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Fiber-optic hydrophones have received extensive research interests due to their
advantage in ocean underwater target detection. Here, kernel extreme learning
machine (K-ELM) is introduced to source localization in underwater ocean waveguide.
As a data-driven machine learning method, K-ELM does not need a priori environment
information compared to the conventional method of match field processing. The acoustic
source localization is considered as a supervised classification problem, and the
normalized sample covariance matrix formed over a number of snapshots is utilized as
an input. The K-ELM is trained to classify sample covariance matrices (SCMs) into different
depth and range classes with simulation. The source position can be estimated directly
from the normalized SCMswith K-ELM. The results show that the K-ELMmethod achieves
satisfactory high accuracy on both range and depth localization. The proposed K-ELM
method provides an alternative approach for ocean underwater source localization,
especially in the case with less a priori environment information.
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INTRODUCTION

Underwater source localization in ocean waveguides is a vital task in the military and civilian fields,
and has become a research focus in applied ocean acoustics [1]. Fiber-optic hydrophone (FOHP)
technology is a promising way for acoustic wave measurement and considered a viable alternative to
conventional piezoelectric needle and membrane hydrophones [2]. FOHP overcomes several
limitations of conventional hydrophones, such as inaccurate reproduction of high negative
pressures, cavitation tendency, low bandwidth, bad electromagnetic shielding, and ageing
problems. The classical methods for extracting source localization from measured acoustic signal
are model-based. The most widely used model-based method is matched field processing (MFP)
[3–11]. As toMFP, the a priori environment information, for example, sound speed profile (SSP) and
acoustic properties of seafloor, is required to model the sound pressure field. The modeled sound
pressure field is matched with replica fields, which can be derived from a given propagation model
and environmental parameters. The location where the experimental field best matches with the
modeled field is taken as the estimated source location. Therefore, accurate a priori environment
information and appropriate propagation model are extremely essential for an ideal localization
result. Unfortunately, the accurate environment parameters are variational and hard to acquire
exactly, which makes MFP difficult for practical application.
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Recently, repaid development of machine learning methods
and successful applications in many conventional fields give rise
to more interests on data-based techniques, such as deep neural
network, support vector machine, and random forest [12, 13].
These algorithms exhibit great performance in signal processing
[14, 15], computer vision [16], natural language processing [17],
and medicine [18]. These algorithms learn the latent pattern
between input and output from a large amount of data.
Compared with conventional model-based methods, machine
learning algorithms perform more accurately and robustly.
Many machine learning algorithms have been utilized to
process the underwater acoustic signal for ship classification,
direction-of-arrival estimation, target tracking, and acoustic
source localization [19–23]. Researches aim to improve the
localization accuracy and decrease the dependence of
environmental information. However, previously proposed
algorithms depend heavily on initial parameter selection
commonly. Some feed-forward neural network–based
algorithms are faced with overfit problem. Usually, a lot of
experience and efforts are needed for the architecture design
and the parameter selection, such as the number of hidden layers
and neurons, loss function, and activation function. To improve
the accuracy and robustness of underwater acoustic source
localization, some new methods are desirable.

In this article, kernel-based extreme learning machine
(K-ELM) is introduced to localize the ocean underwater
acoustic source. K-ELM is an improvement of ELM. The
ELM is a kind of single hidden layer neural network, but
free of back-propagation algorithm [24–26]. Thus, it shows
great approximation capability as traditional feed-forward
neural network, but less training time. However, the
randomly initialized parameters of ELM lead to the unideal
stability. As an improvement of ELM, K-ELM adopts the kernel
function as the replacement of the randomly initialized hidden
layer. The kernel function has the same approximation
capability with the conventional hidden layer and performs
more stably. Moreover, K-ELM does not need to design the
number of hidden neurons, which is an important parameter in
most machine learning algorithms. The source localization is
solved by K-ELM as a classification task. The sound pressure
signal measured by vertical linear array (VLA) is preprocessed
and transferred into sample covariance matrix (SCM). K-ELM
is trained with the pair of simulated SCM and range or depth.
Note that, to predict the range and depth, two K-ELM models
with different parameters (output weight matrix) are
necessary. Then, the performance of K-ELM is evaluated in
simulation. In particular, the K-ELM method achieves high
localization performance in both accuracy and
processing time.

The remainder of this article is organized as follows. The
principle of ELM and K-ELM is introduced in the Theory and
Model section. The sound propagation model is described, and
the application of K-ELM for source localization is given in the
Ocean Underwater Source Localization Using K-ELM section.
The simulation results and discussion are given in the Results and
Discussion section. The conclusions of this paper are presented in
the Conclusion section.

THEORY AND MODEL

A typical single hidden layer neural network concludes three
layers, and its structure is depicted in Figure 1 [11].

ForN input samples, xi is the ith group of the input data, and it
equals [xi1, xi2, . . . ,xin]

T∈Rn. The prediction result y is
mathematically expressed as follows [24]:

yi � ∑p
j�1

βjhj(xi) � ∑p
j�1

βjσ(wj · xi + bj) i � 1, . . . ,N , (1)

where p is the number of hidden nodes, βj � [βj1, βj2, . . . ,βjm]
T∈Rm

is the weight vector that connects the jth hidden node and the
output nodes, hj(x) is the output function of the hidden nodes,wj �
[wj1, wj2, . . . ,wjn]

T∈Rn is the weight vector and connects the jth
hidden node and the input nodes, bj is the bias of the jth hidden
node, and σ(x) is an excitation function. The predicted results can
approximate the ideal outputs ti with zero error as∑||yi – ti|| � 0, if
σ(x) is infinitely differentiable, where ti is the corresponding label
of xi and it equals [ti1,ti2, . . . ,tim]

T∈Rm. For simplicity, the above N
equations can be rewritten as

T � Y � HB, (2)

where T � [t1,t2,...,tN]
T is the ideal output, Y � [y1,..., yN]

T is the
prediction result,H � [h (x1),...,h (xN)]

T is the hidden layer output
matrix, and B � [β1,β2,...,βp]

T is the output weight matrix. Thus, B
can be obtained as follows [24]:

B � H†T � HT(HHT)− 1
T, (3)

where H† represents the generalized inverse matrix of H. To
overcome the singular problems in calculating HHT, the
regularization coefficient I/e is added to the main diagonal in
the diagonal matrix. Therefore, the output weight is rewritten as
follows [24]:

B � HT(I
e
+HHT)− 1

T, (4)

where I is the unit diagonal matrix and e is the punishment
coefficient. The predicted result Y � HB can be obtained as

FIGURE 1 | Structure of single hidden layer neural network.
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Y � h(x)HT(I
e
+HHT)− 1

T. (5)

Here, we introduce the kernel function to enhance the stability of
feature extraction. The kernel function is defined as follows [26]:

ΩELM � HHT : ΩELMi,j � h(xi) · h(xj) � K(xi, xj). (6)

For the linear indivisible low-dimensional data, the kernel
function can map it into the high-dimensional space, yielding
the data being divided. There are many kinds of kernel functions:
the one used in this work is Gaussian function K (u, v) � exp
(−c||u–v||2), where c � 1/(2σ2) and σ is standard deviation.
Then, the output function of K-ELM classifier can be written as
follows [26]:

f (x) � ⎡⎢⎢⎢⎢⎢⎣K(x, x1)«
K(x, xN)

⎤⎥⎥⎥⎥⎥⎦(I
e
+ΩELM)− 1

T. (7)

Due to the adoption of kernel function, the number of hidden
neurons is self-adapted. Thus, the simple and effective K-ELM
method has great potential in the field of underwater acoustic
source localization.

OCEAN UNDERWATER SOURCE
LOCALIZATION USING K-ELM

Physical Signal Model
Considering a single narrowband sound source impinges on a
vertical linear array of M sensors formed with FOHP in a far-
field scenario. The measured sound pressure field is initiated
with a source of frequency ω at the range y and the depth z.
Considering the presence of noise during the transport, the
sound pressure field can be expressed in frequency domain as
follows [4]:

x(ω) � (1 + α(ω))g(ω, θ, y, z)s(ω) + n(ω), (8)

where x(ω) � [x1(ω), x2(ω), . . ., xM(ω)]
T is the measured pressure

field at frequency ω obtained by taking the discrete Fourier
transform of the received pressure field for a period of
observation times, α(ω) and n(ω) are the complex
multiplicative noise and the additive noise, s(ω) is the source
spectrum at frequency ω, and g (ω, θ, y, z) is the transfer function
related to the frequency ω, environment parameter θ, source
range y, and depth z. Furthermore, the pressure field of far-field
broadband source with frequency ωq∈[ω1, ωQ] at position (y, z)
can be written as follows [6]:

x � G(θ, y, z)~s + n, (9)

where Q is the number of discrete frequency bins, x � [xT (ω1),
. . ., xT (ωQ)]

T is defined as an extended vector for both
narrowband and broadband cases, n � [nT (ω1), . . ., n

T (ωQ)]
T

is defined similarly with x, ~s� [(1+ α(ω1))s (ω1), . . ., (1+α(ωQ))s
(ωQ)]

T is a Q-dimensional vector, and G (θ, y, z) is a QM × Q
matrix written as follows [23]:

G(θ, y, z) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g(ω1, θ, y, z) 0 . . . 0

0 g(ω2, θ, y, z) . . . 0
« « 1 «
0 0 . . . g(ωQ, θ, y, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(10)

The multiplicative noise is modeled as a complex random
perturbation factor α � |α|exp (jϕ), which is commonly
assumed to be a complex Gaussian distribution. The
perturbation factor level is defined as 10 log10|α(ω)|

2 (dB). The
additive noise is modeled as a complex Gaussian distribution with
mean value 0 and variance δ2. Due to the decrease of the signal
level with range increment, the signal-to-noise ratio (SNR) is
defined at the most distant range bin as follows [18]:

SNR � 10 log10

∑M
i�1

|xi(ω)|2/M
δ2

(dB). (11)

K-ELM Method for Source Localization
Here, K-ELM is employed for source localization, which is
achieved as follows:

1) Simulate the acoustic pressure signal with respect to
different ranges and depths.

2) Add noise with different SNRs onto the ideal simulation
signals to generate the noised signal for testing.

3) Preprocess the input data. The discrete Fourier transform
is conducted to transform the measured sound pressure
signal into the frequency domain. Then, the SCMs are
calculated and vectorized to be the input data of the
K-ELM model.

4) Utilize the SCMs of ideal signals as the training data, and
adopt the SCMs of noised signals as the testing data.

5) Train two K-ELM models for range and depth prediction
on the training set.

6) Predict the source range and the depth on testing set using
the well-trained K-ELM models.

The training samples are simulated under different ranges and
depths. The range of acoustic source is changed from 1 km to
8 km with a step of 5 m, and the depth of acoustic source varies
from 10 m to 200 m with a step of 1 m. Therefore, the number of
training samples is 1,400 and 190 for range and depth localization
training set, respectively. The testing samples are acquired by
adding noise to training samples, among which, 561 samples are
selected to build the test set.

The structure of K-ELM is self-adaptive. Thus, the input
neurons and hidden neurons do not need to be designed. The
only parameter to be trained is the output weight matrix. We
apply the K-ELM to source localization in both narrowband case
(Q � 1, single frequency) and broadband case (Q ≥ 2, multiple
frequencies). Note that the signals with different bandwidth are
divided into several groups, and the training and evaluation are
conducted utilizing data within the same groups.
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Before utilizing the K-ELM for source localization, data
preprocessing is conducted to extract the feature and reduce
the data redundancy. Firstly, to reduce the effect of the source
spectrum s(ω), the complex sound pressure p(ω) at the frequency
ω is normalized by the following [23].

~x(ω) � x(ω)
‖x(ω)‖ �

x(ω)����������
xH(ω)x(ω)√ � x(ω)��������∑M

i�1
|x(ω)|2

√ , (12)

where ||·|| denotes the norm and (·)H denotes the complex
conjugate transpose. In order to obtain an accurate
localization result, the normalized SCM, C(ω), is usually
formed from the normalized sound pressure ps(ω) at the sth
snapshot and averaged over Ns snapshots.

C(ω) � 1
Ns

∑Ns

s�1
~x(ω)~xHs (ω), (13)

where Ns is the number of snapshots and C(ω) is a conjugate
symmetric matrix. Thus, only the upper triangular matrix entries
are enough. The real and imaginary parts of these entries are
separated and vectorized to a 1D vector C(ω), which consists of
M × (M +1) elements in single frequency case (Q � 1). For the
broadband case (Q ≥ 2), the input data is constructed by
C(ω)with different single frequencies as [C

T(ω1), CT(ω2), . . .,
C
T(ωQ)]T. Each C(ωq) is the same with the single frequency case.
With the 5 m and 1 m interval, 1,500 groups and 190 groups of

training data with respect to range and depth are simulated. The
normalized SCM at each range is formed over two 1-s snapshots,
according to Eq. (13). In this work, the number of elements of
VLA is 21. Thus, the number of input vectors is 21 × (21 + 1)�462
for narrowband case and 21 × (21 + 1) × Q � 462Qfor
broadband case.

RESULTS AND DISCUSSION

Simulations are conducted to evaluate the performance of the
proposed methods. In this section, we use KRAKEN [27] to
simulate the acoustic data in a shallow water waveguide which is
similar to that of the SWellEx-96 experiment [28] as illustrated in
Figure 2. The environment parameters are considered as range-
independent and depth-independent. Here, four layers are
considered, that is, water layer, sediment layer, mudstone
layer, and seafloor half-space. The SSP of water layer is shown
in Figure 2. The parameters of the environment are given in
Table 1.

Then, the source range varies from 1 km to 8 km with a step of
5 m, and the depth is changed from 10 m to 200 m with a step of
1 m. The source signal is assumed to contain a series of multi-
tones ({49, 94, 148, 235, 399} Hz) which is the same as SWellEx-
96 experiment. The VLA consisted of 21 hydrophones spanning a

FIGURE 2 | Schematic diagram of the simulated acoustic environmental model.

Table 1 | Parameters of the environment.

Layer Parameter Value

Water Depth 216.5 m
Density 1 g/cm3

Sediment Density 1.76 g/cm3

Attenuation 0.2 dB/kmHz
Top sound speed 1,572 m/s
Bottom sound speed 1,593 m/s

Mudstone Density 2.06 g/cm3

Attenuation 0.06 dB/kmHz
Top sound speed 1881 m/s
Bottom sound speed 3,245 m/s

Seafloor Density 2.66 g/cm3

Attenuation 0.02 dB/kmHz
Sound speed 5,200 m/s
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FIGURE 3 | Range localization results with various SNRs by K-ELM. (Top) The narrowband case of 235 Hz. (Bottom) The broadband case of {94,148 388} Hz
with SNR of (A) (D) 5 dB, (B) (E) 0 dB, and (C) (F) -5 dB.

FIGURE 4 | Depth localization results with various SNRs by K-ELM. (Top) The narrowband case of 148 Hz. (Bottom) The broadband case of {49 94,235} Hz with
SNR of (A) (D) 5 dB, (B) (E) 0 dB, and (C) (F) -5 dB.
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depth of 94.125 m–212.25 m with uniform inter-sensor space as
in the SWellEx-96 experiment. The sampling rate is set as
1,500 Hz.

We adopt two measures to quantify the performance of
K-ELM in source localization task. There are MAPE and 10%
error interval. These two measures are defined as

MAPE � 100
L

∑L
i�1

∣∣∣∣∣∣∣Rgi − Rti

Rti

∣∣∣∣∣∣∣, (14)

Ru,Rl � Rt × (1 ± 10%), (15)

where L is the sample number in the test set. Rg and Rt are the
predicted range by K-ELM and the true range, respectively. The
10% error interval defines the upper bound Ru and lower bound
Rl with respect to the truth range Rt.

The K-ELM model is evaluated under three SNRs: 5 dB, 0 dB,
and −5 dB. For each SNR, both narrowband and broadband
sources are considered. The perturbation factor level is set to
−10 dB for all cases.

Figure 3 shows the localization results of K-ELM under
different SNRs in narrowband and broadband cases. For
simplicity, only the results of 235 Hz and {94, 148, 388} Hz
are presented in Figure 3. The predicted ranges are plotted as the
red circle, the true ranges are plotted as the blue line, and the 10%
error interval is also plotted as the gray shadow area. As shown in
Figure 4, the range localization accuracy degrades with the
decrease of the SNR. For narrowband case, the prediction
results are similar at 5 dB and 0 dB and show great decline at
−5 dB, especially on the ranges near both ends. But most
predicted ranges are still within the 10% error interval. The
MAPE of this case is 8.27. For broadband case, the
performance is better than that of narrowband case, especially
at low SNR of −5 dB with MAPE of 0.11. With the decrease of
SNR, the prediction results show slight fluctuation and
degradation. The MAPE of K-ELM with {94 148 388} Hz
signal is 0.11, which is 8-fold less than narrowband case. The
MAPE of MFP method with {94 148 388} Hz signal condition is
33.5%, which is greatly larger than K-ELM.

Next, more detailed MAPEs with different frequencies and
SNRs are given in Table 2. It can be seen that the performance of

K-ELM under broadband case is much better than narrowband
case. For example, the broadband signal consisting of two
narrowband signals with low frequencies, {49 94} Hz, achieves
better performance than that of 49 Hz and 94 Hz cases, even than
the best performance in narrowband case achieved by 388 Hz. In
particular, the accuracy of broadband case is much better than
narrowband case at low SNRs (<0 dB), where the minimum
MAPEs for narrowband and broadband case are 5.05 and
0.07, respectively. The minimum MAPE at low SNR is
reduced by 72 times. On the other hand, some inner rules
exist in narrowband and broadband cases. For narrowband
case, the accuracy increases with the increment of signal
frequency, while for broadband case, the accuracy is
influenced by two factors, that is, the number of frequency
bins and the highest frequency of broadband signal. With the
increase in the number of frequency bins, the MAPE decreases
gradually. Meanwhile, for the broadband signal which has the
same frequency bins, the signal with higher frequency achieves
better accuracy; for example, MAPEs of {94 148 388} Hz case and
{49 94 235} Hz case at −5 dB are 0.11 and 0.16, respectively. To
draw a conclusion, multiple-frequency source signals and high
frequency signals contain more information, leading to better
performance. At last, the time for processing 560 signals with
K-ELMmodel is about 0.05 s. That is to say, the proceeding speed
is fast, which is desirable for real-time testing in practice.

The performance of source depth localization by K-ELM
method is further tested. The depth prediction is regarded as
classification task as well. The source depth is simulated from
10 m to 200 m with a step of 1 m. The prediction results with
three SNRs under narrowband and broadband case are illustrated
in Figure 4. For simplicity, the results of 235 Hz and {94 148 388}
Hz, which are different from those in range prediction, are
presented in Figure 4.

According to Figure 4, the performance of localization shows
similar rule to that in broadband case. The accuracy degrades
with the decrease of SNR in both narrowband and broadband
case. The adoption of broadband signal greatly improves the
performance greatly as well. At low SNR (−5 dB), the MAPE of
narrowband case is 7.53%, and that of broadband case is 0.09%,
which is reduced 87 times. At the same condition, the MAPE of

Table 2 | Range prediction results with narrowband and broadband cases.

Bandwidth Frequency (Hz) MAPE with SNR (dB)

5 0 -5

Narrowband case 49 0.13 1.11 9.53
94 0.12 1.09 9.31
148 0.10 1.01 8.96
235 0.10 0.49 8.27
388 0.08 0.42 5.05

Broadband case {49,94} 0.09 0.26 0.41
{94,148} 0.06 0.12 0.27
{235,388} 0.05 0.09 0.14
{49 94,235} 0.05 0.10 0.16
{94,148 388} 0.03 0.08 0.11

{49 94,148 235} 0.03 0.07 0.10
{94,148 235 388} 0.00 0.05 0.08

{49 94,148 235 388} 0.00 0.03 0.07

Table 3 | Depth prediction results with narrowband and broadband cases.

Case Frequency (Hz) MAPE with SNR (dB)

5 0 -5

Narrowband case 49 0.12 0.93 8.77
94 0.10 0.89 8.35
148 0.09 0.81 8.16
235 0.08 0.33 7.53
388 0.06 0.39 4.82

Broadband case {49 94} 0.07 0.19 0.37
{94,148} 0.05 0.10 0.23
{235,388} 0.04 0.04 0.11
{49 94,235} 0.04 0.06 0.15
{94,148 388} 0.03 0.04 0.09

{49 94,148 235} 0.02 0.05 0.08
{94,148 235 388} 0.00 0.02 0.06

{49 94,148 235 388} 0.00 0.00 0.06
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MFP under broadband case is 28.7%. The detailed MAPEs of
depth prediction under different frequencies and SNRs are given
in Table 3 similar to the range localization. The MAPE
distribution of Table 3 shows similar rule to Table 2. The
MAPEs of depth prediction are relatively smaller than range
prediction. The minimum MAPEs at low SNR for narrowband
and broadband are 4.82 and 0.04, respectively. It is reduced by
80 times.

The K-ELM algorithm shows reasonable predictions on
acoustic source localization, which demonstrate its advantages
on signal processing and always provide a global optimum
without the need of iterative tuning.

CONCLUSION

In summary, a machine learning method, K-LEM, is proposed
to achieve the single ocean underwater acoustic source
localization. Sound pressure signals received from fiber-optic
hydrophone with different frequencies and SNRs are utilized to
investigate the performance of K-ELM for source localization.
The acoustic pressure signal measured by VLA is transformed to
frequency domain and preprocessed into normalized SCM as
the input of the K-ELM. These SCMs are classified into different
ranges or depths by K-ELM algorithm. The results show that
K-ELM performs well in both range and depth localization task
under various frequencies and SNRs. In particular, in case of

SNR with −5 dB, the least MAPEs of range localization for
narrowband and broadband cases are 0.08 and 0, and those of
depth localization for narrowband and broadband case are 0.06
and 0.00, respectively. Meanwhile, composition of narrowband
signals can greatly improve the prediction accuracy. The
maximum reductions of MAPE for range and depth
localization are 136 and 146 times. Moreover, the processing
time of K-ELM method for 560-group data is only 0.05 s,
indicating the high processing speed in underwater acoustic
source localization, which makes it possible for real-time testing.
Thus, the K-ELM gives an accurate and effective way for ocean
underwater source localization.
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