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Competitive cognition dynamics are widespread in modern society, especially with the

rise of information-technology ecosystem. While previous works mainly focus on internal

interactions among individuals, the impacts of the external public opinion environment

remain unknown. Here, we propose a heuristic model based on co-evolutionary game

theory to study the feedback-evolving dynamics of competitive cognitions and the

environment. First, we show co-evolutionary trajectories of strategy-environment system

under all possible circumstances. Of particular interest, we unveil the detailed dynamical

patterns under the existence of an interior saddle point. In this situation, two stable

states coexist in the system and both cognitions have a chance to win. We highlight

the emergence of bifurcation phenomena, indicating that the final evolutionary outcome

is sensitive to initial conditions. Further, the attraction basins of two stable states are not

only influenced by the position of the interior saddle point but also affected by the relative

speed of environmental feedbacks.

Keywords: co-evolutionary game theory, feedback-evolving dynamics, competitive cognitions, public opinion

environment, strategy-environment system

1. INTRODUCTION

Individual cognitive process and public cognition evolution have aroused great concern and have
been widely studied in recent years due to the rapid development of information-technology
ecosystem consisting of news medias, blogs, large-scale social networks, etc. [1–6]. Throughout
this paper, “cognition” is a psychological representation that can be any piece of “knowledge”
an individual holds, including information, attitude, beliefs, and behaviors, in accordance with
Festinger’s definition [7, 8]. In modern society, online social networks reshape the way of public
discourse and cognition consumption patterns, amplify sociocognitive biases, which further
influences the evolution of public opinions or collective behaviors [9–13]. A recent work reveals
that the combination of external political campaigns (or mass medias) and online social influence
processes could give rise to partisan echo chambers [14]. Complicatingmatters further, the complex
interplay between different social networks could also affect cognition diffusion [15, 16], leading
to the emergence of rich and important physical phenomena such as non-monotonic promotion
[17], phase transition [18], and bistability [19], which has been demonstrated by numerous studies
using multiplex networks [20–23].
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Of particular interest, an important line of research
focuses on competitive cognition dynamics, which mimic
the ubiquitous scenarios where individuals are confronted
with multiple and mutually exclusive cognitions [24–26].
Understanding the spreading processes as well as predicting
the evolutionary outcomes of competitive cognitions is of
fundamental significance for overcoming a series of real-
world challenges, ranging from public health problems, social
polarization to economic development [27–29]. For instance,
pro-vaccination vs. anti-vaccination beliefs, adopting social
distancing behaviors during COVID-19 pandemic or not,
Biden vs. Trump, supporting the use of new technologies or
not, truths vs. rumors, etc. [30–32]. Originally, the competing
dynamics were considered in the field of infectious disease,
where the classic susceptible-infected-susceptible (SIS) model
and susceptible-infected-recovered (SIR) model are extended to
study the co-contagion process of two competitive diseases [33–
35]. These epidemic-like models were subsequently extended to
describe the competitive information diffusion [36, 37]. Further,
the complex contagion models that incorporate the complicated
behavioral patterns were also developed, along with the emerging
empirical studies exploring dynamical characteristics via real
data [38–40].

While previous models interpret the evolution of competitive
cognitions mainly as a result of internal interactions among
individuals, either described by the effects of social influence or
by the spreading dynamics such as contact-based transmission,
the impact of external public opinion environment, especially
the media atmosphere of supporting a certain cognition, is
ignored [14]. For example, when exposed to a new cognition,
the increasing number of adopters or supporters may attract the
attention of medias and promotes the supportive level of public
opinion environment. In turn, an ascending public opinion
environment could encourage more people to adopt or support
a new cognition, providing positive evidence for the supporters
in public discourse. Therefore, the evolutionary outcome of the
competitive cognitions is actually determined by both the benefit
from the new cognition and the feedback from public opinion
environment, especially in the era of social medias. However, it
remains largely unknown how the public opinion environment
influences the evolutionary dynamics of competitive cognitions.

To advance this important issue, in this paper, we propose
a theoretical framework to describe the co-evolution of
competitive cognitions and public opinion environment using
co-evolutionary game theory, which has been developed recently
to study the feedback loops between environment and strategies
that are widely observed in biological and ecological systems [41–
46]. The “cooperators” are defined as individuals who support
the new cognition while the “defectors” are those who support
the old cognition. Hence, the evolution of competitive cognitions
can be characterized by the replicator dynamics in evolutionary
game theory. The core idea of our model is to incorporate
the impact of environmental feedback into cognition dynamics
through an additional payoff from public discourse. Conversely,
the external public opinion environment is a function of
the current proportions of cooperators and defectors. First,
we conduct theoretical analysis for the stability of all fixed

points and present co-evolutionary dynamics of cooperation and
environment under different situations.We find that cooperation
or defection can be the sole dominant strategy among population,
i.e., one of the cognitions always wins the competition, but only
if the benefit or the loss from adopting the new cognition exceeds
a threshold related to the influence of public discourse. In other
cases, the system has a saddle point and the two cognitions both
have a chance to survive, depending on the initial conditions. We
further explore the dynamical properties under the existence of
an interior saddle point and find the emergence of bifurcation
phenomena. In other words, the evolutionary directions of the
co-evolution system can be changed through a tiny disturbance,
which indicates the existence of “randomness” or “luckiness” in
real-world cognition competitions, making it difficult to steer
the evolution to a desired direction [46, 47]. Furthermore, we
show how the parameters in our model affect the position of
the interior saddle point and that the relative feedback speed of
public opinion not only influences the convergence speed but
also changes the attraction basin of the two stable states. Finally,
we incorporate systematic stochasticity into our deterministic
model and reveal the detailed impact of stochastic environmental
fluctuations.

2. MODEL

In this section, we introduce a modeling framework of two-
strategy co-evolutionary game in a well-mixed population to
characterize the competition of two cognitions under the
influence of modern information-technology ecosystem. When
exposed to two cognitions, an individual can choose either to
support the new cognition (be a cooperator) or support the old
cognition (be a defector). The cooperator receives a fixed payoff
Pc from the new cognition and takes the risk of “innovation”
c, while the defector receives Pd for adopting the old cognition.
Meanwhile, the player receives an extra payoff or loss during
public discourse, the value of which is decided by the supportive
level for the two cognitions from external environment, i.e.,
public opinion environment n, n ∈ [0, 1]. The schematic of our
model is illustrated in Figure 1. The payoff matrix of this game
can be written as

A =

[

Pc − c+ nk1 Pc − c− k2((1− n)− n)
Pd − k2(n− (1− n)) Pd + (1− n)k1

]

(1)

where n and 1 − n denote the environments for supporting the
new cognition and the old cognition, and k1, k2 > 0 are the rates
of receiving payoffs/losses from homogeneous interactions and
heterogeneous conflicts during public discourse, respectively. For
example, if a cooperator plays with a cooperator, they talk to each
other and both satisfy with the discussion, receiving nk1 from
the interaction in addition to Pc − c from the new cognition
itself. If a cooperator plays with a defector, however, they debate
each other and the virtual conflict makes the cooperator loses
k2((1 − n) − n). Note that here ((1 − n) − n) indicates the
current environmental advantage of defectors over cooperators.
If ((1 − n) − n) < 0, the cooperator actually wins the argument
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FIGURE 1 | Schematic of our co-evolutionary modeling framework. (Top) The evolution of competitive cognitions, described by the fraction of cooperators who

support the new cognition, is determined by a payoff matrix. (Top, Bottom) The fraction of cooperators x modifies the public opinion environment n, which in turn

influences the payoffs fij .

and receives a positive benefit. Thus, the fitnesses of cooperators
and defectors, fc and fd, are

{

fc = (Pc − c+ nk1)x+ (Pc − c− k2(1− 2n))(1− x)

fd = (Pd − k2(2n− 1))x+ (Pd + (1− n)k1)(1− x)
(2)

The standard replicator dynamics for the fraction of cooperators
x is

ẋ = x(fc − f̄ )

= x(1− x)(fc − fd)

= x(1− x)(k1x+ (k1 + 2k2)n+ P1 − k1 − k2)

(3)

where f̄ = xfc + (1 − x)fd represents the average fitness of the
population, P1 = Pc−c−Pd indicates the inherent fixed payoff of
cooperation (adopting the new cognition) vs. defection (adopting
the old cognition). Meanwhile, the public opinion environment

is modified by the population states, and the environmental
evolution is given by

ṅ = ǫn(1− n)(θx− (1− x)) (4)

where ǫ denotes the relative feedback speed of the environment
compared to cognition dynamics. The logistic term n(1 − n)
ensures n ∈ [0, 1]. And θ > 0 is the relative strength of enhancing
the environment by cooperators vs. decreasing the environment
by defectors.

Therefore, the co-evolutionary game dynamics of competitive
cognitions and public opinion environment can be written
as follows:

{

ẋ = x(1− x)(k1x+ (k1 + 2k2)n+ P1 − k1 − k2)

ṅ = ǫn(1− n)(θx− (1− x))
(5)
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FIGURE 2 | Trajectory diagrams of x − n system in the well-mixed population under all possible situations. The red dots represent unstable equilibriums, the green

dots represent stable equilibriums while the orange dots represent saddle points. Parameters: k1 = 2, k2 = 1, θ = 2, ǫ = 2. From left to right,

P1 = −4,−2,−1.3, 0.5, 1.4, 2.4, 4, respectively.

3. RESULTS

3.1. Co-evolution of Cooperation and
Environment Under Different
Circumstances
First, we provide trajectory diagrams of x− n system to illustrate
co-evolutions of cooperation and environment in the well-
mixed population under all possible circumstances in Figure 2.
Since the environment n is confined in [0, 1], all parameters
should naturally be in the same order of magnitude. In order
to provide a typical case close to reality, we assume the rate of
receiving payoffs from homogeneous interactions (k1) is larger
than that from heterogeneous conflicts during public discourse
(k2). And cooperators have advantages over defectors in terms
of enhancing the environment (i.e., θ ≥ 1), which means the
new cognition or social innovation is favored by the media
atmosphere. In addition, we assume the environment evolves
faster than cognition dynamics (ǫ ≥ 1). For simplicity and
without loss of generality, we set k1 = 2, k2 = 1, θ = 2,
ǫ = 2 and change P1 = −4,−2,−1.3, 0.5, 1.4, 2.4, 4, respectively.
There are seven possible fixed points in the system: four locate

in the corners, two on the boundary and the remaining one is
an interior fixed point. The detailed theoretical analysis for the
existence conditions and the stability of these fixed points are
provided in Supplementary Materials.

When P1 > k1 + k2, the system has four corner fixed points,
within which (1, 1) is the only stable equilibrium, corresponding
to the state where the population is dominated by cooperators
and the external environment fully supports the new cognition.
Similarly, when P1 < −k1 − k2, (0, 0) is the only stable
equilibrium and the old cognition will win the competition with
the environment reaches its minimum value.

When −k1 − k2 < P1 < k1 + k2, however, (0, 0) and (1, 1)
are both stable equilibriums and the final state of the system
depends on initial conditions.More specifically, when−k1−k2 <

P1 < −
k1
1+θ

− k2 or θk1
1+θ

+ k2 < P1 < k1 + k2, there exists

a boundary saddle point (−k2−P1
k1

, 1) or ( k1+k2−P1
k1

, 0) in addition
to four corner fixed points, respectively. And the phase plane is
divided into two regions: one evolves to (0, 0) and one evolves
to (1, 1).

In particular, when− k1
1+θ

− k2 < P1 <
θk1
1+θ

+ k2, we find the
emergence of an interior saddle point:
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FIGURE 3 | A typical case in which the cooperation and the environment co-evolve toward either (1, 1) or (0, 0), indicating that the social innovation of new cognition

succeeds or fails, respectively. We provide phase plane dynamics in (A) and highlight four typical trajectories in different colors. The detailed time evolutions of

strategies and the environment for each trajectory are presented in (B,C), correspondingly. Parameters: k1 = 2, k2 = 1, θ = 1, ǫ = 1, P1 = −0.5.

FIGURE 4 | Emergence of bifurcation phenomena: sensitivity to initial conditions. The existence of interior saddle points in x − n system can lead to “randomness” in

real-world practice: either (A) a small disturbance in initial public opinion environment given a certain level of initial cooperation, or (B) a small disturbance in initial

fraction of cooperators given a certain initial environment could change the evolutionary directions of the dynamical system. Parameters: k1 = 2, k2 = 1, θ = 2, ǫ = 2,

P1 = 0.5.















x∗ =
1

1+ θ

n∗ =
k2 +

θk1
1+θ

− P1

k1 + 2k2

(6)

Within this interval, the boundary fixed point becomes an
unstable equilibrium when −

k1
1+θ

− k2 < P1 < −k2 and k2 <

P1 <
θk1
1+θ

+ k2, and vanishes when−k2 < P1 < k2.
To summarize, we show that when the inherent payoff

of adopting a certain cognition is large enough to ignore
the environmental influence through public discourse, that
cognition will eventually dominant the population with a fully
supportive environment. Nevertheless, if the impact of public
opinion environment is comparable to the inherent benefit
from the competitive cognitions, there are opportunities for

both cognitions to win, depending on initial conditions and
model parameters.

3.2. Evolutionary Dynamics With Interior
Saddle Points
We are particularly interested in exploring dynamical patterns
under the existence of interior saddle points. In Figure 3, we
show the phase plane dynamics of a typical case where the
cooperation and the environment co-evolve toward either (1, 1)
or (0, 0). Here, k1 = 2, k2 = 1, θ = 1, ǫ = 1, P1 = −0.5 and the
interior fixed point is ( 12 ,

5
8 ) according to equation 6. Four typical

trajectories are highlighted in Figure 3A and the corresponding
variations of strategies as well as the public opinion environment
over time are provided in Figures 3B,C. We find that all
trajectories experience two stages of dynamics. During the first
stage, the cooperation and the environment evolve to opposite
directions: either the supporters of new cognition increase
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FIGURE 5 | Effects of the relative feedback speed. We fix k1 = 2, k2 = 1, θ = 2, P1 = 0.5, and change ǫ = 0.1, 3, 20 in (A–C), respectively.

while the external environment becomes worse (pink and red
trajectories), or the public opinion environment gets better while
the supporters of new cognition become fewer (orange and
green trajectories). During the second stage, on the other hand,
the cooperation and the environment benefit from the mutual
positive feedbacks and co-evolve toward the same direction: the
population adopts the new cognition with a fully supportive
environment (pink and orange trajectories) or adopts the old
cognition with a fully unsupportive environment (red and
green trajectories).

To conclude, the intuitive understanding of this dynamical
character can be explained as follows. The eventual evolutionary
direction of this system actually depends on the results of two
types of “competition” at initial stage: (i) whether the increasing
public opinion environment could save the loss of new cognition
adopters (orange trajectory succeeds while green trajectory fails),
and (ii) whether the increasing new cognition supporters would
arouse enough external supports from media environment (pink
trajectory succeeds while red trajectory fails).

Unfortunately, the existence of interior saddle point in
co-evolution system leads to the emergence of bifurcation
phenomena, as shown in Figure 4, which indicates that it is
difficult to steer the social evolution to a desired direction.
The parameters are k1 = 2, k2 = 1, θ = 2, ǫ =

2, P1 = 0.5, and the x − n phase diagram can be found
in Figure 1. The final evolutionary direction, to some extent,
can be significantly affected by “randomness” or “luckiness” in
real-world practice: both a tiny disturbance in public opinion
environment given a certain fraction of cooperators (Figure 4A)
and a tiny disturbance in the fraction of cooperators given
a certain level of environment (Figure 4B) could change the
evolutionary directions of the dynamical system.

These dynamical properties just highlight the importance of
the interior saddle point. We further analyze how our model
parameters affect the position of the interior saddle point
(x∗, n∗), which determines the attraction basin of the two stable

equilibriums [(0, 0) and (1, 1)]. Generally, a larger x∗ or n∗

indicates that more initial cooperators or a more supportive
initial environment is needed for successfully promoting the
new cognition. According to equation 6, x∗ is only influenced
by θ , the relative strength of enhancing the environment
by cooperators vs. decreasing the environment by defectors.
Obviously, x∗ increases as θ decreases, calling for more
cooperators participating the social innovation if each of them
has less impact. On the other hand, n∗ is influenced by four
parameters: θ , P1, k1 and k2. It is easy to see that n∗ increases
as θ increases or P1 decreases, whereas k1 and k2 have more
complicated influence. The formula of n∗ can be rewritten as

n∗ =
θ

1+ θ
+

1−θ
1+θ

k2 − P1

k1 + 2k2
(7)

Therefore, (i) when P1 < 1−θ
1+θ

k2, n∗ increases as k1 decreases;

(ii) when P1 = 1−θ
1+θ

k2, n∗ = θ
1+θ

; (iii) when P1 > 1−θ
1+θ

k2, n∗

increases as k1 increases. Similarly, we have

n∗ =
1

2
+

θ−1
2(1+θ)k1 − P1

k1 + 2k2
(8)

Hence, (i) when P1 < θ−1
2(1+θ)k1, n

∗ increases as k2 decreases; (ii)

when P1 = θ−1
2(1+θ)k1, n

∗ = 1
2 ; (iii) when P1 > θ−1

2(1+θ)k1, n
∗

increases as k2 increases.
Furthermore, we show the impact of the relative feedback

speed in Figure 5. We fix k1 = 2, k2 = 1, θ = 2, P1 = 0.5, and
change ǫ = 0.1, 3, 20 from Figures 5A–C. Aside from changing
the convergence speed of the dynamical system, we find the
relative feedback speed can also influence the attraction basin of
the two stable states, though not affecting the position of interior
saddle point. A larger ǫ gives advantage to the environmental
feedback compared to the strategy dynamics, resulting in the
occurrence of more steep trajectories.
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FIGURE 6 | Evolutionary dynamics under the influence of stochastic environmental fluctuations. (A,B) and (D,E) show time evolutions of strategies and the

environment under different fluctuation speeds [δ = 0.1, 0.3 for (A,B) and δ = 0.4, 0.5 for (D,E)] and different initial conditions [(x0, n0) = (0.1, 0.84) for (A,B) and

(x0, n0) = (0.1, 0.7) for (D,E)]. Each subfigure presents result of 100 independent runs. Panels (C,F) provide distributions of the final states corresponding to (A,B) and

(D,E), respectively. Other parameters for all subfigures: k1 = 2, k2 = 1, θ = 2, ǫ = 2, P1 = 0.5.

3.3. Impact of Stochastic Environmental
Fluctuations
While the power of external stochasticity (via direct disturbance
on either strategy or environment) has been stressed in Figure 4,
it is meaningful to further explore the influence of systematic
stochasticity on our deterministic model. Here, we consider
a simple stochastic fluctuation embedded in environmental
evolution, which is given by

ṅ = ǫn(1− n)((θx− (1− x))+ φT(δ)) (9)

where φT(δ) = δ or −δ with the same probability
0.5 at each time interval [T,T + 1), T ∈ {0, 1, 2, ...},

and δ > 0 describes the relative fluctuation speed of
the environment.

In Figure 6, we study the impact of stochastic environmental
fluctuations in two scenarios: (i) the initial state (x0, n0) =

(0.1, 0.84) is close to the boundary of the two attraction basins
(Figures 6A–C), or (ii) the initial state (x0, n0) = (0.1, 0.7) locates
inside the attraction basin of (0, 0) and is relatively far away from
the boundary (Figures 6D–F). Note that the actual changing
speed of the environment caused by the systematic stochasticity
at time t can be calculated by ǫnt(1 − nt)φt(δ), which is small
under all our parameters. In scenario (i), we find that even a tiny
stochastic fluctuation is capable of changing the co-evolutionary
direction, i.e., driving the x − n system toward (1, 1) instead
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of (0, 0). In addition, a larger δ significantly promotes such
changes, bring about more (1, 1) states when system becomes
stable. In scenario (ii), however, the final evolutionary results can
be changed only when δ is large enough.

4. CONCLUSIONS AND DISCUSSIONS

Evolutionary game theory is an effective approach to study
the incentive-driven dynamical evolutions, where different
strategies “compete” for a higher payoff in order to survive
in the natural systems [48, 49]. In particular, recent advance
highlights the importance of coupled interactions between
strategies and external environment [50]. The strategy-
dependent environmental feedbacks give rise to the oscillating
dynamics of both cooperation and environment states, which
provides profound insights toward many important issues, such
as overexploitation problem [51], social distancing behavior
during COVID-19 pandemic [31], vaccine refusal [52–54], etc.
Further studies show that such co-evolution could lead to the
emergence of persistent cooperation if the relative feedback
speed exceeds a threshold, breaking the tragedy of the commons
in traditional public goods game [55]. Despite the progress, few
works have extended this powerful theoretical framework to the
field of cognition (information, beliefs, ideas, behaviors, etc.)
evolution. Specifically, it remains largely unknown how public
opinion environment influences the competition of two opposite
cognitions, which is ubiquitous and is of vital importance in a
polarizing society [56].

In this paper, we introduce this co-evolutionary game theory
into our new model to study the dynamics of feedback
loops between competitive cognitions and public opinion
environment. We find that when the inherent payoff or loss
from the new cognition exceeds a critical value with regard to
the environmental impact, individuals will neglect the feedbacks
from public opinion and the population will be dominated
by one cognition regardless of initial conditions. Otherwise,
a saddle point occurs in the system and both cooperation
(the new cognition) domination with a fully supportive
environment and defection (the old cognition) domination with
a fully unsupportive environment are stable states. Under this
circumstance, the final result of the competition depends on
the parameters and initial conditions. A further exploration
on dynamical patterns under the existence of interior saddle
point is also performed. Results unveil the sensitivity of the

system to tiny disturbance in some areas, indicating that the
eventual evolutionary direction of the competitive cognition
sometimes might be determined by “randomness” or “luckiness”
in real world. Similar phenomena are also observed when a
simple systematic stochastic fluctuation is considered in the
environmental evolution. Finally, we show that the relative
feedback speed not only influences the convergence speed, but
also changes the attraction basin of the two stable states.

A noteworthy limitation of our work is that our model
cannot reproduce the possible stable state where the two
cognitions both survive. Previous works have revealed many
mechanisms that contribute to the coexistence in competitive
dynamics or the emergence of persistent cooperation, such
as the existence of inactive individuals [57], the network
structures [58–62], the homogeneous trends [26], etc. [63–
68]. Further studies may consider the incorporation of
these influential factors based on our heuristic modeling
framework.
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