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This study analyzes the exact solutions of the compliance fractional non-linear

time–space telegraph (FNLTST) equation by Oliver Heaviside in 1880 via three

non-applied analytical schemes. The solutions obtained to define the advanced or

voltage spectrum of electrified transmission with day-to-day distance from electrical

communication or the application of electromagnetic waves. Many new solutions

are obtained, and three distinct styles of drawings are introduced (two-dimensional,

three-dimensional, and density plots). Furthermore, stability characterization of the

solutions is addressed using the properties of the Hamiltonian system. The originality

of this study is shown by matching the solutions built with solutions produced previously

using various analytical methods. Overall, the success of the three systems demonstrates

their quality, intensity, and capacity to cope with several different types of non-linear

evolutionary equations.

Keywords: electrical transmission, electromagnetic waves, fractional non-linear time–space telegraph equation,

computational simulation, conformable fractional derivative

AMS classification: 35Q55, 33F05, 65D07, 37K10, 35C08

1. INTRODUCTION

The new generators of complicated systems, namely infectious disease epidemiology [1], neural
network [2], genetics [3], fluid mechanic [4], community ecology [5], Solid-State Physics [6],
plasma wave spread [7], thermodynamics [8], matter condensation [9], non-linear optimal [10],
were employed. Formulating these phenomena through non-linear evolution equations relies on
real testing to define parameters and to provide empirically unmistakable evidence that describes
the intricate mechanisms of their physical and dynamic actions [11–13]. This implies that the key
activity of these models is specified as functions, while the success factors for this behavior become
[14] parameters. Many separate mathematicians and physicists also concentrate extensively on
researching these mathematical models to understand more about their undiscovered properties
[15, 16]. On the other hand, computational, analytical, and semi-analytical structures have been
derived from fulfilling the same function [17–20].

Nowadays, fractional computation receives great attention in several science branches as
it is able to discuss the non-local property of the mathematical models in detail [21, 22].
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Thus, many fractional derivative operators have been derived
to convert the non-linear partial differential equations into
the ordinary differential equations, such as Riemann–Liouville,
Caputo, the conformal fractional, and Atangana–Baleanu
derivative operators [23–26]. These fractional operators have
been employed for several non-linear evolution equations and
have proved their effectiveness and powerfulness [27, 28].

This study handles a fundamental non-linear construction
equation in electromagnetic waves, namely the compatible non-
linear time-space equation. This equation model illustrates the
advanced or voltage spectrum of an electrical transmission range
with day-to-day distance from the electrical or wave application.
This model is given mathematically by [29–31]

D2α
t t V −D2α

x x V +Dα
t V + bV + dV3 = 0, 0 < α ≤ 1, (1)

where b, d are arbitrary constants to be evaluated through the
considered analytical schemes. Mixing between conformable
fractional derivative and traveling wave transformation as
following V(x, t) = Q(4), 4 = a xα

α
− c tα

α
, where a, c are

arbitrary constants, and using it along with Equation (1) converts
the non-linear partial differential equation (NLPDE) into the
next ordinary differential equation (ODE).

(

c2 − a2
)

Q
′′ − cQ′ + bQ+ dQ3 = 0. (2)

Using the homogeneous balance principle along the auxiliary
equation of extended simplest equation method [32–35]
[

8′(4) = α∗ + λ8(4) + µ8(4)2
]

, with n = 1, where n is
the obtained value of homogeneous principle between the highest
order derivative term and non-linear term in Equation (2), we get
the following

[

Q′′&Q3 7→ n+ 2 = 3n
]

.
The section of the rest of the study are ordered as follows:

in section 2, the above analytical schemes [32–35] are employed
to achieve the solitary solution of the non-linear fractional
time-space equation. Besides, the dynamical behavior of the
solutions obtained is investigated through two-dimensional,
three-dimensional, and density plots. The originality of the
research is clarified in section 3. The conclusion of the entire
study is presented in section 4.

2. SOLITARY WAVE SOLUTIONS

In this section, the solitary wave solutions of fractional
non-linear time–space telegraph (FNLTST) equation are
investigated through the abovementioned computational
schemes as following:

2.1. Extended Sech–Tanh Expansion
Method’s Solution
The general solution of the FNLTST equation is formulated by
the suggested structure and measured balance value by

Q(4) =
n
∑

i=1

sechi−1(4)

(

ai sech(4)+ bi tanh(4)

)

+ a0 = a1 sech(4)+ a0 + b1 tanh(4), (3)

where a0, a1, and b1 are arbitrary constants to be determined
later. Using the framework of the suggested method, produces
the value of above-shown parameters is given as follows

a0 = −
√
b

2
√
d
, a1 = 0, b1 = −

√
b

2
√
d
, c =

3b

4
,

a = −
1

4

√
b
√

9b− 2, where (b >
2

9
& d > 0).

Hence, the solutions of Equation (1) in the next form is

V1(x, t) =
1

2

√

b

d

(

tanh

(

3 b tα +
√
b
√
9 b− 2 xα

4α

)

− 1

)

.

(4)

2.2. The Solutions of Extended
sinh-Gordon Equation Expansion Method
The general solution of the FNLTST equation is formulated by
the suggested structure and the measured balance value by

V(4) =
n
∑

i=0

coshi−1(w(4))

(

Ai cosh(w(4))+ Bi sinh(w(4))

)

+ A0 = A1 cosh(w(4))+ A0 + B1 sinh(w(4)),

(5)

whereA0,A1, and B1 are arbitrary constants to be evaluated later.
Using the framework of the suggested method, the value of above
shown parameters can be obtained as follows
Case 1. For w′(θ) = sinh(θ) and by substituting Equation
(5) and its derivatives into Equation (2) in the framework of
the suggested scheme, we obtained the following values of the
abovementioned arbitrary constants:

Family I.

A0 =
√
−b

2
√
d
,A1 = −

√
−b

2
√
d
,B1 = 0, a = −

1

4

√
b
√

9 b− 2,

c =
3b

4
, where d < 0& b >

2

9
.

Hence, the solutions of Equation (1) take the next forms

V2(x, t) =
−1

2

√

−b

d

(

tanh

(

3 b tα +
√
b
√
9 b− 2xα

4α

)

− 1

)

,

(6)

V3(x, t) =
−1

2

√

−b

d

(

coth

(

3 b tα +
√
b
√
9 b− 2xα

4α

)

− 1

)

.

(7)
Family II.

A0 = 0,A1 = 0,B1 = −
√
2b− 1
√
d

, a = −
√
2b− 1
√
2

,

c = 1 where (d > 0&
1

2
6= b > 0).
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Thus, the solutions of Equation (1) are constructed by

V4(x, t) = −
√

1− 2 b

d
sech

(√
2 b− 1 xα

√
2α

+
tα

α

)

, (8)

V5(x, t) = −
√

1− 2 b

d
csch

(√
2 b− 1 xα

√
2α

+
tα

α

)

. (9)

Family III.

A0 =
−1

2

√

−b

d
, A1 =

−1

2

√

−b

d
, B1 = 0, a = −

1

4

√
b
√

9b− 2,

c = −
3 b

4
, where (b < 0& d > 0).

Therefore, the solutions of Equation (1) are given by

V6(x, t) =
1

2

√

−b

d

(

tanh

(

3 b tα −
√
b
√
9 b− 2 xα

4α

)

− 1

)

,

(10)

V7(x, t) =
1

2

√

−b

d

(

coth

(

3 b tα −
√
b
√
9 b− 2 xα

4α

)

− 1

)

.

(11)
Case 2. For w′(θ) = cosh(θ) and by substituting Equation
(5) and its derivatives into Equation (2) in the framework of
the suggested scheme, we obtained the following values of the
abovementioned arbitrary constants:

Family I.

A0 = −
i
√
b

2
√
d
,A1 = 0,B1 = −

√
b

2
√
d
, a = −

1

4

√

2 b− 9 b2,

c =
3 i b

4
, where (d < 0, i =

√
−1).

Thus, the solutions of Equation (1) take the following formulas

V8(x, t) =
1

2

√

−b

d

(

−1+ tanh

(

3 b tα −
√
(9b− 2) b xα

4α

))

,

(12)

V9(x, t) =
1

2

√

−b

d

(

−1+ coth

(

3 b tα −
√
(9b− 2) b xα

4α

))

.

(13)
Family II.

A0 = −
i
√
b

2
√
d
,A1 = −

√
b

2
√
d
,B1 = −

√
b

2
√
d
,

a = −
1

2

√

2 b− 9b2, c =
3 i b

2
, where (d < 0, i =

√
−1).

Hence, the solutions of Equation (1) are formulated in the
following forms

V10(x, t) =

(

1

2

√

−b

d
tanh

(

3 b tα

2α
−

√
9b2 − 2 b xα

2α

)

∓
1

2

√

b

d
sech

(

3 b tα

2α
−

√
9 b2 − 2 b xα

2α

))

−
1

2

√

−b

d
,

(14)

V11(x, t) =

(

1

2

√

−b

d
coth

(

3 b tα

2α
−

√
9 b2 − 2 b xα

2α

)

∓
1

2

√

b

d
csch

(

3 b tα

2α
−

√
9 b2 − 2 b xα

2α

))

−
1

2

√

−b

d
.

(15)

FIGURE 1 | Kink numerical graph for Equation (4) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.
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Family III.

A0 =
−1

2

√

−b

d
,A1 = 0,B1 =

√
b

2
√
d
, a =

1

4

√

2 b− 9 b2,

c = −
3 i b

4
, where (d < 0, b >

2

9
).

Hence, the solutions of Equation (1) are constructed by

V12(x, t) =
1

2

√

−b

d
tanh

(

3 b tα

4α
−

i
√
2 b− 9 b2 xα

4α

)

−
1

2

√

−b

d
,

(16)

V13(x, t) =
1

2

√

−b

d
coth

(

3 b tα

4α
−

i
√
2b− 9b2 xα

4α

)

−
1

2

√

−b

d
.

(17)

2.3. Extended Simplest Equation Method’s
Solutions
The general solution of the FNLTST equation is formulated by
the suggested structure and the measured balance value by

V(4) =
n
∑

i=−n

ai 8(4)i =
a−1

8(4)
+ a0 + a1 8(4) , (18)

where a−1, a0, and a1 are arbitrary constants to be determined
later, while 8(4) is the solution function of the next ODE

8′(4) = α∗ + λ8(4)+ µ8(4)2, (19)

where α∗, λ, and µ are arbitrary constants to be calculated later.
Using the framework of the suggested method, gets the value of
above shown parameters as follows:

Family I.

b =
−2 c2

9 (a+ c) (a− c)
, d =

(

3 a2λ − 3 c2λ + c
)2

18 a02 (a− c) (a+ c)
,

µ =
(

3 a2λ − 3 c2λ − c
) (

3 a2λ − 3 c2λ + c
)

36α∗ (a− c)2 (a+ c)2
,

a−1 = 0, a1 =
a0
(

3 a2λ − 3 c2λ − c
)

6α∗ (a− c) (a+ c)
.

Hence, the solitary solutions of Equation (1) take the
following formulas

When λ = 0,

for α∗ µ > 0, we obtain

V14(x, t) = a0

−
a0 c

√
α µ

6µα∗ (a− c) (a+ c)
tan

(

√
α∗ µ

(

a xα

α
−

c tα

α
+ C

))

,

(20)

V15(x, t) = a0

−
a0 c

√
α µ

6µα∗ (a− c) (a+ c)
cot

(

√
α∗ µ

(

a xα

α
−

c tα

α
+ C

))

.

(21)

for α∗ µ < 0, we obtain

V16(x, t) = a0 −
a0 c

√
−α µ

6µα∗ (a− c) (a+ c)
tanh

(√
−α∗ µ (

a xα

α

−
c tα

α
)∓

ln(C)

2

)

,

(22)

V17(x, t) = a0 −
a0 c

√
−α µ

6µα∗ (a− c) (a+ c)
coth

(√
−α∗ µ (

a xα

α

−
c tα

α
)∓

ln(C)

2

)

.

(23)

When α∗ = 0,

for λ > 0, we obtain

V18(x, t) = a0 +
a0 λ e

λ

(

a xα

α
− c tα

α
+C

)

(

3 a2λ − 3 c2λ − c
)

6α

(

1− µ e
λ

(

a xα

α
− c tα

α
+C

))

(a− c) (a+ c)

.

(24)
for λ < 0, we obtain

V19(x, t) = a0 −
a0 µ e

λ

(

a xα

α
− c tα

α
+C

)

(

3 a2λ − 3 c2λ − c
)

6α

(

1+ µ e
λ

(

a xα

α
− c tα

α
+C

))

(a− c) (a+ c)

.

(25)
The general solutions has the next form:

When 4α∗ µ > λ2 and µ > 0, we get

V20(x, t) = a0

+
a0
(

3 a2λ − 3 c2λ − c
)

12µα∗ (a− c) (a+ c)

√

4α∗ µ − λ2

tan

(
√

4α∗ µ − λ2

2

(

a xα

α
−

c tα

α
+ C

)

)

− λ,

(26)

V21(x, t) = a0

+
a0
(

3 a2λ − 3 c2λ − c
)

12µα∗ (a− c) (a+ c)

√

4α∗ µ − λ2

cot

(
√

4α∗ µ − λ2

2

(

a xα

α
−

c tα

α
+ C

)

)

− λ.

(27)
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FIGURE 2 | Periodic numerical graph for Equation (6) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.

FIGURE 3 | Solitary numerical graph for Equation (7) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.

FIGURE 4 | Periodic numerical graph for Equation (8) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.
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When 4α∗ µ > λ2 and µ < 0, we get

V22(x, t) = a0 +
a0
(

3 a2λ − 3 c2λ − c
)

12µα∗ (a− c) (a+ c)

√

4α∗ µ − λ2

tan

(
√

4α∗ µ − λ2

2

(

a xα

α
−

c tα

α
+ C

)

)

+ λ, (28)

V23(x, t) = a0 +
a0
(

3 a2λ − 3 c2λ − c
)

12µα∗ (a− c) (a+ c)

√

4α∗ µ − λ2

cot

(
√

4α∗ µ − λ2

2

(

a xα

α
−

c tα

α
+ C

)

)

+ λ. (29)

Family II.

b =
−2 c2

9 (a+ c) (a− c)
, d =

2 c2

9 a02 (a− c) (a+ c)
,

λ =
c

3 (a+ c) (a− c)
, α∗ = a−1 = 0.

Hence, the solitary solutions of Equation (1) are constructed in
the next forms
for λ > 0, as

V24(x, t) = a0 +
a1 λ e

λ

(

a xα

α
− c tα

α
+C

)

1− µ e
λ

(

a xα

α
− c tα

α
+C

) and (30)

for λ < 0, as

V25(x, t) = a0 −
a1 µ e

λ

(

a xα

α
− c tα

α
+C

)

1+ µ e
λ

(

a xα

α
− c tα

α
+C

) . (31)

Family III.

b =
−2 c2

9 (a+ c) (a− c)
, d = 2

µ2
(

a2 − c2
)

a12
,

λ =
c

3 (a+ c) (a− c)
, α∗ = a−1 = 0.

Hence, the solitary solutions of Equation (1) are given,
for λ > 0, as

V26(x, t) = a0 +
a1 λ e

λ

(

a xα

α
− c tα

α
+C

)

1− µ e
λ

(

a xα

α
− c tα

α
+C

) and (32)

for λ < 0, as

V27(x, t) = a0 −
a1 µ e

λ

(

a xα

α
− c tα

α
+C

)

1+ µ e
λ

(

a xα

α
− c tα

α
+C

) . (33)

Family IV.

α =
(

3 a2λ − 3 c2λ − c
) (

3 a2λ − 3 c2λ + c
)

36µ (a− c)2 (a+ c)2
,

b =
−2 c2

9 (a+ c) (a− c)
, d =

(

3 a2λ − 3 c2λ − c
)2

18 a02 (a− c) (a+ c)
,

a−1 =
a0
(

3 a2λ − 3 c2λ + c
)

6µ (a− c) (a+ c)
, a1 = 0.

Hence, the solitary solutions of Equation (1) are evaluated in the
following formulas:

When λ = 0,

for α∗ µ > 0, we obtain

V28(x, t) =
a0 c

6
√

α∗ µ (a− c) (a+ c) tan
(√

α∗ µ

(

a xα
α − c tα

α + C
)) + a0, (34)

FIGURE 5 | Solitary numerical graph for Equation (9) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.
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V29(x, t) =
a0 c

6
√

α∗ µ (a− c) (a+ c) cot
(√

α∗ µ

(

a xα
α − c tα

α + C
)) + a0. (35)

for α∗ µ < 0, we obtain

V30(x, t) =
a0 c

6
√
−α∗ µ (a− c) (a+ c) tanh

(√
−α∗ µ ( a x

α

α − c tα
α )∓ ln(C)

2

)

+a0, (36)

V31(x, t) =
a0 c

6
√
−α∗ µ (a− c) (a+ c) coth

(√
−α∗ µ ( a x

α

α − c tα
α )∓ ln(C)

2

)

+a0. (37)

When α∗ = 0,

for λ > 0, we obtain

V32(x, t) =
a0
(

3 a2λ − 3 c2λ + c
)

(

1− µ e
λ

(

a xα

α
− c tα

α
+C

))

6µ (a− c) (a+ c)

(

λ e
λ

(

a xα

α
− c tα

α
+C

)) +a0.

(38)
for λ < 0, we get

V33(x, t) =
a0
(

3 a2λ − 3 c2λ + c
)

(

1+ µ e
λ

(

a xα

α
− c tα

α
+C

))

6µ (a− c) (a+ c)

(

−µ e
λ

(

a xα

α
− c tα

α
+C

)) +a0.

(39)
The general solutions has the next form:

For 4α∗ µ > λ2 and µ > 0, we get

V34(x, t)

=
a0

(

3 a2λ − 3 c2λ + c
)

3 (a− c) (a+ c)





√

4α∗ µ − λ2 tan





√

4α∗ µ−λ2

2

(

a xα
α − c tα

α + C
)



− λ





+ a0,

(40)

FIGURE 6 | Dark cone numerical graph for Equation (22) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.

FIGURE 7 | Bright cone numerical graph for Equation (24) through (A) three-dimensional, (B) two-dimensional, and (C) density plots.
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V35(x, t)

=
a0

(

3 a2λ − 3 c2λ + c
)

3 (a− c) (a+ c)





√

4α∗ µ − λ2 cot





√

4α∗ µ−λ2

2

(

a xα
α − c tα

α + C
)



− λ





+ a0,

(41)

For 4α∗ µ > λ2 and µ < 0, we get

V36(x, t)

=
a0

(

3 a2λ − 3 c2λ + c
)

3





√

4α∗ µ − λ2 tan





√

4α∗ µ−λ2

2

(

a xα
α − c tα

α + C
)



+ λ



 (a− c) (a+ c)

+ a0,

(42)

V37(x, t)

=
a0

(

3 a2λ − 3 c2λ + c
)

3





√

4α∗ µ − λ2 cot





√

4α∗ µ−λ2

2

(

a xα
α − c tα

α + C
)



+ λ



 (a− c) (a+ c)

+ a0.

(43)

Family V.

α = −
c2

144µ (a− c)2 (a+ c)2
, b =

−2c2

9 (a+ c) (a− c)
,

d =
c2

18 a02 (a− c) (a+ c)
, λ = 0,

a−1 =
ca0

24µ (a− c) (a+ c)
, a1 =

6µ
(

a2 − c2
)

a0

c
.

Therefore, the solitary solutions of Equation (1) are evaluated
for α∗ µ > 0, as

V38(x, t) =
c a0

24
√

α∗ µ (a− c) (a+ c) tan
(√

α∗ µ
(

a xα

α
− c tα

α
+ C

))

+
6
√

α∗ µ
(

a2 − c2
)

a0

c
tan

(

√
α∗ µ

(

a xα

α
−

c tα

α
+ C

))

,

(44)

V39(x, t) =
c a0

24
√

α∗ µ (a− c) (a+ c) tan
(√

α∗ µ
(

a xα

α
− c tα

α
+ C

))

+
6
√

α∗ µ
(

a2 − c2
)

a0

c
cot

(

√
α∗ µ

(

a xα

α
−

c tα

α
+ C

))

.

(45)

for α∗ µ < 0, as

V40(x, t) =
ca0

24
√
−α∗ µ (a− c) (a+ c) tanh

(√
−α∗ µ ( a x

α

α
− c tα

α
)∓ ln(C)

2

)

+
6
√
−α∗ µ

(

a2 − c2
)

a0

c
tanh

(√
−α∗ µ (

a xα

α
−

c tα

α
)∓

ln(C)

2

)

,

(46)

V41(x, t) =
ca0

24
√
−α∗ µ (a− c) (a+ c) coth

(√
−α∗ µ ( a x

α

α
− c tα

α
)∓ ln(C)

2

)

+
6
√
−α∗ µ

(

a2 − c2
)

a0

c
coth

(√
−α∗ µ (

a xα

α
−

c tα

α
)∓

ln(C)

2

)

.

(47)

3. RESULTS AND DISCUSSION

This section studies the constructed traveling wave
solutions of the FNLTST equation through the above
applied schemes:

1. The obtained solution by using sech-tanh expansion method
(4) is equal to the solution that obtained by using extended
sinh-Gorden expansion method (6).

2. All other solutions are different. This shows the powerfulness
and effectiveness of these three different techniques.

3. Comparing the constructed solutions with that which have
been obtained by Ozkan Guner and Ahmet Bekir, who
used the Exp-function method [36], shows the novelty and
originality of the study, where all our solutions are completely
different from their solutions.

4. Interpretation of figures:
We have explained some of the evaluated solutions through
three different schemes (three-dimensional, two-dimensional,
and density plots).

• Figure 1 shows kink wave of Equation (4) along with b =
4, d = 9.

• Figure 2 explains periodic wave of Equation (6) along with
b = 2, d = −4.

• Figure 3 demonstrates solitary wave of Equation (7) along
with b = 7, d = −3.

• Figure 4 figures out periodic wave of Equation (8) along
with b = 4, d = −7.

• Figure 5 explains solitary wave of Equation (9) along with
b = 5, d = −6.

• Figure 6 shows dark cone wave of Equation (22) along with
a0 = 1, a = 2, α∗ = −1, c = 1, C = 3, µ = 4.

• Figure 7 explains bright cone wave of Equation (24) along
with a0 = 3, a = 5, c = 2, C = 4, λ = 4.

4. CONCLUSION

This study effectively applied three non-applied methods to
the FNLTST equation. The compatible fractional operator is
used to transform the non-linear fractional partial differential
equation into an ordinary differential equation of integer order.
Various modern numerical options have been developed to
illustrate the cutting-edge or voltage of an electrical transmission
spectrum with a day yet distance across two-dimensional, three-
dimensional, and density plots. The physical interpretation of
these sketches have been explained in Equation (3) to show
more novel properties of the considered model. The newness
of this study is explored by contrasting the observations in the
previous study.
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