders of magnitude.

An analytical model based on TDSEwith a parabolic two-band
structure was reported to give consistent results with the
experimental data on anisotropy of multiphoton carrier
generation in monocrystalline diamond [108]. The energy
transfer mechanism from a few cycle intense mid-infrared
laser pulse to the electronic system in the bulk of diamond
and the subsequent optical breakdown in the material is
studied via TDSE with model band structure in [109].
Ultrafast modification of the band structure of wide-band-gap
solids was studied using TDSE in length gauge [110]. In
[107–109] dipole approximation was used and electron-
electron and electron-phonon collisions were neglected.

The density matrix method leading to Semiconductor Bloch
equations (SBE) for the time evolution of electron and hole
occupations and microscopic polarization was applied to
describe interband and intraband carrier excitation and
ultrafast dephasing in semiconductors and diamond in
particular [111–114]. This approach requires input parameters
on various levels of sophistication and can incorporate a different
number of energy bands. For example quasi-energies are defined
for a single electron (hole) in the crystal lattice and they are
modified when Coulomb interaction of carriers is included in the
model. SBEs are derived within the Hatree Fock approximation
and they incorporate many-body Coloumb effects and phase-
space filling. Going beyond this approximation requires higher-
order correlation functions leading to further renormalization of
interactions and energies.

Time-dependent density functional theory (TDDFT) [115] as
an extension of DFT provides the band structure of diamond and
describes the real time-dependent quantum dynamics of
interacting electrons at the first-principles level treating the
mechanisms of multiphoton and tunneling ionization and
including dynamical screening. Norm-conserving
pseudopotentials are used to account for the interactions
between the valence electrons and the ionic cores. The static
Kohn-Sham equation is first solved to determine energy bands,
density of states, and forces acting on the ions in the ground state.
The time evolution of the electronic orbitals is obtained following
the excitaion of the time-dependent spatially uniform electric
field of the ultrashort-pulsed laser. The transmitted field inside
the bulk substrate includes the polarization field of the medium.
Since semi-local exchange correlation functionals are used in the
calculations, i.e. the adiabatic local-density approximation
(ALDA) or generalized gradient approximations (GGA), the
method is limited for pulse durations shorter than the
electron-electron and the electron-phonon relaxation time.

The relaxation related to energy transfer from electrons to
ions was also ignored. In [115] 16 fs laser pulses with varying
wavelengths were used to determine optical breakdown in
diamond. It was found that when laser intensity is low
diamond exhibits dielectric response with static dielectric
function obtained from the ratio of the external to the total
electric field. It was shown that in the weak coupling regime the
energy deposition in diamond as a function of intensity follows
the perturbative scaling wich agrees with Keldysh theory. For
peak laser intensities (I > 70 TW/cm2), the deposited energy
exhibits abrupt increase which is consistent with resonant energy
absorption when optical breakdown occurs. This effect is also
exhibited by the phase shift between the total electric field and the
applied electric field. The optical breakdown, reached when
plasma frequency matches the laser frequency, is found to be
limited by emerging plasma oscillations at the conclusion of the
laser pulse and screening of the electrons in the conduction band.
In [116] electronic excitation in diamond following the
irradiation of intense ultrashort laser pulse was investigated by
TDDFT for various wavelengths and laser intensities in order to
describe the energy transfer mechanisms. The calculated results
were compared with the excitation rates from Keldysh theory and
with the energy deposition rates in other dielectric materials
possessing different bandgap energies and cohesion mechanisms.

The strong non-linear and ultrafast dynamics of electrons
results in high-order harmonic generation [100, 117–120] and in
optical-field-induced transient and reversible currents below the
bulk damage threshold [121–124]. It was experimentally found
and theoretically confirmed [113] that high harmonic generation
in bulk solids is characteristic of a nonperturbative quantum
interference process that involves electrons frommultiple valence
bands. Photoexcitation, nonlinear optical properties, induced
ultrafast currents and generation of high harmonics in
diamond irradiated by ultrashort infrared ultrashort laser
pulses were described by an extended TDDFT accounting for
coupling of the excited electronic system to external
(“environmental”) degrees of freedom that could be phonons
or lattice defects. The results of the calculation were compared
with the results from SBE calculation [120].

5.2.2 Optical Properties
The electric fields of ultrashort intense laser pulses are able to
modify the optical properties of a solid substantially and
nondestructively. The transient changes of optical properties
provide valuable information on the prompt changes of
electronic and atomic structure of irradiated solids. The optical
response of band gap materials varies with the driving laser
intensity. For low peak intensities a dielectric response is
exhibited. With increase of intensity, nonlinear response
prevails and high-order perturbation theories should be used
for calculating the response in the frequency domain [125]. For
very strong electric fields of the laser the material’s optical
properties become similar to those of a nonequilibrium
electron-hole plasma [126]. In the strong coupling regime the
polarization response of a solid is no longer described by a set of
linear and nonlinear susceptibilities and should be modelled
quantum mechanically using Shrodinger equation which is
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only feasible in one or two active electrons approximation for the
treatment of many electron systems hence approximations are
required. As described in previous sections, density functional
theory (DFT) with an approximated semi-local exchange and
correlation functional is used to describe electrons in the ground
state and time-dependent DFT (TDDFT) is required to simulate
excited electrons. For electron dynamics, the real-time
formulation of TDDFT can account for response to strong
perturbations. Going beyond TDDFT it is possible to describe
more precisely optical properties of solids, for example by using
the time dependent Bethe–Salpeter equation. The optical
responses of infinitely periodic systems to a spatially uniform
external field are characterized by the complex dielectric function.

Non-local empirical-pseudopotential method was used to
calculate the optical absorption in type I diamond [84] and a
good agreement with the position of the main peak of the
imaginary part of the complex dielectric function was found
but its magnitude showed a significant discrepancy with
experiment. The momentum and energy dependent Lindhard
dielectric function of diamond was obtained using full band
calculation based on the local empirical pseudopotential
method [127] via MC calculation. The frequency-dependent
dielectric functions for the crystals in the diamond lattice
structure were obtained by a real-space approach to TDDFT
within the adiabatic local-density approximation, implementing
full-potential linear combination of atomic orbitals (LCAO). The
dielectric constants at optical frequencies were also obtained and
were in good agreement with experiments. It was found that the
calculated dielectric functions reproduced accurately the
experimental spectral features [128]. The linear response of
diamond was calculated via TDDFT using a real-space
representation of the electron wave functions and calculating
the carrier dynamics in real time [129]. After obtaining the
ground-state electron orbitals and the periodic Coulomb
potential in the absence of an electric field, an impulsive
external electric field was applied and the polarization electric
field was determined by the real-time evolution of the time
dependent Kohn Sham (TDKS) equation. The inverse
frequency dependent dielectric function was related to the
Fourier transform of the total electric field (including the
induced polarization field). This approach was further
developed and the frequency dependent electric conductivity
and the dielectric function of a group IV semiconductor were
obtained by solving the TDKS equation for the electron dynamics
following the excitation of a pump pulse. It was shown that the
real part of the dielectric function exhibits a metallic like response
at low frequencies reflecting the generation of dense electron-hole
pair excitations [130]. Similar approach was applied for the
manipulation of the dielectric function of diamond in
nonequilibrium state induced by an intense and single-cycle
ultrafast laser field with duration of a several femtoseconds
[131]. As in the previous study for silicon [130], for high
intensities negative divergence of the real part of the dielectric
function at low frequencies was observed. The anisotropy of
dielectric tensor in excited diamond when going beyond the
linear response regime was also demonstarted [131]. Using
real-space, real-time TDDFT calculations it was demonstrated

that the permittivity tensor of the diamond can be effectively
tuned by an ultrashort laser pulse to exhibit hyperbolic or elliptic
response for a particular light frequency [132].

The time-dependent subcycle modulation of the dielectric
function close to the energy gap of diamond was calculated by
TDDFT in the frame of a numeric pump-probe experiment as a
manifestation of the time-resolved Dynamical Franz Keldysh
effect (Tr-DFKE). This ultrafast modulation was found to be
phase shifted with respect to the applied probe field [133]. The
sub-femtosecond optical response of polycrystalline diamond
irradiated by intense, 250 attosecond pump pulses was studied
by transient absorption spectroscopy. It was shown that the
infrared pulse induces oscillations in the imaginary part of the
dielectric function and consequently in the absorbance of the
material. Ab initio calculations performed by coupling time-
dependent density functional theory (TDDFT) in real time
with Maxwell’s equations reproduced the experimental results
[134]. Experimental and theoretical results showed that the
strong field induces tens of orders of magnitude increase of
the conductivity that may lead to a state of semi-metallization,
which is reversible on a femtosecond time scale [135].

The complex dielectric function and transient optical
properties such as reflectivity, transmission and absorption
were calculated by a hybrid MC method [136] and it was
shown that they could be used for diagnostics of electronic
and structural transitions occurring in irradiated semiconductors.

In [38] the dielectric function of diamond irradiated with
515 fs infra red laser pulse was obtained via the time-dependent
plasmon pole-approximation for the density-density correlation
function of coulombically interacting electron gas assuming that
the linear response of photoexcited diamond can be described by
a free-carrier Drude response. Most recently, the linear response
and the modulation of optical properties of diamond were
calculated using a multiscale method combining self-consitenly
Time dependent Kohn Sham equation to describe microscopic
electron dynamics, Maxwell equations to describe macroscopic
propagation of the laser pulse and first-principles Ehrenfest
(classical) Molecular dynamics approach to describe the
ultrafast lattice dynamics [137, 138].

A first principles method was used (GW approximation to
DFT and an effective Hamiltonian including the electron-hole
interaction extracted from Bethe-Salpeter equation for the
electron-hole pair wave function) to determine the frequency-
dependent imaginary part of the dielectric function in diamond
by iteratively applying the effective Hamiltonian on an electron-
hole pair state [139]. Recently the optical absorption spectra for
diamond were obtained through TDDFT based on nonempirical
hybrid functionals that were designed to correctly reproduce the
dielectric function. The comparison with the combined state-of-
the-art GW calculations and the Bethe-Salpeter equation (BSE-
GW) shows close agreement for the transition energies and the
main features of the spectra [140].

5.2.3 Imapact Ionization and Auger Recombination
After photoelectrons are excited into the conduction band across
the direct band gap (with well defined energies above the
conduction band minimum) they experience electron-electron
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collisions, while absorbing additional energy from the laser field.
If a substantial fraction of the carriers occupy higher lying
conduction bands with energy above the threshold for impact
ionization (specified by the indirect gap of diamond equal to
5.4 eV), the highly energetic electrons can collisionally ionize
electrons into lower energy states. Following the collision, the
impact electrons lose part of their energy, transferring it to
promote valence electrons in the conduction band. Thus, once
a threshold energy is reached by conduction electrons, impact
ionization (II) may occur on a femtosecond time scale resulting in
carrier multiplication through the decay of high energy electrons
into lower energy states while generating electron-hole pairs
[141]. When carrier densities become high Auger
recombination (AR), related to impact ionization through the
principle of detailed balance as an inverse microscopic prossesses,
may become significant. In a direct Auger process, an electron
recombines with a hole, but instead of emitting a photon the
process results in the excitation of another carrier to a higher-
energy state [141].

The impact ionization rate in diamond was calculated by
Monte-Carlo (MC) simulation which included a band
structure obtained from an empirical pseudopotential method
and frequency- and momentum-dependent Lindhard dielectric
function [127]. Recently the ultrafast impact ionization in
diamond irradiated by mid-infrared femtosecond laser pulses
was experimentally observed by transient transmission
spectroscopy and photoluminescence measurements [142]
revealing that the excited carrier population incerases two
times in comparison to the initial one for peak intensity of
2.5 TW/cm2. Supporting TDDFT simulations of electron
dynamics showed that the photoexcited carriers could reach
the energy threshold for impact ionization in diamond under
the experimental conditions. Scattering mechanisms were not
included to describe theoretically ultrafast impact ionization.
Even though the kinetic energy distribution of the
photoexcited carriers in CVD diamond extended above the
required threshold, the process of impact ionization was
strongly suppressed by the high population of the conduction-
band low-energy states due to Pauli blocking and electrons could
gain sufficiently high energies from the laser field [107]. A first-
principles approach based on screened exchange density
functional theory (DFT) was applied for the calculation of II
and AR rates in semiconductors [143]. MC techniques were used
to calculate impact ionization and Auger recombination rates in
diamond [71] irradiated by X ray femtosecond pulses.

On ultrashort time scale, photoionization alone or together
with ultrafast impact ionization generate high electron-hole
plasma density, leading to multiplication of conduction
electron number and an efficient energy transfer from the
laser to the conduction electrons. When the absorbed laser
energy exceeds the melting or cohesive energy of the material,
optical breakdown occurs which is also considered as a precursor
to laser ablation. In [38] for the 200 fs pulse duration used in the
experiment and intensities lower than 50 TW/cm2 it was found
that the electron density produced by photoionization is below
the critical one. The calculated density of conduction states at the
end of the pulse showed that substantial fraction of carriers

occupy higher lying conduction bands with energy above the
threshold for impact ionization and may collisionally promote
valence electrons in the conduction band. The intensity-
dependent impact ionization rate was obtained as a weighed
average of the field-free rate [127] using the calculated density of
conduction states in diamond.

5.2.4 Coherent Phonon Generation and Ultrafast
Phase Transitions
As shown in the experimental part of the review it is important to
know on what time scale the structural transformations occur.
Since the typical electron-lattice energy relaxation time is
10–10–10–12 s, the incident femtosecond laser pulse deposits
energy onto the electron system creating a transient highly
non-equilibrium state in which initially the nuclei remain
fixed at the lattice positions and electronic excitation and
vibrational degrees of freedom are completely decoupled.
Consequently, the laser induced redistribution of the electronic
occupation modifies the interatomic bonding that results in
coherent phonon generation [137, 138, 144–147], solid-to-
solid phase transitions [148, 149], thermal phonon squeezing
[150], and nonthermal melting [151–153].

Femtosecond time-resolved pump-probe reflection
experiments in semiconductors revealed large-amplitude
oscillations with periods that were characteristic of lattice
vibrations. The frequency of the oscillations in the observed
reflection matched one of the optical phonon modes, which
indicated that this particular phonon mode was coherently
excited. Under the assumption that the electronically excited
system rapidly comes to quasiequilibrium in a time shorter
than nuclear response times, a theoretical model of displacive
excitation of coherent phonons (DECP) describes the evolution of
a coherent phonon amplitude in the presence of nonequilibrium
photocarriers with driving force, which is a function of the carrier
density and the temperature of the carrier distribution. A rapid
increase in the carrier density during the optical excitation,
initiates the oscillating motion of the coherent amplitude
[144]. The excitation of coherent optical phonons was
modeled via adiabatic TDDFT [146]. It was theoretically
predicted by ab-initio molecular-dynamics simulations [150]
that femtosecond-laser-induced collective atomic motions
precede complete atomic disordering (nonthermal melting) as
a function of laser fluence. The instability of the diamond and
zinc-blende structures due to the excitation of a dense electron-
hole plasma were described under the assumption that the photo-
excited plasma thermalizes rapidly, due to the strong electron-
electron interaction. Its effect on the cohesive energy of the
diamond structure together with the lattice distortions caused
by phonons were analyzed [154]. When a substantial fraction of
electron–hole pairs is generated in the material, there is a strong
modification of the electron density distribution. Consequently,
the ions experience strong repulsive inter-atomic forces due to the
dramatic changes of the potential energy surface (PES). Using a
tight binding Hamiltonian for the electronic occupations it was
shown that the functional form of the potential energy surface
(PES) strongly depends on the occupation of the electronic levels.
The modified interatomic forces can cause coherent atomic
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motions. If they are sufficiently strong, they can induce
permanent structural modification of crystalline diamond on a
very short time scale [73, 144, 155–157] without invoking
significant energy transfer between electrons and ions and
without significant increase of the ionic temperature. Hence,
the ultrafast disordering was regarded as nonthermal phase
transition [158, 159]. Density functional theory approaches
were used to account for the changes in the PES following
electron–hole-pair excitation [160, 161]. Laser excited ab initio
PES was obtained under the assumption that the electronic
system has a particular temperature following the excitation
and the subsequent thermalization. Thus, electronic
occupations were considered to obey a Fermi distribution at
the resulting electronic temperature and Kohn–Sham equations
were solved self-consistently under this constraint. The electronic
entropy was determined and PES was obtained by applying a
generalized Born–Oppenheimer approximation. Recently a
numerical pump-probe multiscale calculation was used to
simulate coherent phonon generation in diamond [137]. The
calculations demonstrated that the driving force on the ions of the
crystal lattice was generated as a consequence of the change in the
electron density which was dependent on the strength of the
applied field and did not arise from the direct laser field-ion
interaction. The ground state electron density in the (011) plane
of diamond was compared with the transient electron density
induced by the ultrashort laser pulse excitation. It was
demonstrated that the applied field induced a shift in the
electron bonding direction in respect to the ground state in
which the covalent bonds were situated between the ions of
the lattice. The shift was dependent on the direction of the
applied electric field. It was also found that the forces exerted
on the ions were independent of the field direction and all the ions
in the chosen plane of the material were weakened. It was found
that the generated coherent phonons induced anisotropy in the
refractive index of diamond as well as a modulation in the
reflection of the probe pulse [138].

5.2.5 Carrier Relaxation
For times greater than 10–12 s, the energy absorbed by the
electronic subsystem dissipates into the ionic degrees of
freedom via electron-phonon coupling, causing the ionic
temperature to increase. The ionic temperature can rise
beyond the melting point, which would result in the
disordering of the lattice in few picoseconds. This transition is
ultrafast thermal melting since conduction electrons can cause a
permanent structural damage of the material by transferring their
kinetic energy to the lattice. At these time scales the ultrafast
dynamics of photocarriers in irradiated semiconductors was
described by theoretical methods varying from model
equations using parametrization of the distribution functions
[162–165], direct integration of Boltzmann equation [166,167]
or Monte Carlo simulations [168–171]. Calculation approaches
were chosen based on their ability to include and interpret on
microscopic level the carrier-carrier and carrier-phonon
scattering processes, which strongly depend on the
experimental conditions (e.g., electron-electron effects depend
on the conduction electron density). Complementarity of

experimental results and theoretical calculations provide
relevant data on the required scattering rates and coupling
constants [172–174].

On short time scales, both coherent and incoherent
processes have to be included. The buildup of polarization
and the Coulomb interaction between carriers requires a full
quantum mechanical treatment. Quantum kinetic theoretical
methods used to describe the coherent phenomena are non-
equilibrium Green’s-functions techniques [172–174] and
density-matrix theory [175, 176]. For time dependent
processes such as ultrashort-pulsed laser irradiation of
semiconductor materials the density matrix method
provides quantities directly comparable with physical
observables.

Quantum kinetic-type approaches, two temperature models
and rate equations have been applied to account for all main
relaxation processes [177–179]. In quantum-kinetic approach,
the starting point is a Hamiltonian that describes the electron
and the phonon subsystems and their coupling to first and
second order in the atomic displacements using second-
quantized formalism. The matrix elements in the
Hamiltonian provide the strength of the coupling between
the electron and the phonon subsystems. This approach has
important shortcomings when used for predictive calculations,
because the electronic part Hamiltonian relies on the
assumption that the studied system can be described in
terms of well-defined quasiparticle excitations and that the
phonon term is included within the harmonic and the
adiabatic approximations. In addition, the single-particle
eigenvalue of an electron with a crystal momentum k in a
band n, the frequency of a lattice vibration with crystal
momentum q in the branch λ, the phonon dispersion and
the strength of the coupling between the electron and the
phonon subsystems have to be determined using other
methods. Phonon dispersion relations, electron phonon
coupling strength and electron-phonon matrix elements in
diamond can be calculated using Density Functional Theory,
entirely from first principles [180–183]. In addition,
nonadiabatic corrections to phonon dispersion relations and
temperature dependence of optical spectra in direct and
indirect-gap semiconductors can be obtained. Density
functional perturbation theory DFPT enables the
calculations of vibrational frequencies and eigenmodes at
arbitrary wave vectors in the Brillouin zone. Electron-
phonon scattering processes and electron-phonon
renormalization of band structure can be computed from
the lattice dynamical properties obtained from DFT or
DFPT within the local density approximation (LDA)
[184–191]. Combined with the Boltzmann or the Kadanoff-
Baym equations [189–191], the dynamics in materials can be
studied. The temperature-dependent renormalization of the
direct band gap of diamond arising from electron-phonon
interactions and the temperature-dependent broadening of the
direct absorption edge in the material were calculated in [186].
The unperturbed band structures were obtained from DFT
within the GW approximation, and the lattice dynamics was
described within density-functional perturbation theory.
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In DFT approach though, the evaluation of the electron-
phonon matrix elements uses the assumption that the
interaction between electrons and nuclei is governed by the
effective Kohn-Sham potential and depends on the exchange
and correlation functional. The definition of phonons relies on
the Born- Oppenheimer approximation. Since electron-phonon
interaction can modify both the electronic structure and the
lattice dynamics of a solid, and these modifications will in
turn affect the coupling between electrons and phonons, a
complete theory of interacting electrons and phonons must be
self-consistent.

More elaborate first principle approaches based on many-
body perturbation theories discussed in previous sections,
provide an ab initio description of both the photo-excitation
and of the time dependence of the carrier scattering rates. They
allow including on the same footing the change of carrier and
phonon populations due to both excitation and scattering which
for the case of ultrashort laser pulse excitation may overlap in
time. Approaches such as many body Green’s functions and GW
plus Bethe Salpeter equation [192,193] may provide accurate
parameter-free interpretation of real time pump-probe
experiments used to capture electron excitation, electron
spatio-temporal distribution on the femtosecond scale,
transient optical response, the electron collision time and
laser-induced electron-hole plasma lifetime [194, 195]. A first-
principles version of the Kadanoff-Baym equations [196,197]
employing collision approximation [198] to reduce the non-
equilibrium Green’s function dynamics to a single time
variable was used to reproduce the carrier dynamics in bulk
silicon as observed in a two photons photo-emission experiment.
The equation for the evolution of the non-equilibrium electron
(hole) occupation contains a coherent generation term, which
describes the creation of carriers via the interaction of the
polarization and the laser electric field, and a term describing
how carriers dissipate energy. This equation is coupled to the
polarization equation self-consistently. The generation term is
derived from Green’s functions approach based on DFT Kohn-
Sham Hamiltonian and includes Hartree and exchange
correlation effects. The expressions for carrier-carrier and
carrier phonon lifetimes that govern the carrier relaxation
include the statically screened Coulomb interaction and the
screened ionic potential derivatives, calculated within density-
functional perturbation theory [199, 200] and formally
correspond to the carrier-carrier and carrier-phonon scattering
in the semi classical Boltzmann equation obtained using Fermi
Golden Rule. The dependence of the relaxation terms on the
calculated occupations was obtained self consistently at each
time step.

5.2.6 Ultrafast Laser Ablation
Laser ablation is a complex phenomenon that includes the initial
stage of carrier photoexcitation, collisional ionization,
thermalization and relaxation and the transition stage of
development of structural changes and removal of matter.
Ultrafast laser ablation in diamond was studied experimentally
and theoretically [22, 24, 201–211]. In [201] femtosecond time
resolved reflectivity and transmission pump-probe measurements

of the laser excited substrate indicated an ultrafast melting
transition from crystalline diamond to a highly reflective dense
plasma. The threshold fluence for ablation of diamond with 620-
nm, 90-fs laser pulses was found to be 0.6 J/cm2. Raman spectra
and SEM images of CVD diamond ablated with a number of
femtosecond laser pulses near threshold fluence revealed no
evidence of graphite or amorphous carbon and clean ablation
with sharp interfaces and little thermal damage. In [202] molecular
dynamic simulations performed on the basis of time-dependent,
many-body potential energy surfaces derived from a microscopic
electronic Hamiltonian were used to obtain laser induced
femtosecond structural changes in diamond. The results showed
smoothly increasing ablation threshold for increasing pulse
duration. In [212] the optical damage and surface ablation
threshold fluences as a function of pulse width for femtosecond
laser irradiated silicon oxide were obtained from a TDDFT
calculation. The threshold fluence for optical damage was
determined by comparing the transferred energy to the energy
needed to melt the quartz substrate. The calculated ablation
threshold fluence was compared to experimental data to
demonstare the significance of the nonthermal ablation
mechanism and the agreement between the measured and
theoretically calculated ablation craters.

First-principles electromagnetic theory predicted that when
the laser fluence exceeds that of the ablation threshold, laser
induced periodic surface structures (LIPSS) can be formed [213]
as a universal phenomenon. It was shown that the periodicity of
the formed ripples was close to the laser wavelength and
orthogonal to the laser polarization. Near-wavelength ripples
(low-spatial-frequency LIPSS–LSFLs) can be formed when a
small number of intense pulses irradiate semiconductors and
dielectrics via inhomogeneous energy deposition resulting from
the interference between the femtosecond laser pulse scattered on
permanent or laser-induced (phase transition of diamond to
carbon phase) surface relief roughness and the incident pulse
[214]. For irradiation with femtosecond laser pulses, in the regime
of optical breakdown fluences, the photogenerated dense
electron-hole plasma (EHP) induces a transient change of the
optical properties (the permittivity) of the substrate surface and it
exhibits metallic behavior [215]. The interaction of the incident
pulse with the photogenerated plasma at the interface between the
insulator and the conductor leads to plasma oscillations coupled
to electromagnetic fields, which can support a highly confined
surface electromagmetic wave–surface plasmon (SP). These short
wavelength longitudinal surface plasmons could also interfere
with the incident laser pulse or among themselves inducing
surface ripples with periods much lower than the laser
wavelength [35, 216].

The transition of diamond into plasmonically active material
and the subsequent formation of ripples on its surface caused by
SPP-laser interference were investigated via first principle
approaches [41]. The numerical modeling of periodic laser
energy deposition on photo-excited diamond surface showed
the formation of fine ripples oriented perpendicularly to the
laser polarization in a narrow range of intensities above the
optical breakdown threshold. The transient increase of the
carrier density above this threshold resulted in the formation of
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near-wavelength surface ripples. Quantitative agreement with the
experimentally observed periods of the periodic structures was
obtained. The transient efficacy factor describing the efficacy with
which the preexisting surface roughness induces inhomogeneous
energy absorption at the LIPSS wave vector κ � (κx, κy)
incorporated the variation of the dielectric constant of the
photoexcited diamond. The two dimensional efficacy factor
map of LIPSS formation as a function of the normalized LIPSS
wave vector components is shown in Figure 12 for two values of
the transient bulk plasma frequency in monocrystalline diamond
irradiated by a 515 nm, 200 fs laser pulse [41]. LIPSS were formed
where the efficacy factor map exhibits sharp features (minima and
maxima). In Figure 12A for laser frequency ωL close to the surface
plasma frequency ωp, the efficacy factor has large contribution due
to excitation of the surface plasmon resonance. In this regime, the
deposition of laser energy at the surface plasmon wavevector favors
the formation of fine ripples with spatial periods around 100 nm.
Figure 12B shows that when the transiently increasing electron-
hole plasma number density results in large and negative value of
the dielectric constant at the laser wavelength, the observed feature
in the efficacy map is a circle with κ � 1 and can be associated with
the formation of near-wavelength surface ripples oriented
perpendicularly to the laser polarization.

5.2.7 SUMMARY AND OUTLOOK

In the experimental part of our review, it was revealed that
ultrashort intense laser pulses provide a unique technique for
precise diamond micromachining, mainly due to high electric
field strengths capable of inducing nonlinear absorption in
transparent wide band gap materials as diamond, due to
minimized thermal effects and due to short processing times.
It was demonstrated that this technique could be used for

effective surface nanostructuring or fabrication of three-
dimensional structures inside diamond, which allows rapid
prototyping of integrated photonic and electronic devices such
as photon-enhanced thermionic emitters, electrochemical
electrodes and sensors. The confinement of the laser energy
absorption to the focal volume situated on top of or inside the
bulk of the material is performed experimentally by tight focusing
and by tuning the laser parameters such as wavelength, energy
density, pulse repetition rate, angle of incidence and polarization
state. Surface nanostructuring results in significant modifications
of the optical and electronic properties of diamond. One major
experimental result is tailoring the optical transmissivity of
diamond surfaces via creating laser induced periodic surface
structures (LIPSS) with high degree of accuracy of structure
periodicity, morphology and aspect ratio achieved by varying
the laser parameters. An important experimental result is the
fabrication of three-dimensional buried optical waveguides in
diamond by focusing high repetition rate femtosecond laser
pulses in the material. Despite this innovative capability, the
fabricated waveguides still have high extinction coefficient.

Highly conductive graphitic wires with resistivity approaching
that of polycrystalline graphite and capable of following any 3D path
were fabricated in diamond. Conductive nanostructures of
graphenic carbon were produced inside single crystal diamond by
femtosecond laser irradiation and the ratio between the sp3 and sp2

carbon in the laser-modified heterophase was estimated. These
achievements are directly applicable to the design of three
dimensional diamond detectors. The current drawback is that
diamond detectors with three-dimensional architecture are
strongly limited by the excessive resistivity of the columnar
electrodes, which increase the noise of the response and degrade
the time resolution. The issue for three-dimensional diamond
dosimeters is the uniformity of response of the single pixels,
which is impaired by the uncontrolled properties of the columnar

FIGURE 12 | [41] Two dimensional intensity graph of the logarithm of diamond transient efficacy factor as a function of the normalized to the laser wavelength LIPSS
wave vector components. In (A) ωp � 1.5 ωL and (B) ωp � 1.5 ωL.
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electrodes and the surrounding diamond lattice subjected to a high
stress condition due to the lower density of the formed sp2 phase. As
a major improvement of these issues, namely reducing the electrode
resistance, the design, the fabrication and the characterization of
timing 3D diamond sensors, with electrodes obtained through a
pulsed laser graphitization technique combined with the application
of adaptive optics was achieved recently.

In the theoretical part of the review, it is revealed that both
mature theoretical and computational methods and advanced
time resolved experimental techniques contribute to the
fundamental understanding of the microscopic processes
involved in ultrafast processing of diamond as a wide band
gap semiconductor. The mechanisms are essentially governed
by femtosecond pulsed laser-electronic system interaction that
can trigger ultrafast electronic, optical and material response and
affect the pulse propagation in the modified medium.

Some of the advanced theoretical methods can be used to
model successfully the conditions for occurance of ultrafast phase
transitions, optical breakdown and ablation in diamond starting
from the material’s ground state band structure, and accurately
describing initial carrier excitation and subsequent carrier
dynamics induced by the ultrafst intense irradiation. Typically
the calculations provide time- (and space)- dependent electron
density and current, polarization, electronic excitation energies,
energy deposited in a unit cell of the substrate, number density of
excited electron-hole pairs, transient distribution function of
conduction photoelectrons, and forces acting on the ions as
functions of time. Optical properties are described at a
different level of sophistication. Multiscale models are
developed which include self-consistent description of carrier
and lattice dynamics and pulse propagation.

The importance of treating some of the involved microscopic
processes on an equal footing is demonstrated in view of achieving a
deeper theoretical insight and guidance to experiments. Part of the
advanced approaches incorporate at first principles level scattering
and relaxation processes occurring in parallel with or following
carrier ionization and excitation. Limitations of the described
theoretical approaches are pointed out and the possibility of
interfacing some of methods are discussed.

For instance, in order to engrave three dimensional
electrodes in diamond bulk for the design of radiation

sensors, extremely short laser pulses are used. In this
irradiation regime, close to the experimental conditions,
theoretical description of the phase transformation from
diamond to conductive phase in the bulk of the material
might be closely achieved using the first principles multiscale
methods. On the other hand, it is critical for the applications to
control the connection between conductive domains, which can
be realized via laser annealing of the modified material. In this
case it is important to use the first principle approaches based on
many-body perturbation theories which successfully describe
coupled electron and phonon dynamics. Recent developments
in these approaches could also help predict and control the
number of defects induced in the diamond bandgap during
fabrication which is also of paramount importance for the
efficiency of the produced devices.
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