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In this article, first, we give the definition of normal curves in 4-dimensional Galilean

space G4. Second, we state the necessary condition for a curve of curvatures τ (s) and

σ (s) to be a normal curve in 4-dimensional Galilean space G4. Finally, we give some

characterizations of normal curves with constant curvatures in G4.
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1. INTRODUCTION

Galilean geometry is one of the Cayley-Klein geometries whose motions are the Galilean
transformations of classical kinematics [1]. The Galilean transformation group has an important
place in classical and modern physics. It is well known that the idea of world lines originates in
physics and was pioneered by Einstein. The world line of a particle is just the curve in space-time
which indicates its trajectory [2].

In Euclidean 3-space E3, there are three types of curves, namely, osculating, rectifying, and
normal curves [3]. The osculating curve in E3 is defined as a curve whose position vector always
lies in its osculating plane, which is spanned by the tangent vector T and the normal vector N [3].
The rectifying curve in E3 is defined as a curve whose position vector always lies in its rectifying
plane, which is spanned by the tangent vector T and the binormal vector B. Many researchers have
investigated rectifying curves in Euclidean, Lorentz-Minkowski, and Galilean space, as can be seen
in [4–6]. Similarly, a normal curve in E3 is defined as a curve whose position vector always lies
in its normal plane, which is spanned by the normal vector N and the binormal vector B of the
curve. Normal curves in n-dimensional Euclidean space was studied by Ozcan Bekats [7], framed
normal curves in Euclidean space was studied by B.D. Yazici, S. O.Karakus, and M. Tosun [8], and
normal curves on a smooth immersed surface was investigated by A.A. Shaikh, M.S. Lone, and P.R.
Ghosh [9].

There are also many studies related to normal curves in non-Euclidean spaces, for example,
normal curves and their characterizations in Lorentzian n-space was studied by Ozgür Boyacıoğlu
Kalkan [10] and to the classification of normal and osculating curves in 3-dimensional Sasakian
space was studied by M. Kulahck, M. Bahatas, and A. Bilici [11].

In recent years, researchers have begun to introduce curves and surfaces in Galilean and
pesedo-Galilean spaces [12–24]. Normal and rectifying curves in Galilean G3 were obtained by
Handan Oztekin [25]. Also, many studies about Galilean Geometry were found in Reference [1].
Frenet-Serret frame in the Galilean 4-space was constructed by S.Yilmaz [26].

In the present study, we considered a curve in Galilean 4-spaceG4 whose position vector satisfies
the equation α(s) = λ(s)N(s)+µ1(s)B1(s)+µ2(s)B2(s) for differentiable functions λ(s),µ1(s), and
µ2(s).N(s),B1(s), and B2(s) are normal, first binormal, and second binormal vectors of the curve in
Galilean space G4. In the first part of the study, the necessary condition for a curve to be a normal
curve was obtained; then, we considered a special case when the curvatures are constant and got
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the position vector of the normal curve in G4. At the end of the
study, it can be seen that the normal curve in G4 lies on a sphere
if τ

σ
= constant, where τ and σ are the second and the third

curvatures of the normal curve α(s).

2. PRELIMINARIES

In this section, we will give some definitions considered in this
study. Let −→x = (x1, x2, x3, x4) and

−→y = (y1, y2, y3, y4) be two
vectors in G4. The Galilean scalar product in G4 is defined by

<
−→x ,−→y >G4=

{

x1y1, if x1 6= 0 or y1 6= 0,
x2y2 + x3y3 + x4y4, if x1 = 0 and y1 = 0.

The norm of the vector −→x = (x1, x2, x3, x4) is given by
∣

∣

−→x
∣

∣ =
√

<
−→x ,−→x >G4 .

The cross product of any three vectors−→x ,−→y , and−→z in G4 is
defined by the relation

−→x ×−→y ×−→z =






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∣

∣
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∣

∣
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, if x1 6= 0 or y1 6= 0 or z1 6= 0,

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

, if x1 = y1 = z1 = 0,

where the unit vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 =
(0, 0, 1, 0), and e4 = (0, 0, 0, 1) [1].

A curve α : I ⊂ R → G4 of C∞ in the Galilean space G4 is
defined by α(t) = (x(t), y(t), z(t),w(t)).

If the curve is parameterized by Galilean arc-length s, it is
defined by α(s) = (s, y(s), z(s),w(s)).

The Frenet frame for the parameterized curve α(s) =
(s, y(s), z(s),w(s)) in G4 is denoted by the following vectors

T(s) = α
′
(s) = (1, y

′
(s), z

′
(s),w

′
(s)),

N(s) = 1
k(s)

α
′′
(s) = 1

k(s)
(0, y

′′
(s), z

′′
(s),w

′′
(s)),

B1(s) = 1
τ (s)

(0, (
y
′′
(s)

k(s)
)′, ( z

′′(s)
k(s)

)′, (w
′′(s)
k(s)

)′),

B2(s) = ςT(s)× N(s)× B1(s),
Here, the coefficient ς is taken ±1 to make the determinant of
the matrix [T,N,B1,B2]= 1.

where T(s),N(s),B1(s) and B2(s) are the tangent, normal, the
first binormal, and the second binormal vectors of α(s). k(s) and
τ (s) are the first and second curvatures, which are given by the
following equations

k(s) =
∣

∣

∣
T

′
(s)
∣

∣

∣ G4 =
√

(y
′′
(s))2 + (z

′′
(s))2 + (w

′′
(s))2,

τ (s) =
∣

∣

∣
N

′
(s)
∣

∣

∣ G4 =
√

< N
′
(s),N

′
(s) >

G4
.

The third curvature of the parameterized curve α(s) is
denoted by σ (s) =< B

′
1(s),B2(s) >

G4
. If the curvatures of

α(s) are constants, the curve α(s) is called a W-curve. The set
{T(s),N(s),B1(s),B2(s), k(s), τ (s), σ (s)} is called Frenet apparatus
of the curve α(s). The vectors T(s),N(s),B1(s), and B2(s) are
mutually orthogonal.

< T(s),T(s) >G4=< N(s),N(s) >G4=< B1(s),B1(s) >G4

=< B2(s),B2(s) >G4= 1,
and <T(s),N(s)>G4=<T(s),B1(s)>G4=< T(s),B2(s) >G4=<

N(s),B1(s) >G4

=< N(s),B2(s) >G4=< B1(s),B2(s) >G4= 0.
The derivatives of the Frenet equations are defined by [26].

T
′
(s) = k(s)N(s), (2.1)

N
′
(s) = τ (s)B1(s),

B
′
1(s) = −τ (s)N(s)+ σ (s)B2(s),

B
′
2(s) = −σ (s)B1(s).

3. NORMAL CURVES IN G4

In the following section, we will define the normal curves
in Galilean 4-dimensional space and prove that there are no
congruent curves to the normal curve α(s); finally, we will
provide some characterizations of the normal curves in G4.

Definition 1. Let α : I ⊂ R → G4 be a parameterized curve
in G4. A curve α(s) is called a normal curve if the orthogonal
components of T(s) contains a fixed point for all s ∈ I.

In the following theorem, we indicate the position vector of the
normal curve in Galilean 4-space G4.

Theorem 1. The position vector of the normal curve in G4 with
curvatures k(s), τ (s), and σ (s) are defined if τ (s) and σ (s) satisfy
the following equations:

(

µ1(s)
)(r+2)

+
r
∑

k=0

r−k
∑

ℓ=0

(

r + 1

k

)(

r − k

ℓ

)[

(

σ (s)
)(k)(

σ (s)
)(ℓ)

+

(

τ (s)
)(k)(

τ (s)
)(ℓ)

]

(

µ1(s)
)(r−k−ℓ)

= 0.

Proof: The position vector of a normal curve in G4 is defined by

α(s) = λ(s)N(s)+ µ1(s)B1(s)+ µ2(s)B2(s), (3.1)

where λ(s),µ1(s), and µ2(s) are smooth functions of s.
By differentiating (Equation 3.1) with respect to s, we obtain

α′(s) = λ′(s)N(s)+ λ(s)N′(s)+ µ′
1(s)B1(s)+ µ1(s)B

′
1(s)

+ µ′
2(s)B2(s)+ µ2(s)B

′
2(s). (3.2)

substituting Frenet (Equations 2.1) into Equation 3.2, we
have T(s) = (λ′(s) − τ (s)µ1(s))N(s) + (λ(s)τ (s) + µ′

1(s) −
µ2(s)σ (s))B1(s)+ (µ1(s)σ (s)+ µ′

2(s))B2(s).
Hence, we have the following system of differential equations:

dλ

ds
= τ (s)µ1(s), (3.3)

dµ1

ds
= −τ (s)λ(s)+ σ (s)µ2(s), (3.4)
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and

dµ2

ds
= −σ (s)µ1(s). (3.5)

Since the curvature functions τ (s) and σ (s) must be differentiable
functions, so we consider a set F of differentiable functions,
defined by

F = {Pn(s), eωs, cosβs, sinβs, n ∈ N, ω, β ∈ R}, (3.6)

where Pn(s) denotes a polynomial function of degree n in s.
Here, the curvature functions can be any function of F , a linear
combination or a product of these functions. It is said that L[Ds]
annihilates the function ϒ(s) if L[Ds](ϒ(s)) = 0. Here, all the
member functions of F have this property. Consequently, we
have two linear differential operators,8(Ds) and9(Ds), such that
8(Ds){τ (s)} = 0 and 9(Ds){σ (s)} = 0, where Ds = d

ds
, some of

these annihilator operators are listed in Table 1. By applying the
operator 2(Ds) = 8(Ds)9(Ds) on Equation (3.4), we have

2(Ds)Dsµ1(s) = −2(Ds){τ (s)λ(s)} + 2(Ds){σ (s)µ2(s)}
= −9(Ds)8(Ds){τ (s)λ(s)}
+ 8(Ds)9(Ds){σ (s)µ2(s)}.

(3.7)

The operator 2(Ds) annihilates the terms that contain λ(s) and
µ2(s), i.e., the right hand side (RHS) of Equation (3.7) contains
the derivatives of λ(s) and µ2(s) from order 1 to an order of less
than the order of the derivative of µ1(s) by 1 at most. Let the
maximum derivative in the left hand side (LHS) of Equation (3.7)
be r + 1; then, its RHS can be written as a linear combination
of the derivatives of τ (k)(s)λ(r−k)(s) and σ (k)(s)µ

(r−k)
2 (s) and k ∈

{0, 1, . . . , r − 1}, consequently, we have

2(Ds)Dsµ1(s) =
r−1
∑

k=0

(

ar,k

(

σ (s)
)(k)(

µ2(s)
)(r−k)

− br,k

(

τ (s)
)(k)(

λ(s)
)(r−k)

)

, (3.8)

where ar,k, br,k ∈ R. Next by differentiating Equations (3.3) and
(3.5), (r − 1− k) times and applying Leibniz’s rule, one gets

(

λ(s)
)(r−k)

=
(

τ (s)µ1(s)
)(r−1−k)

=
r−1−k
∑

ℓ=0

(

r − 1− k

ℓ

)

(

τ (s)
)(ℓ)(

µ1(s)
)(r−1−k−ℓ)

,

(3.9)

and

(

µ2(s)
)(r−k)

= −
(

σ (s)µ1(s)
)(r−1−k)

= −
r−1−k
∑

ℓ=0

(

r − 1− k

ℓ

)

(

σ (s)
)(ℓ)(

µ1(s)
)(r−1−k−ℓ)

.(3.10)

Applying Equations (3.9) and (3.10) into (3.8) yields

TABLE 1 | Annihilator operators of some functions.

Function The corresponding annihilator operator

Pn(s) Dn+1
s {Pn(s)} = 0

eωs (Ds − ω){eωs} = 0

cosβs\ sinβs (D2
s + β2 ){cosβs\ sinβs} = 0

sneωs (Ds − ω)n+1{sneωs} = 0

sneωs cosβs
(

D2
s − 2ωDs + ω2 + β2

)n+1
{sneωs cosβs} = 0

2(Ds)Dsµ1(s)+
r−1
∑

k=0

r−1−k
∑

ℓ=0

(

r − 1− k

ℓ

)[

ar,k

(

σ (s)
)(k)(

σ (s)
)(ℓ)

+

br,k

(

τ (s)
)(k)(

τ (s)
)(ℓ)

]

(

µ1(s)
)(r−1−k−ℓ)

= 0. (3.11)

Equation (3.11) is a linear differential equation of order (r+ 1) in
µ1(s) with differential variable coefficients. Its general solution
depends on the nature of the coefficients of its derivatives.
However, the power series method can be applied to obtain its
solution, especially, for any value of s ∈ R is an ordinary point in

all the coefficients of the derivatives µ
(k)
1 (s), k = 0, 1, . . . , r.

Next, we studied the case when τ (s) ∈ Pn(s) and σ (s) ∈ Pm(s).
When r = max(m, n), then the annihilator operator is Dr+1

s ,
Dr+1
s τ (s) = Dr+1

s σ (s) = 0, and consequently, 2(Ds) = Dr+1
s was

applied into Equation (3.7) by applying Leibniz’s rule, yielding

(

µ1(s)
)(r+2)

=
r
∑

k=0

(

r + 1

k

)[

(

σ (s)
)(k)(

µ2(s)
)(r+1−k)

−
(

τ (s)
)(k)(

λ(s)
)(r+1−k)

]

. (3.12)

By using Equations (3.9) and (3.10), Equation (3.12) becomes
(

µ1(s)
)(r+2)

+
r
∑

k=0

r−k
∑

ℓ=0

(

r + 1

k

)(

r − k

ℓ

)[

(

σ (s)
)(k)(

σ (s)
)(ℓ)

+

(

τ (s)
)(k)(

τ (s)
)(ℓ)

]

(

µ1(s)
)(r−k−ℓ)

= 0. (3.13)

Corollary 1. Let α(s) be a normal curve in G4. If the curvatures
τ (s) and σ (s) ∈ P1(s), then the position vector of the normal curve
in G4 is given by

α(s) =
(

π
4

√
2

(

(

C
( 4√2(s+1)√

π

))2
+
(

S
( 4√2(s+1)√

π

))2
)

+ cλ

)

N(s)+
(

C1 sin
(√

2
2 (s+ 1)2

)

+ C2 cos
(√

2
2 (s+ 1)2

)

+C3

(

1F2

[

1
3
4

5
4

;− 1
8 (s+ 1)4

]))

B1(s) +
(

−π
4

√
2

(

(

C
( 4√2(s+1)√

π

))2
+
(

S
( 4√2(s+1)√

π

))2
)

+cµ2

)

B2(s)
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where C1, C2, C3, cλ, and cµ2 are constants; the Fresnel functions,
C(s) =

∫ s
0 cos(t

2)dt; and S(s) =
∫ s
0 sin(t

2)dt; the generalized
hypergeometric function,

pFq

[

β1 β2 ... βp

γ1 γ2 ... γq
; s
]

=
∞
∑

n=0

p
∏

j=1

(

βp

)

n
sn

p
∏

j=1

(

γq
)

n
n!

;

and (β)n is the shifted factorial, defined by [27]

(β)n = β(β + 1) . . . (β + n− 1) =
n−1
∏

j=0

(β + j), and (β)0 = 1.

Proof: We consider a special case, when τ (s), σ (s) ∈ P1(s),
i.e., τ (s) = a1s + b1, σ (s) = a2s + b2, then we have r = 1,
τ ′(s) = a1 and σ ′(s) = a2 and the annihilate operator is D2

s

(D2
s τ (s) = τ ′′(s) = D2

s σ (s) = 0); by substituting into Equation
(3.13), one gets
(

µ1(s)
)(3)

+
1
∑

k=0

1−k
∑

ℓ=0

(

2

k

)(

1− k

ℓ

)[

(

σ (s)
)(k)(

σ (s)
)(ℓ)

+
(

τ (s)
)(k)(

τ (s)
)(ℓ)

]

(

µ1(s)
)(1−k−ℓ)

= 0. (3.14)

By extracting the summations, we have

d3µ1

ds3
+
(

(

σ (s)
)2 +

(

τ (s)
)2
) dµ1

ds
+ 3(σ (s)σ ′(s)

+ τ (s)τ ′(s))µ1(s) = 0. (3.15)

By applying the power series method to solve Equation (3.15),
where µ1(s) =

∑∞
k=0 cks

k, differentiating it for up to three
times, then substituting into Equation (3.15), and collecting the
coefficients, one gets

c3 = −1
3!

1
∑

j=0

(j+ 1)̟1−jcj,

c4 = 1
2(4!)

2
∑

j=0

(5j2 − 9j− 3)̟2−jcj,

cn+3 = 1
2(n+1)3

2
∑

j=0

(

(5n+ 3)j2 − (7n+ 11)j− 8(n− 1)
)

̟2−jcn−1+j, n = 2, 3, . . . ,

where,

̟0 = b21 + b22, ̟1 = a1b1 + a2b2, ̟2 = a21 + a22.

Finally, for a special case, when a1 = a2 = b1 = b2 = 1, the
resultant differential equation is

µ′′′
1 + 2(s+ 1)2µ′

1 + 6(s+ 1)µ1 = 0, (3.16)

which has the solution
µ1(s) = C1 sin

(√
2
2 (s+ 1)2

)

+ C2 cos
(√

2
2 (s+ 1)2

)

+

C3

(

1F2

[

1
3
4

5
4

;− 1
8 (s+ 1)4

])

.

It is worth noting that the generalized hypergeometric function
is convergent, when p < q + 1, which holds in the proposed
problem. Hence, we can obtain the functions λ(s) and µ2(s),
by integrating Equations (3.3) and (3.5) with respect to s,
respectively, then we have

λ(s) =
π

4

√
2





(

C

(

4
√
2 (s+ 1)
√

π

))2

+

(

S

(

4
√
2 (s+ 1)
√

π

))2




+ cλ,

and

µ2(s) = −
π

4

√
2





(

C

(

4
√
2 (s+ 1)
√

π

))2

+

(

S

(

4
√
2 (s+ 1)
√

π

))2




+ cµ2 .

Corollary 2. The position vector of the normal curve in G4 with
constant curvatures τ and σ is given by

α(s) =
[

τ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s− c2 cos
√

τ 2 + σ 2s)+ c3

]

N(s)+ (c1 cos
√

τ 2 + σ 2s+ c2 sin
√

τ 2 + σ 2s)B1(s)+
[

−σ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s− c2 cos
√

τ 2 + σ 2s)+ c4

]

B2(s).

Proof: The position vector of a normal curve in G4 is defined by

α(s) = λ(s)N(s)+ µ1(s)B1(s)+ µ2(s)B2(s), (3.17)

where λ(s),µ1(s), and µ2(s) are differentiable functions of s.
By differentiating Equation (3.17) with respect to s, we obtain

α′(s) = λ′(s)N(s)+ λ(s)N′(s)+ µ′
1(s)B1(s)+ µ1(s)B

′
1(s)

+ µ′
2(s)B2(s)+ µ2(s)B

′
2(s). (3.18)

Substituting Frenet Equations (2.1) into Equation (3.18), we have
T(s) = (λ′(s) − τ (s)µ1(s))N(s) + (λ(s)τ (s) + µ′

1(s) −
µ2(s)σ (s))B1(s)+ (µ1(s)σ (s)+ µ′

2(s))B2(s).
Hence, we obtain the following differential equations:

λ′(s)− τ (s)µ1(s) = 0, (3.19)

µ′
1(s)+ λ(s)τ (s)− µ2(s)σ (s) = 0,

µ′
2(s)+ µ1(s)σ (s) = 0.

If we take the normal curve α(s) with constant curvatures τ and
σ , the Equations (3.19) will take the form

λ′(s)− τµ1(s) = 0, (3.20)

µ′
1(s)+ τλ(s)− σµ2(s) = 0,

µ′
2(s)+ σµ1(s) = 0.
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By differentiating the second equation of the Equation (3.20) and
substituting the first and the third Equation of (3.20), we obtain
the following differential equation

µ′′
1(s)+ (τ 2 + σ 2)µ1(s) = 0. (3.21)

By solving the ordinary differential Equation (3.21), we obtain

µ1(s) = c1 cos
√

τ 2 + σ 2s+ c2 sin
√

τ 2 + σ 2s, (3.22)

λ(s) = τ

∫

µ1(s)ds =
τ

√
τ 2 + σ 2

(c1 sin
√

τ 2 + σ 2s

− c2 cos
√

τ 2 + σ 2s)+ c3, (3.23)

µ2(s) = −σ

∫

µ1(s)ds =
−σ

√
τ 2 + σ 2

(c1 sin
√

τ 2 + σ 2s

− c2 cos
√

τ 2 + σ 2s)+ c4, (3.24)

where c1, c2, c3 and c4 are constants.

In the following corollary, we give some characterizations for
the curve to be a normal curve.

Corollary 3. Let α(s) be a normal curve in Galilean 4- space
G4 with non-zero constant curvatures τ and σ . The following
statements are satisfied.

1. <α(s),N(s) >= τ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s−c2 cos
√

τ 2 + σ 2s)
+c3,

2. < α(s),B1(s) >= c1 cos
√

τ 2 + σ 2s+ c2 sin
√

τ 2 + σ 2s,
3. <α(s),B2(s) >= −σ√

τ 2+σ 2
(c1 sin

√
τ 2 + σ 2s−c2 cos

√
τ 2 + σ 2s)

+c4,

where c1, c2, c3, and c4 are constants.

Proof: Suppose that α(s) is a normal curve in Galilean 4-space
G4 with non-zero constant curvatures τ and σ , then α(s) can be
written in the form

α (s) = ( τ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s− c2 cos
√

τ 2 + σ 2s)+ c3)

N(s)+ (c1 cos
√

τ 2 + σ 2s+ c2 sin
√

τ 2 + σ 2s)B1(s)+
( −σ√

τ 2+σ 2
(c1 sin

√
τ 2 + σ 2s− c2 cos

√
τ 2 + σ 2s)+ c4)B2(s).

Taking the inner product of the two sides withN(s),B1(s), and
B2(s), the statements are held.

In the following theorem, we prove that, if α(s) is a normal
curve, there are no curves which are congruent to α(s).

Theorem 2. Let α(s) be a normal curve in Galilean space G4 with
non-zero constant curvatures τ and σ . Then, there are no curves
which are congruent to α(s).

Proof: First, let us definem(s) as follows

m(s) = α(s)− λ(s)N(s)− µ1(s)B1(s)− µ2(s)B2(s). (3.25)

Taking the derivative of Equation (3.25) for both sides, we
obtain

m′(s) = T(s) − [λ′(s)N(s) + λ(s)N′(s) + µ′
1(s)B1(s) +

µ1(s)B
′
1(s)+ µ′

2(s)B2(s)+ µ2(s)B
′
2(s)].

By substituting from Equations (2.1), (3.22)–(3.24).
m′(s) = T(s)− [(c1 cos

√
τ 2 + σ 2s+ c2 sin

√
τ 2 + σ 2s)N(s)+

( τ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s−c2 cos
√

τ 2 + σ 2s)+c3)(τB1(s))+
(−c1

√
τ 2 + σ 2 sin

√
τ 2 + σ 2s+

c2
√

τ 2 + σ 2 cos
√

τ 2 + σ 2s)B1(s)
+(c1 cos

√
τ 2 + σ 2s+ c2 sin

√
τ 2 + σ 2s)(−τN(s)+ σB2(s))

+(−c1σ cos
√

τ 2 + σ 2s− c2σ sin
√

τ 2 + σ 2s)B2(s)
+(( −σ√

τ 2+σ 2
(c1 sin

√
τ 2 + σ 2s + c2 cos

√
τ 2 + σ 2s) +

c4)(−σB1(s))]
m′(s) = T(s)+ (−τ c3 + σ c4)B1(s)
m′(s) does not equal to zero, which means that m(s) is not a

constant vector. So, α(s) is not congruent to a normal curve.

In the following theorem, we give the necessary condition for the
normal curve in Galilean 4-space to lie on a sphere.

Theorem 3. Let α(s) be a normal curve in Galilean 4-space G4

with non-zero constant curvatures τ and σ . Then, α(s) lies on a
sphere if τ

σ
= c4

c3
, where c3 and c4 are the constants in equations

(3.23) and (3.24).

Proof: The inner product of the position vector of α(s) is defined
by

g( α(s), α(s)) =< α(s), α(s) >G4

= ( τ√
τ 2+σ 2

(c1 sin
√

τ 2 + σ 2s− c2 cos
√

τ 2 + σ 2s)+ c3)
2+

(c1 cos
√

τ 2 + σ 2s+ c2 sin
√

τ 2 + σ 2s)2+
( −σ√

τ 2+σ 2
(c1 sin

√
τ 2 + σ 2s− c2 cos

√
τ 2 + σ 2s)+ c4)

2.

By simple computations, we have
< α(s), α(s) >G4= (c21 + c22 + c23 + c24) +

( 2c1c3τ−2c1c4σ√
τ 2+σ 2

) sin
√

τ 2 + σ 2s+
(−2c2c3τ+2c2c4σ√

τ 2+σ 2
) cos

√
τ 2 + σ 2s.

If τ
σ
= c4

c3
, then < α(s), α(s) >G4= (c21 + c22 + c23 + c24), which

means that α(s) lies on a sphere.

4. CONCLUSION

In this study, we established the definition of the normal curve in
Galilean 4- space G4. Also, we derived the necessary condition
for a curve to be a normal curve in G4. We have proved
that, if α(s) is a normal curve in G4 with constant curvatures,
there is no curve which is congruent to α(s). In the end, the
necessary condition for a normal curve to lie on a sphere has
been obtained.
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