
BRIEF RESEARCH REPORT
published: 30 March 2021

doi: 10.3389/fphy.2021.654271

Frontiers in Physics | www.frontiersin.org 1 March 2021 | Volume 9 | Article 654271

Edited by:

Ayan Banerjee,

Indian Institute of Science Education

and Research Kolkata, India

Reviewed by:

Tarcísio Marciano Rocha Filho,

University of Brasilia, Brazil

Christian Maes,

KU Leuven, Belgium

Supriya Krishnamurthy,

Stockholm University, Sweden

*Correspondence:

Raphaël Chétrite

raphael.chetrite@unice.fr

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 15 January 2021

Accepted: 05 March 2021

Published: 30 March 2021

Citation:

Chétrite R, Kumar A and Bechhoefer J

(2021) The Metastable Mpemba Effect

Corresponds to a Non-monotonic

Temperature Dependence of

Extractable Work.

Front. Phys. 9:654271.

doi: 10.3389/fphy.2021.654271

The Metastable Mpemba Effect
Corresponds to a Non-monotonic
Temperature Dependence of
Extractable Work
Raphaël Chétrite 1,2*, Avinash Kumar 1 and John Bechhoefer 1

1Department of Physics, Simon Fraser University, Burnaby, BC, Canada, 2 Laboratoire J A Dieudonné, UMR CNRS 7351,

Université de Nice Sophia Antipolis, Nice, France

The Mpemba effect refers to systems whose thermal relaxation time is a non-monotonic

function of the initial temperature. Thus, a system that is initially hot cools to a bath

temperature more quickly than the same system, initially warm. In the special case

where the system dynamics can be described by a double-well potential with metastable

and stable states, dynamics occurs in two stages: a fast relaxation to local equilibrium

followed by a slow equilibration of populations in each coarse-grained state. We have

recently observed the Mpemba effect experimentally in such a setting, for a colloidal

particle immersed in water. Here, we show that this metastable Mpemba effect arises

from a non-monotonic temperature dependence of the maximum amount of work that

can be extracted from the local-equilibrium state at the end of Stage 1.

Keywords: Mpemba effect, Fokker-Planck equation, thermal relaxation, metastability, free-energy landscape

1. INTRODUCTION

A generic consequence of the second law of thermodynamics is that a system, once perturbed, will
tend to relax back to thermal equilibrium. Such relaxation is typically exponential. To understand
why, consider energy relaxation and recall that the heat equation,

∂T

∂t
= κ∇2T(r, t) , (1)

for the temperature field T at position r and time t and thermal diffusivity κ has solutions that can
be written in the form1

T(r, t) = T∞(r)+

∞
∑

m=2

am vm(r) e
−λmt . (2)

Here, T∞(r) is the static temperature-field solution of Equation (1); it must account for boundary
conditions. For t → ∞, an arbitrary initial condition T(r, 0) will relax to this state. In Equation (2),
the vm(r) are spatial eigenfunctions, with corresponding eigenvalues λm and coefficients am, which
represent the projections of the field [T(r, 0) − T∞(r)] onto the corresponding eigenfunction.

1We begin the eigenfunction expansion atm = 2 to be consistent with the analogous expansion of the Fokker-Planck solution

in Lu and Raz [1].
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For long but finite times, all but the slowest eigenmode will have
decayed, and the temperature is, approximately,

T(r, t) ≈ T∞(r)+ a2 v2(r) e
−λ2t , (3)

which, indeed, shows a simple exponential decay to T∞(r) for a
probe at a fixed position r.

Although exponential decays are typical, anomalous, non-
exponential relaxation is also encountered. Large objects, for
example, may have an asymptotic time scale λ−1

2 that exceeds
experimental times, so that it is not possible to wait “long
enough.” Similarly, glassy systems and other complex materials
may have a spectrum of exponents for mechanical and dielectric
relaxation that have not only very long time scales but also
many closely spaced values that are not resolved as a sequence
of exponentials. Rather, they can collectively combine to
approximate a power-law or even logarithmic time decay, with
specific details that depend on the history of preparation [2].

Another class of anomalous systems shows unexpectedly fast
relaxation in certain circumstances. The best-known of these
is the observation that, occasionally, a sample of hot water
may cool and begin to freeze more quickly than a sample
of cool or warm water prepared under identical conditions.
Based on the scenario of exponential relaxation sketched above,
one’s naive intuition is that a hotter system will have to “pass
through” all intermediate temperatures and thus take longer to
equilibrate. More succinctly, the observation is that, in some
systems, the equilibration time is a non-monotonic function
of the initial temperature: the time for a system initially in
equilibrium at a given temperature takes to cool and reach
equilibrium with the bath temperature does not always increase
with initial temperature.

While observations of this phenomenon date back two
millennia to the ancient Greeks [3, 4], its modern study began
with observations by Mpemba in the 1960s [5]. The effect has
since been observed in systems such as manganites [6], clathrates
[7], polymers [8, 9], and predicted in simulations of other
systems, including carbon nanotube resonators [10], granular
fluids [11], and spin glasses [12]. In all these Mpemba effects, the
relaxation time shows a surprisingly complicated dependence on
the deviation of initial temperature from equilibrium: increasing
and then decreasing, and in some cases increasing again with
increasing deviation. The relaxation time thus does not increase
monotonically with the deviation from equilibrium, as one might
naively expect.

One challenge in studying Mpemba effects is that the systems
where they have been observed or predicted have been rather
complicated, with many possible explanations for the effect.
The explanations tend to be complicated and specific to a
particular system. Even water is not as simple as it might seem:
proposed mechanisms include evaporation [13–15], convection
[16], supercooling [17], dissolved gases [18], and effects arising
from hydrogen bonds [19].

In an effort to understand the Mpemba effect more
generically, Lu and Raz recently proposed an explanation that is
linked to the structure of eigenfunction expansions such as that
in Equation (2) [1]. Their work was formulated for mesoscopic

systems that are in the classical regime yet are small enough that
thermal fluctuations make an important contribution to their
dynamics. Such systems may be described by master equations
and Fokker-Planck equations, for finite and continuous state
spaces, respectively [20–24]. For the latter, the Fokker-Planck
equation describes the evolution of the probability density
function p(x, t) for a system described by a state vector x(t)2.
Its structure is similar to that of Equation (1): its linearity
implies that solutions are also described by an infinite-series,
eigenfunction expansion similar to that in Equation (2). The
essence of Lu and Raz’s explanation is that the projection
of the initial state p(x, 0)—a Gibbs-Boltzmann distribution
corresponding to an initial temperature T—onto the slowest
eigenfunction, a2 can be non-monotonic in T, or, equivalently, in
β−1 ≡ kBT, where kB ≡ 1 (in our units) is Boltzmann’s constant.
Such a consequence implies a Mpemba effect because the long-
time limit for the probability density function has the same form
as Equation (3):

p(x, t) ≈ gβb (x)+ a2(β ,βb) v2,βb (x) e
−λ2t , (4)

with gβb (x) the Gibbs-Boltzmann distribution for the system at a
temperature Tb corresponding to the surrounding thermal bath
with which the system is in contact and can exchange energy.
Equation (4) is valid after an initial transient time ≈ λ−1

3 . The
coefficient a2 is a function of both the initial temperature and
bath temperature:

a2(β ,βb) =

∫

dx gβ (x)u2,βb (x) , (5)

where the initial state p(x, 0) is assumed to be in equilibrium
at a higher temperature β−1 and where u2,βb (x) is the left
eigenfunction of the Fokker-Planck operator, which is the dual-
basis element corresponding to the right eigenfunction v2,βb (x) of
the same Fokker-Planck operator. Both u2 and v2 are calculated
for the Markovian Langevin dynamics associated with white
noise whose covariance is set by the bath temperature, β−1

b
. We

need to distinguish between left and right eigenfunctions because
the operator generating Fokker-Planck dynamics is not self-
adjoint, in contrast to the operator generating the heat-diffusion
dynamics discussed in Equation (1). The Mpemba effect then
translates to the non-monotonicity of a2 as a function of the
initial temperature β−1: If a high-temperature initial condition
has a smaller coefficient a2, then, in the long-time limit, the
system will be closer to equilibrium than a cool-temperature
initial condition with larger a2. This non-monotonicity in a2 is
easier to establish than the non-monotonicity of equilibration
times that defines the Mpemba effect. The latter requires either
an experiment or, at the very least, repeated numerical solution
of the full Fokker-Planck equation.

Inspired by the scenario proposed by Lu and Raz [1], we
have explored the Mpemba effect in a simple, mesoscopic
setting that—unlike previous work—lends itself to quantitative
experiments that straightforwardly connect with theory [25].
In particular, we explored the motion of a single micron-scale

2In a many-body system, the dimension of x can be very large.
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colloidal particle immersed in water and moving in a tilted
double-well potential. The one-dimensional (1D) state space
consists of the position x(t) of the particle. By choosing carefully
the tilt of the potential, along with the energy-barrier height and
the offset (asymmetry) of the double-well potential within a box
that confines the particle motion at high temperatures, we could
demonstrate convincingly the existence of theMpemba effect and
measure the non-monotonic temperature dependence of the a2
coefficient. We even found conditions where a2 = 0. At such
a point, the slowest relaxation dynamics is ∼ e−λ3t , implying
an exponential speed-up over the generic relaxation dynamics,
∼ e−λ2t . This strong Mpemba effect had been predicted by Klich
et al. [26].

Although our recent experimental work gives strong support
to the basic scenario proposed by Lu and Raz, it does not
offer good physical insight into the conditions needed to
produce or observe the Mpemba effect. What physical picture
corresponds to the anomalous temperature dependence of the
a2 coefficient? In this Brief Research Report, we offer a more
physical interpretation of the Mpemba effect explored in our
previous work.

2. THERMALIZATION IN A DOUBLE-WELL
POTENTIAL WITH METASTABILITY

A common feature of experiments showing Mpemba effects is
that they involve a temperature quench: the system is cooled very
rapidly.Wemodel this situation bymaking the high-temperature
initial state an initial condition for dynamics that take place
entirely in contact with a bath of fixed temperature. In effect,
the quench is infinitely fast. The overdamped thermalization
dynamics are then described by the Langevin equation

ẋ = −γU ′(x)+

√

2γβ−1
b

η, (6)

with γ a friction coefficient and η(t) Gaussian white noise
modeling thermal fluctuations from the bath, with 〈η(t)〉 = 0
and 〈η(t) η(t′)〉 = δ(t − t′). The noise-strength 2γβ−1

b
enforces

the fluctuation-dissipation relation [21, 23]. The potential U(x)
is a double-well potential with barrier height E0 ≫ βb

−1 and two
coarse-grained states, denoted L and R in Figure 1A. The range of
particle motions is also constrained to a finite range; the potential
is implicitly infinite at the extremities. By tilting the potential, one
state has a higher energy than the other (difference is 1E) and
becomes a toy model for the water-ice phase transition. However,
the energy barrier E0, while high enough that the two states are
well defined, is also low enough that many transitions over the
barrier are observed during a typical experiment.

Figure 1 illustrates the case studied by Kumar and Bechhoefer
[25], with (a) showing the potential and (b) the dynamics of a
quench from a high temperature. With a moderately high barrier,
both wells have significant probability for the equilibrium state
gβb (x) (Figure 1B, right). For U(x), the barrier E0 = 2.0, the
energy difference between states is 1E = 1.3, and the hot
temperature β−1

h
= 1, 000; all quantities are multiplied by βb

and are, hence, dimensionless. The separation between wells
was 80 nm.

At a temperature corresponding to β−1, the equilibrium free
energy of the system is

F
eq
β ≡ −β−1 ln

[∫ +∞

−∞

dx exp
(

−βU(x)
)

]

. (7)

and the corresponding equilibrium Gibbs density is

gβ (x) ≡ exp
[

−β

(

U(x)− F
eq
β

)]

, (8)

The metastability ofU means that the system evolves on two very
different time scales:

Stage 1 is a fast relaxation to local equilibration. The initial,
high-temperature Gibbs density rapidly evolves to a state that
is at local equilibrium with respect to the bath temperature. A
local equilibrium is a density that is similar locally to gβb, but
with altered fractions of systems in the left or right wells. Using
marginalization and the definition of conditional probability, we
can write such a local-equilibrium state as

ρ
leq
β ,βb

(x) = P
(

be in the left well at β
)

P
(

x| be in the left well at βb

)

+ P
(

be in the right well at β
)

P
(

x| be in the right well at βb

)

.

More precisely, the local β ,βb equilibrium is the density

ρ
leq
β ,βb

(x) =



















aL

(

gβb (x)
∫ 0
−∞

dx′gβb (x
′)

)

x < 0 (left well) ,

aR

(

gβb (x)
∫∞
0 dx′gβb (x

′)

)

x > 0 (right well) ,

(9)

with 0 ≤ aL ≤ 1. Choosing aL + aR = 1 ensures normalization
of the probability density.

In a fast quench, we assume that the fraction of initial systems
at equilibrium at the higher temperature β−1 is unchanged
when local equilibrium is established. Essentially, we ignore the
diffusion of trajectories that start on one side of the barrier
and end up on the other at the end of the transient. In this
approximation, the fraction that ends up in eachwell corresponds
to that of the initial state, gβ . Thus,

aL =

∫ 0

−∞

dx′ gβ (x
′) and aR =

∫ ∞

0
dx′ gβ (x

′) . (10)

As shown in Figure 1B, center, the local-equilibrium distribution

ρ
leq
β ,βb

(x) is discontinuous at x = 0; higher barriers will reduce the

discontinuity, of order e−βbE0 ≪1.
Stage 2 is a final relaxation to global equilibrium on a slow

time scale: the overall populations in each well (coarse-grained
state) change, and the density converge to the Gibbs density gβb .
Local equilibrium is maintained during the evolution, which is
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FIGURE 1 | Two-stage dynamics. (A) Tilted double-well potential U(x) with coarse-grained states {L,R}. The potential includes a box (not shown). (B) Evolution of the

probability density function for position: a high-temperature equilibrium initial state gβ (x) (left) has a fast relaxation to a local equilibrium state ρ
leq
β,βb

(x) (middle) and a

slow relaxation to global equilibrium gβb (x) at the colder bath temperature (right).

illustrated schematically in Figure 1B. In this metastable regime,
the equilibration time was analyzed by Kramers long ago [21, 27–
29]. It also corresponds to the limit of Equation (4); as a result,
the final relaxation is exponential, with decay rate λ2. Since the
duration of Stage 1 is determined by λ3 and that of Stage 2 by
λ2, time-scale separation between the two stages amounts to the
assertion that λ3/λ2≫1. In the experiments of [25] revisited here,
λ3/λ2 ≈ 16.

3. METASTABLE MPEMBA EFFECT

Given this scenario of thermal relaxation as a two-stage process,
we can readily understand how the Mpemba effect can occur.
The idea is to follow the dynamics in the function space of all
admissible probability density functions p(x, t). If we expand the
solution in eigenfunctions analogously to Equation (2), we see
that the infinite-dimensional function space is spanned by the
eigenfunctions. To visualize the motion, we project it onto the
2D subspace spanned by the eigenfunctions v2(x) and v3(x). The
system state is then characterized as a parametric plot of the
amplitudes a2(t) and a3(t). Animations from a 3D projection
spanning a2–a3–a4 are available in the Supplementary Material.
A similar geometric plot was used to explore quenching in an
anti-ferromagnetic Ising spin system in Klich et al. [26].

Figure 2A shows a two-dimensional projection of the
geometry of trajectories. They are organized about two static, 1D
curves, labeledG, andGleq. The red curve (G) represents the set of
all equilibrium Gibbs-Boltzmann densities, gβ , for 0 ≤ β < ∞.
It is sometimes known as the quasi-static locus. The green curve
(Gleq) represents the set of all local-equilibrium densities of the
form of Equation (9), as parameterized by aL ∈ [0, 1]. Both
curves are represented as 2D parametric plots but lie in the full
infinite-dimensional space. Both G and Gleq have finite length,
in general. (The entire length is not shown in the figure.) The

two curves intersect at a2 = a3 = 0, which describes the global
equilibrium gβb with respect to the bath (large hollow marker
with dot). The apparent crossing near a2 ≈ 0.4 is spurious, as
the 3D projections in Figure 2B and the supplement show.

The dynamical trajectories are represented by the variously
shaded gray curves. At time t = 0, the systems are in
equilibrium along the red curve at a variety of temperatures
{1, 1.2, 1.5, 3, 50, 100, 1, 000} × Tb, which are indicated by black
markers. The curves then move rapidly toward the green curve
(local equilibrium). The time course is suggested by the dark-to-
light gradient. Once they reach the vicinity of Gleq, they closely
follow this green curve back to the global-equilibrium state.

Within this representation, we note the “arrival point” of each
trajectory when it “hits” Gleq. For small temperatures (1, 1.2,
1.5, 3), the distance between this arrival point and the global-
equilibrium state increases monotonically with β . For larger
temperatures (50, 100, 1,000), however, the distance decreases
until, at T = 1, 000Tb, it nearly vanishes (denoting the strong
Mpemba effect). Along Gleq, the system is in the limit described
by Equation (4) and relaxes exponentially to global equilibrium.
Relaxation along Gleq therefore must be monotonic with the
distance away from global equilibrium. Trajectories that arrive
along this curve that are farther from global equilibrium will
take longer to relax. In the Appendix, we show that this notion
of “distance” along Gleq can be expressed as the Kullback-
Leibler divergence DKL between the local equilibrium density

ρ
leq
β ,βb

given in Equation (9) and the global equilibrium density

gβb . In particular, DKL[ρ
leq
β ,βb

, gβb ] is a monotonic function of aL
(defined in Equation 10), which is the natural parameter for the
manifold Gleq.

Now we can understand how the (metastable) Mpemba effect
can arise. In the example shown in Figure 2, the distance
along Gleq initially increases with T and so does the total
equilibration time. But then this distance decreases for higher
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FIGURE 2 | Probability-density dynamics. (A) Two-dimensional dynamics in the plane defined by the a2 and a3 coefficients. (B) Three-dimensional dynamics defined

by projections onto the a2, a3, and a4 coefficients. In both cases, the red curve G denotes the set of equilibrium densities; the green curve represents Gleq the set of

local-equilibrium densities. Arrows indicate the slow relaxation along Gleq to global equilibrium, at the intersection with G (denoted by the large hollow marker with a

dot at its center at T = 1). Gray lines denote the rapid relaxation from an initial condition (temperature relative to the bath indicated by a marker along G). The time

progression of p(x, t), projected onto the a2–a3 plane, is from dark to light. Curves are calculated from the double-well potential described in Kumar and Bechhoefer,

with domain asymmetry α = 3 (see [25] for definitions).

temperatures, leading to the Mpemba effect. We note that in
our approximation, the time to traverse the initial stage is much
shorter than the time to relax along the green curve, so that
variations in the length of the initial trajectory are irrelevant.

If the bath temperature were changed at a finite rate (rather
than a hot system being quenched directly into the bath), then
the dynamics would be different. For example, if the system is
very slowly cooled from the initial temperature to final bath
temperature, the trajectory would follow the quasi-static locus
(red curve G) and no Mpemba effect would be possible. Having
shown that no Mpemba effect is possible with an infinitely slow
quench and that the effect can be observed in the limit of an
infinitely rapid quench, we can conclude that the Mpemba effect
requires a sufficiently fast temperature quench.

4. METASTABLE MPEMBA EFFECT IN
TERMS OF EXTRACTABLE WORK

Ourmain goal is to express the criterion for theMpemba effect in
more physical terms. For the metastable setting described above,
we will find such a criterion in terms of a thermodynamic work.
We recall that the second law of thermodynamics for a system
in contact with a single thermal bath of temperature β−1

b
can be

expressed in terms of work and free energy rather than entropy:

W ≥ △Fneq,βb , (11)

where W is the work received by the system and △Fneq denotes
the difference in nonequilibrium free energies (final − initial

values). See, for example, Gavrilov et al. [30], Equation (5) and
associated references.

We recall also that the non-equilibrium free energy generalizes
the familiar notion of free energy to systems out of equilibrium.
Thus, in analogy to Equation (7), we define

Fneq,βb (ρ) ≡ E(ρ)− β−1
b

S (ρ) , (12)

where the average energy E(ρ) and Gibbs-Shannon entropy S(ρ)
are given by

E(ρ) ≡

∫ +∞

−∞

dx ρ(x)U(x) and

S(ρ) ≡ −

∫ +∞

−∞

dx ρ(x) ln ρ(x) . (13)

These expressions reduce to their usual definitions for ρ = gβb
but can be evaluated, as well, over non-equilibrium densities.

In the formulation of the second law of Equation (11), the
initial and final states are arbitrary. In our case, the initial state
is the (approximate) local equilibrium reached at the end of Stage
1. In the final state, the system is in equilibrium with the bath.

Physically −△Fneq represents the maximum amount
of work that may be extracted from the non-equilibrium
isothermal protocol [31]. We will refer to this quantity as the
extractable work.

Wex ≡ −△Fneq,βb . (14)
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FIGURE 3 | Extractable work is a non-monotonic function of initial

temperature T = β−1 for the double-well potential of Figure 1A.

In the Appendix, we show that the difference in non-
equilibrium free energies △Fneq may be expressed as a Kullback-
Leibler divergence. Explicitly,

△Fneq = −

[

F
(

ρ
leq
β ,βb

)

− F
(

gβb
)

]

= −β−1
b

DKL

(

ρ
leq
β ,βb

, gβb

)

.

(15)

In our set-up, the extractable work between the “intermediate”

time (end of Stage 1) where Fneq,βb = Fneq,βb

(

ρ
leq
β ,βb

)

, and the

final time of the slow evolution (where Fneq,βb = Feq,βb ), is given
by Equation (15):

Wex (β ,βb) = β−1
b

DKL

(

ρ
leq
β ,βb

, gβb

)

. (16)

In section 3 and Figure 3, we saw thatDKL(ρ
leq
β ,βb

, gβb ) can be non-

monotonic as a function of β . We thus conclude that there can be
a non-monotonic dependence on β of the function

β → Wex (β ,βb) . (17)

This is our main result: If the metastable Mpemba effect occurs,
then the extractable work from the local-equilibrium state at the
end of Stage 1 is non-monotonic in the initial temperature β−1.
Figure 3 shows an example, again calculated for the potential
considered by Kumar and Bechhoefer [25].

In addition to having a clear physical interpretation,
Wex(β ,βb) is easily calculated as a simple numerical integral
of equilibrium Gibbs-Boltzmann distributions for two
temperatures. By contrast, to establish the non-monotonicity
of a2, the criterion of Lu and Raz [1], one must first find the
left eigenfunction u2 by solving the boundary-value problem
associated with the adjoint Fokker-Planck operator.

5. DISCUSSION

The anomalous relaxation process known as the Mpemba effect
is defined by a non-monotonic dependence of relaxation time on

initial temperature. Lu and Raz [1] showed that an equivalent
criterion is the non-monotonicity of the a2 projection coefficient
derived from an associated Fokker-Planck equation. In this Brief
Research Report, we have shown that, for a 1D potential U(x)
with a metastable and a stable minimum, the Mpemba effect
can be viewed as a simple two-stage relaxation in the function
space of all admissible probability densities. In the fast Stage
1, the system relaxes to a local equilibrium. In the slow Stage
2, the populations in the two coarse-grained states equilibrate.
In such a situation, we have shown that the Mpemba effect is
associated with a non-monotonic temperature dependence of the
maximum extractable work of the local equilibrium stage reached
at the end of Stage 1. Relative to the a2 coefficient, extractable
work is a much more physical quantity that is also much easier
to calculate.

The physical picture offered here, for a double-well potential,
meets our goal: We can relate the existence of the Mpemba
effect to a non-monotonicity of the extractable work. However,
we have not carefully characterized the range of validity of the
approximations used in our analysis. For example, in writing
Equation (9), we assume that the fraction of initial systems
that start in either state (x < 0 or x > 0) is preserved
after the initial fast transient. In fact, even during the brief
transient, calculating the fraction of systems in each region is
subtle, a point emphasized by van Kampen [32] in a careful
study that would be the starting point for a more detailed
theoretical investigation.

Although our arguments assume a 1D potential
with two local states, they generalize easily to many
dimensions and many local states. In such cases, the
state vector has a large number of dimensions, and
solving the Fokker-Planck equation or even calculating its
eigenfunctions is difficult. But calculating the extractable
work remains easy. Of course, our arguments do not
imply that the Mpemba effect can occur only in potentials
with metastable states and leave open the possibility for
other scenarios.
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APPENDIX

1. Monotonicity of Kullback-Leibler divergence along Gleq. The
Kullback-Leibler divergence [33] can be written in terms of
Equation (9) as

DKL

(

ρ
leq
β ,βb

, gβb

)

=

∫ ∞

−∞

dx ρ
leq
β ,βb

(x) ln

[

ρ leq(x)

gβb

]

=

∫ 0

−∞

dx aL

(

gβb (x)
∫ 0
−∞

dx′ gβb (x
′)

)

(18)

ln
aLgβb (x)

[
∫ 0
−∞

dx′ gβb (x
′)] gβb (x)

+

∫ ∞

0
dx · · ·

= aL ln

(

aL

a∗L

)

+ aR ln

(

aR

a∗R

)

.

= DKL

[(

aL
aR

)

,

(

a∗L
a∗R

)]

. (19)

In the second line, we omit the corresponding aR
terms. In the third line, a∗L ≡

∫ 0
−∞

dx gβb (x) and

a∗R ≡
∫∞

0 dx gβb (x). In the fourth line, the vectors
represent two-state probability distributions. Note that in
the “short Stage 1” approximation of Equation (10), the final
expression for DKL involves two coarse-grained probability

distributions, with
( aL
aR

)

depending only on β and
(

a∗L
a∗R

)

only

on βb.

We then investigate the monotonicity of DKL

[(

aL
aR

)

,

(

a∗L
a∗R

)]

by differentiating:

dDKL

daL
= ln

(

aL

aR

)

− ln

(

a∗L
a∗R

)

, (20)

which is positive for aL > a∗L and negative for aL < a∗L. (Recall

that aL + aR = a∗L + a∗R = 1.) Thus, DKL

(

ρ leq, g
)

is monotonic

in aL on either side of equilibrium.
2. Proof of Equation (15). The relationship is well known [34]
and holds for any distribution, including ones describing local

equilibrium. Below, to simplify notation, we write ρ leq for ρ
leq
β ,βb

and g for gβb .

DKL

(

ρ leq, g
)

=

∫ ∞

−∞

dx ρ leq(x) ln

[

ρ leq(x)

g(x)

]

=

∫ ∞

−∞

dx ρ leq(x) ln ρ leq(x)−

∫ ∞

−∞

dx ρ leq(x) ln g(x)

= −S
(

ρ leq
)

−

∫ ∞

−∞

dx ρ leq(x)
[

−βbU(x)+ βbF
(

g
)]

= −S
(

ρ leq
)

+ βb

[

E
(

ρ leq
)]

− βbF
(

g
)

= βb

[

F
(

ρ leq
)

− F
(

g
)

]

,

which is equivalent to Equation (15).
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