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Regarding absorption spectrum, high absorption corresponds to low light transmittance
and relatively loud noise, whereas low absorption corresponds to low information content,
which interferes with the modeling of spectral analysis. Appropriate absorbance level is
necessary to improve spectral information content and reduces noise level. In this study,
based on the selection of the upper and lower bounds of absorbance, the absorbance
value optimization partial least squares (AVO-PLS) method was proposed for appropriate
wavelength model selection. Near-infrared spectroscopic analysis of hyperlipidemia
indicators, namely, total cholesterol (TC), and triglyceride (TG), was conducted to
validate the predicted performance of AVO-PLS. Well-performed wavelength selection
methods, namely, moving-window PLS (MW-PLS) of continuous type-and successive
projections algorithm (SPA) of discrete type, were also conducted for comparison. The
spectra were first corrected using Savitzky–Golay smoothing. Modeling was performed
based on the multiple partitioning of calibration and prediction sets to avoid data over-
fitting and achieve parameter stability. The selected absorbance ranged from 0.45 to 0.86
for TC and from 0.45 to 0.92 for TG, and the corresponding waveband combinations were
1,376–1,388 and 1,560–1840 nm for TC and 1,376–1,390 and 1,552–1,846 nm for TG.
Among them, the waveband combination of TG covers TC’s one, and can be used for the
high-precision cooperativity analysis of the two indicators. Using the independent
validation samples, the RMSEP and RP of 0.164 mmol l−1 and 0.990 for TC and
0.096 mmol l−1 and 0.997 for TG were obtained by the cooperativity model. And the
sensitivity and specificity for hyperlipidemia were 98.0 and 100%, respectively. These
values were better than those of MW-PLS and SPA. Importantly, the proposed AVO-PLS
is a novel multi-band optimization approach for improving prediction performance and
applicability. This method is expected to obtain more applications.

Keywords: near-infrared spectroscopic analysis, absorbance value optimization, multi-band optimization, total
cholesterol, triglycerides

INTRODUCTION

Near-infrared (NIR) spectroscopy achieves the rapid and simultaneous detection of multiple
components of a sample. Along with the development of chemometrics, NIR spectroscopy has
been successfully applied to many fields, such as soil [1–5], agricultural products and food [6–10],
environment [11, 12], and biomedicine [13–18]. Appropriate wavelength selection is an important
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but difficult aspect of using NIR spectroscopy for the reagent-free
measurement of an analyte in complex samples (e.g., blood). Such
selection essentially improves prediction performance, reduces
complexity, and designs a specialized spectrometer with a high
signal-to-noize ratio.

Moving-window partial least squares (MW-PLS) is a well-
performed method for continuous wavelength selection that uses
initial wavelength, number of wavelengths, and number of latent
variables as the parameters to select a continuous waveband, and
it has been applied to the spectroscopic analysis of many objects
[3–5, 12, 14, 15, 19]. Other well-performed methods for discrete
wavelength selection include successive projections algorithm
(SPA), competitive adaptive reweighted sampling, and Monte
Carlo uninformative variable elimination by PLS [7–10, 20].
Among these methods, SPA uses vector orthogonal projection
to overcome spectral collinearity. For some analytical objects, the
molecular absorption range is often a combination of multiple
separate wavebands, which cannot be easily used in MW-PLS. An
effective method for multi-band selection is still lacking owing to
the difficulties of the algorithm.

In our previous study [21], an optimization algorithm was
designed to determine the appropriate upper bound of
absorbance and thus avoid the saturation region with high
absorption. After the high absorbance wavebands were
eliminated, a combination of separate wavebands was obtained
and then used for further wavelength selection. The high
absorption waveband with noise should be removed, and the
low absorption waveband should not be used as well.
Optimization of the lower bound of absorbance is also
necessary because the low absorption waveband corresponded
to the low information content and the noise was relatively loud.
Wavelength selection could also be achieved through the
selection of the upper and lower bounds of absorbance
because each wavelength corresponded to an absorbance value.

In the present study, a wavelength selection algorithm called
absorbance value optimization PLS (AVO-PLS) is proposed
based on the selection of absorbance range. A range of
absorbance values may correspond to a combination of
multiple separate wavebands because different wavelengths
may correspond to the same absorbance value. The AVO-PLS
provides a novel approach for multi-band selection, which
achieves simultaneous optimization for the lower and upper
bounds of absorbance. Therefore, in terms of the algorithm,
AVO-PLS is an improvement of the previous method that
only avoided high absorption regions [21].

Total cholesterol (TC) and triglyceride (TG) are the main
clinical indicators of hyperlipidemia, and they can be applied to
detect cardiovascular and cerebrovascular diseases. TC and TG
contain hydrogen-containing groups such as CH, CH2, and CH3,
all of which have numerous absorption bands in the NIR region.
A reagent-free and simultaneous analysis of TC and TG via NIR
spectroscopy has been a research focus [13, 16] because it
demonstrates a potential application for large-population
health screening. For complex samples such as blood, using
only the absorption bands of analytes is impossible because
the interference of other components must be overcome.
Furthermore, a combination of multiple separation bands is

usually required via appropriate chemometric methods. A NIR
analysis of TC and TG was conducted to validate the predicted
performance of the proposed AVO-PLS. MW-PLS and SPA were
also conducted for comparison. In addition, Savitzky–Golay (SG)
smoothing [3, 12, 22, 23], an efficient spectral pre-processing
method with a wide scope of application and different smoothing
modes, was first used for the spectral pretreatment.

Modeling and parameter optimization were performed based
on the multiple partitioning of calibration and prediction sets,
which could effectively avoid data over-fitting and achieve
parameter selection stability [3, 4, 12, 15]. The calibration,
prediction, and validation processes were still performed in
such an experimental design with stability.

MATERIALS

A total of 302 human serum samples were collected in two
batches from the same hospital within two consecutive
working days. The group collected on the first day (200
samples) was used for modeling, whereas the group collected
on the second day (102 samples) was used for validation.
Experiments were performed in compliance with the relevant
laws and institutional guidelines and approved by local medical
institution, which obtained the informed consent from all
subjects. The TC and TG values of the samples were measured
via standard clinical methods, namely, enzymatic CHOD-PAP
and enzymatic GPO-PAP, respectively, using the Roche Modular
PPI automatic biochemical analyzer (Roche, Switzerland) in the
same hospital. All measured values ranged from 1.89 to
9.98 mmol l−1 for TC and 0.24 to 8.59 mmol l−1 for TG. The
mean and SD were 4.93 and 1.08 mmol l−1 for TC and 1.34 and
0.92 mmol l−1 for TG.

In the conventional method, the phenotype-positive subjects
for hyperlipidemia are those with TC > 5.20 mmol l−1 or TG >
1.70 mmol l−1 [24]. The total samples consisted of 170 negative
and 132 positive samples. The modeling group included 119
negative and 81 positive samples, while the validation group
included 51 negative and 51 positive samples.

The spectroscopy instrument was an XDS Rapid Content™
Liquid Grating Spectrometer (FOSS, Denmark) equipped with a
2 mm cuvette transmission accessory. The spectra spanned
780–2,498 nm with a 2 nm interval; among them, the silicon
and plumbous sulfide detections were adopted in the 780–1,100
and 1,100–2,498 nm wavebands, respectively. Each sample was
measured thrice, and the mean value of the three measurements
was used. The spectra were measured at 25 ± 1°C and 46 ± 1%
relative humidity.

METHODS

Evaluation Indicators in the Calibration,
Prediction, and Validation Processes
The modeling set (200 samples) was further divided randomly
into calibration (100 samples) and prediction (100 samples) sets
50 times. Calibration and prediction were performed for each
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division, and the root-mean-square error and correlation
coefficient of prediction were calculated and denoted as
RMSEP and RP, respectively. The mean and standard
deviation of the RMSEP and RP values for all divisions were
further calculated and denoted as RMSEPAve, RMSEPSD, RP,Ave,
and RP,SD. The following equation,

RMSEP+� RMSEPAve + RMSEPSD, (1)

was used as a comprehensive indicator of the modeling prediction
accuracy and stability. A small RMSEP+ value indicated high
model accuracy and stability. Themodel parameters were selected
according to the minimum RMSEP+. The optimized model was
then validated against the validation set (102 samples). The root-
mean-square errors and the correlation coefficients of prediction
in the validation set were then calculated and denoted as RMSEPV
and RP,V, respectively.

In addition to the above indicators, sensitivity and specificity
are direct evaluation indicators for the NIR prediction effect. The
cut-off values for hyperlipidemia with the standard clinical
method indicate that if the numbers of true positive, false
negative, false positive, and true negative samples are a, b, c,
and d, respectively, then the sensitivity and specificity of NIR
analysis are calculated as follows:

Sensitivity � a
a + b

(%), Specificity � d
c + d

(%).
(2)

Quantitative analyses of TC and TG were performed
independently according to this process.

MW-PLS
Consecutive spectral data on adjacent wavelengths were
designated as a window. MW-PLS built a series of PLS models
by moving window and varying window sizes, and then the
optimal waveband in the spectral search region was selected
according to the prediction effect. When the position and
length of wavebands and the number of PLS latent variables
were considered, the search parameters were set as follows: 1)
initial wavelength (I), 2) number of wavelengths (N), and 3)
number of PLS factors (F). The PLS model can be established for
any combination of (I, N, and F) depending on the multiple
partitioning of calibration and prediction sets. The corresponding
RMSEPAve, RP,Ave, RMSEPSD, RP,SD, and RMSEP+ values were
then calculated. The optimal waveband with minimum RMSEP+

was selected to achieve a stable and highly accurate result.
The search range included the entire scanning region

(780–2,498 nm) with 860 wavelengths. The parameters I, N,
and F were set to I ∈ {780, 782,/, 2498}, N ∈ {1, 2,/, 860},
and F ∈ {1, 2, /, 30}, respectively.

SPA
SPA is an iterative forward wavelength selection method based on
the absorbance matrix of the spectra of calibration samples [7, 8,
20]. Where the rows and columns of the absorbance matrix
correspond to the calibration samples and spectral wavelengths,

respectively, and each wavelength corresponds to an absorbance
column vector.

For any fixed initial wavelength I and the number of
wavelengths N, the basic algorithm of the SPA method is as
follows. The initial column vector was denoted by α0. Starting
from the column α0, SPA determines which of the remaining
columns has the largest projection on the subspace S0 orthogonal
to α0. This column, denoted by α1, can be considered as the one
containing the maximum amount of information not contained
in α0. In the next iteration, SPA restricts the analysis to subspace
S0, considering α1 as the new reference column, and proceeds
with the steps described above until a specified number N of
wavelengths is reached. SPA selects wavelengths whose
information content is minimally redundant so as to solve co-
linearity problems.

The search parameters were described as follows: 1) initial
wavelength (I), and 2) number of wavelengths (N). The search
range covered the entire scanning region of 780–2,498 nm with
860 wavelengths; thus, I was set as I ∈ {780, 782, L, 2498}. The
maximum value of N did not exceed the number of calibration
samples to avoid over-fitting. Thus, N was set as
N ∈ {1, 2,/, 100}. The PLS models with the selected
wavelength combination were established, and the number of
PLS factors (F) ranged from 1 to 20. The optimal I, N, F were
selected according to the minimum RMSEP+. The PLS models
were based on several partitioning for calibration and prediction
sets, which lead to stable results.

AVO-PLS Algorithm
In the high absorption waveband, transmitted light is extremely
weak and noise is relatively loud. On the contrary, in the low
absorption waveband, the sample information cannot be easily
detected. Wavelength selection could also be achieved through
the selection of the upper and lower bounds of absorbance
because each wavelength corresponded to an absorbance value.
The AVO-PLS provides a novel approach for multi-band
selection, which achieves simultaneous optimization for the
lower and upper bounds of absorbance. In fact, Lambert-Beer
law is also expressed as follows:

T(λ) � I1(λ)
I0(λ) � 10−A(λ) (%), (3)

where λ is the wavelength, A(λ) is the absorbance, I0(λ) and I1(λ)
are the respective intensities of incident light and transmitted
light through the sample, and T(λ) is the ratio of transmitted light
intensity and incident light intensity (i.e., transmittance). In the
case of high absorption, for example, A(λ) � 4, T(λ) � 0.01%,
99.99% of the incident light was absorbed by the sample. The
transmitted light was extremely weak and difficult to detect, and
noise in the spectra was relatively loud. In the case of low
absorption, for example, A(λ) � 0.001, T(λ) � 99.77%, only
0.23% of the incident light was absorbed, and the sample
information almost could not be detected. Therefore, an
appropriate absorbance level is necessary to improve the
spectral information content and reduce the noise level.
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The proposed AVO-PLS method performed the selection of
appropriate upper and lower bounds of absorbance to achieve
wavelength optimization. The specific procedures were as follows:

Step 1 The wavelength screening region was set as Δ, which
could be the entire scanning region but could also be a portion
of the region according to object and instrument properties.
Meanwhile, the minimum and maximum absorbance values
(Amin, Amax) were determined in the average spectrum for all
samples within the wavelength screening region Δ. The
increment step of absorbance was set as ε to divide the
absorbance range (Amin, Amax) into n equal portions with
n+1 nodes.
Step 2 Any two nodes were combined in all n+1 nodes, and
the corresponding absorbance interval (A*, A*) was obtained,
(Ap,Ap)4(Amin,Amax). The relationship between wavelength
and absorbance in the average spectrum indicates that a
combination of wavebands that correspond to the
absorbance interval (A*, A*) was selected. The obtained

waveband combination was employed to establish PLS
calibration and prediction models, and then the
RMSEPAve, RMSEPSD, RP,Ave, RP,SD, and RMSEP+ were
calculated.
Step 3 Through simultaneous traversal of A* and A*, the
optimal absorbance interval (A*, A*) and the corresponding
waveband combination were selected as follows:

min RMSEP+ � min
Ap , Ap

RMSEP+(Ap, A
p) (4)

For any fixed absorbance lower boundA*, through the traversal of
A*, the local optimal absorbance interval (A*, A*), and the
waveband combination were selected as follows:

RMSEP+(Ap) � min
Ap

RMSEP+(Ap, A
p) (5)

For any fixed absorbance upper bound A*, through the traversal
of A*, the local optimal absorbance interval (A*, A*), and the
waveband combination were selected as follows:

RMSEP+(Ap) � min
Ap

RMSEP+(Ap, A
p) (6)

The flow chart of the AVO-PLS algorithm is presented in
Figure 1.

In this study, the wavelength screening region Δ was set as the
entire scanning region (780–2,498 nm). In the average spectrum,
the minimum absorbance value was greater than and close to 0,
and the maximum absorbance value was less than and close to 5.
Therefore, the Amin and Amax values were set as 0 and 5,
respectively. The increment step of absorbance ε was set as
0.01. The absorbance range (Amin, Amax) � (0, 5) was divided
into 500 equal portions by 501 nodes. The number of PLS factors
(F) was set as F ∈ {1, 2,/, 30}. Figure 2 shows a sketch map of
the relationship between wavelength and absorbance in the
average spectrum for the case of (Ap, Ap) � (0.45, 0.86). The
corresponding waveband combination was 1,376–1,388 and
1,560–1,840 nm.

The computer algorithms for the three methods were designed
using MATLAB version 7.6.

FIGURE 1 | Flow chart of the AVO-PLS algorithm.

FIGURE 2 | Sketch map of the relationship between wavelength and
absorbance in the average spectrum.
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RESULTS

Full Spectral Models
The NIR spectra of all 302 human serum samples in the entire
scanning region (780–2,498 nm) are shown in Figure 3A. The
saturation region with high absorption was mainly located near
1950 nm, whereas the low absorption region was mainly located
on the left side of 900 nm. The full-PLS models based on the
entire scanning region (780–2,498 nm) were established. The
modeling effects (RMSEPAve, RP,Ave, RMSEPSD, RP,SD, and
RMSEP+) for TC and TG are summarized in Table 1. The
RP,Ave values were 0.708 and 0.864 for TC and TG,
respectively, while the RMSEP+ values were 0.857 and
0.538 mmol l−1 for TC and TG, respectively. The results
showed a low correlation between the NIR predicted values
and the measured values of the conventional method using the
spectroscopy data without pretreatment.

The spectral data were preprocessed with SG smoothing and
then the modeling was performed. The parameters of SG
smoothing include order of derivatives (d), degree of

polynomial (p), and number of smoothing points (m, odd). In
a previous study,21 the SG mode with first-order derivative,
second-degree polynomial, and 33 smoothing points (d � 1,
p � 2, and m � 33) were used, and the prediction effect of
PLS model for the human serum samples was improved. The SG
mode (d � 1, p � 2, andm � 33) was attempted in the PLS models
of TC and TG.

The corresponding first derivative spectra are shown in
Figure 3B, wherein the baseline drifts of the spectra
significantly decreased. The prediction effects of the
corresponding PLS models with SG smoothing are also
summarized in Table 1. The RP,Ave values were improved to
0.814 for TC and 0.912 for TG, while the RMSEP+ values were
improved to 0.709 mmol l−1 for TC and 0.453 mmol l−1 for TG.

MW-PLS Models
The optimal models were selected for TC and TG depending on
the min RMSEP+ value using the MW-PLS method based on the
SG derivative spectra. The corresponding parameters I, N, and F
and the prediction effects are summarized in Table 2. The

FIGURE 3 | NIR spectra of all human serum samples (A) raw spectra, and (B) 1st derivative spectra.

TABLE 1 | Parameters and modeling effects for TC and TG with full-PLS (mmol l−1).

Indicator Waveband (nm) N F RMSEPAve RMSEPSD RP,Ave RP,SD RMSEP+

Without pretreatment

TC 780–2,498 860 12 0.804 0.053 0.708 0.034 0.857
TG 780–2,498 860 9 0.495 0.043 0.864 0.024 0.538

With SG smoothing

TC 780–2,498 860 10 0.655 0.054 0.814 0.028 0.709
TG 780–2,498 860 9 0.418 0.035 0.912 0.015 0.453

TABLE 2 | Parameters and modeling effects for TC and TG with MW-PLS based on SG smoothing (mmol l−1).

Indicator Waveband (nm) I N F RMSEPAve RMSEPSD RP,Ave RP,SD RMSEP+

TC 1,562–1820 1,562 130 7 0.168 0.009 0.988 0.001 0.177
TG 1,538–1836 1,538 150 9 0.094 0.006 0.995 0.001 0.100

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6635735

Yao et al. Absorbance Value Optimization to Near-Infrared

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


corresponding wavebands were 1,562–1,820 nm for TC and
1,538–1,836 nm for TG. Rp,Ave greatly increased to 0.988 for
TC and 0.995 for TG, whereas RMSEP+ greatly decreased to
0.177 mmol l−1 for TC and 0.100 mmol l−1 for TG. The results
showed that the optimal MW-PLS models with SG smoothing
pretreatment were significantly better than the full-PLS models
with SG smoothing pretreatment for the two indicators.

SPA Models
The SPA method mentioned in SPA was employed to select the
discrete wavelength combination. On the basis of the SG derivative

spectra, the optimal SPAmodel was selected, and the corresponding
I and N were 1738 nm and 56 for TC and 1,736 nm and 55 for TG,
respectively. The corresponding prediction effect and parameters for
the PLS models are summarized in Table 3. The results show that
the SPA method was better than the full PLS method but clearly
worse than the MW-PLS methods.

AVO-PLS Models
With the proposed AVO-PLS in AVO-PLS Algorithm, the
obtained optimal absorbance intervals (A*, A*) were (0.45,
0.86) for TC and (0.45, 0.92) for TG. The transmittances
ranged from 13.80 to 35.48% for TC and from 12.02 to
35.48% for TG. The corresponding waveband combinations
based on the SG derivative spectra were 1,376–1,388 and
1,560–1,840 nm for TC and 1,376–1,390 and 1,552–1,846 nm
for TG. TC and TG avoid extremely high or low absorption
wavebands of the spectra, which correspond to a high quality of
information content and a low level of noise. The parameters A*,

TABLE 3 | Parameters andmodeling effects for TC and TGwith SPA based on SG
smoothing (mmol l−1).

Indicator N F RMSEPAve RMSEPSD RP,Ave RP,SD RMSEP+

TC 56 10 0.372 0.037 0.943 0.011 0.409
TG 55 11 0.231 0.022 0.972 0.005 0.253

TABLE 4 | Parameters and modeling effects for TC and TG with AVO-PLS based on SG smoothing (mmol l−1).

Indicator Waveband
combination (nm)

A* A* F RMSEPAve RMSEPSD RP,Ave RP,SD RMSEP+

TC 1,376–1,388 and 1,560–1840 0.45 0.86 8 0.151 0.006 0.990 0.001 0.157
TG 1,376–1,390 and 1,552–1846 0.45 0.92 8 0.093 0.004 0.995 0.000 0.097

FIGURE 4 | RMSEP+ of the local optimal AVO-PLSmodel corresponding to each fixed absorbance lower bound or upper bound for (A) TC for lower bound, (B) TC
for upper bound, (C) TG for lower bound, and (D) TG for upper bound.
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A*, and F and the prediction effects are summarized in Table 4.
The RP,Ave values were 0.990 and 0.995 for TC and TG,
respectively, while the RMSEP+ values were 0.157 and
0.097 mmol l−1 for TC and TG, respectively. Tables 1–4 show
that the optimal AVO-PLS models were significantly better than
the full-PLS models and the SPA models for the two indicators,
even better than the predictive effect of the optimal MW-PLS
model for the two indicators.

It was observed that the optimal waveband combinations for
TC and TG were basically the same, and the combination of TG
(1,376–1,390 and 1,552–1,846 nm) completely covered the
combination of TC (1,376–1,388 and 1,560–1,840 nm). Using
the waveband combination of TG to analyze the indicator TC,
the corresponding modeling effect was RMSEP+ � 0.158 mmol

l−1 and RP, Ave � 0.988. It is very close to the effect of TC’s
optimal AVO-PLS model (RMSEP+ � 0.157 mmol l−1, RP, Ave �
0.990, see also for Table 4), and there is almost no difference.
Therefore, the optimal waveband combination of TG can be
used for the high-precision analysis of the two indicators
simultaneously.

The RMSEP+ values of the local optimal model that
correspond to each fixed absorbance lower bound (A*) or
upper bound (A*) are shown in Figure 4. Figures 4A,B
indicated that the global optimal solution for TC was achieved
at A* � 0.45, A* � 0.86, and RMSEP+ � 0.157 mmol l−1, while
Figures 4C,D indicated that the global optimal solution for TG
was achieved at A* � 0.45, A* � 0.92, and RMSEP+ �
0.097 mmol l−1.

FIGURE 5 | Relationship between the predicted and measured values of validation samples for (A) TC with SPA, (B) TG with SPA, (C) TC with MW-PLS, (D) TG
with MW-PLS, (E) TC with AVO-PLS, and (F) TG with AVO-PLS.
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The leftmost results in Figures 4A,C indicated that the local
optimal solution for TC with fixed A* � 0.00 was reached at A* �
0.79 and RMSEP+ � 0.225 mmol l−1, while the local optimal
solution for TG with fixed A* � 0.00 was reached at A* � 0.96 and
RMSEP+ � 0.192 mmol l−1. These local optimal solutions
corresponded to the case where only the saturation region
with high absorption was eliminated. Similar works can be
found in previous studies [12, 17, 21, 23]. However, compared
with the global optimal solution, the predictive performance of
the local optimal solution was poor. This outcome showed that
only the optimization of the absorbance upper bound is
insufficient.

The rightmost results in Figures 4B,D indicated that the
local optimal solution for TC with fixed A* � 5.00 was reached
at A* � 0.02 and RMSEP+ � 0.721 mmol l−1, whereas the local
optimal solution for TG with fixed A* � 5.00 was reached at
A* � 0.02 and RMSEP+ � 0.430 mmol l−1. These local optimal
solutions corresponded to the case where only the low
absorption region was eliminated. However, compared with
the global optimal solution, the predictive performance of the
local optimal solution was even poor, which showed that only
the optimization of the absorbance lower bound is
insufficient.

The local optimal models can also be used as valuable
references. The instrument design typically involves some
restrictions in the position and number of wavelengths (e.g.,
costs and material properties). In some instances, the demand of
the actual conditions cannot be satisfied by the optimal model.
Therefore, some local optimal models with prediction effects
close to those of the global optimal model remain a viable option.

Figure 4A illustrates the various acceptable selections where
the absorbance lower bound A* is close to 0.45, while Figure 4B
shows the various acceptable selections where the absorbance
upper bound A* is close to 0.86. The corresponding selections of
waveband combinations were also determined easily; the modeling
effects were close to the optimal model. Figures 4C,D present

similar results for TG, but the relevant discussion was omitted due
to the limitation in article length.

Independence Validation
The validation group (51 negative, 51 positive, total 102), which
was excluded in the modeling optimization process, was used to
verify the selected SPA models (I � 1,738 nm and N � 56 for TC,
and I � 1736 nm and N � 55 for TG), the selected MW-PLS
models (1,562–1820 nm for TC and 1,538–1836 nm for TG) and
the selected cooperativity model (1,376–1,390 and
1,552–1,846 nm for TC and TG) with AVO-PLS on the basis
of the SG derivative spectra. The PLS regression coefficients were
determined using the SG derivative spectra and measured
reference values of the modeling samples depending on the
corresponding parameters. The predicted TC and TG values
were then calculated using the SG derivative spectra of the
validation samples and the obtained PLS regression coefficients.

The obtained RMSEPV and RP,V values of SPA for validation
were 0.386 mmol l−1 and 0.943 for TC and 0.285 mmol l−1 and
0.970 for TG. The obtained RMSEPV and RP,V values of MW-PLS
for validation were 0.169 mmol l−1 and 0.989 for TC and
0.099 mmol l−1 and 0.996 for TG. The RMSEPV and RP,V of
AVO-PLS were 0.164 mmol l−1 and 0.990 for TC and 0.096 mmol
l−1 and 0.997 for TG, respectively. Figure 5 shows the relationship
between the NIR predicted values and the measured reference
values of the validation samples with the optimal MW-PLS, SPA,
and AVO-PLS models for TC and TG, respectively. The three
methods for the two indicators demonstrated acceptable
prediction accuracy and high correlation for the clinically
measured values. The prediction effects of AVO-PLS were the
best on the validations of TC and TG.

The prediction effect of NIR analysis was then evaluated from
the criteria of sensitivity and specificity. Using SPA, the numbers
of true positive (a), false negative (b), false positive (c), and true
negative (d) samples are 45, 6, 3, and 48, respectively; the
sensitivity and specificity were 88.2 and 94.1%, respectively.

FIGURE 6 | 2D diagram of NIR predicted values (TC, TG) of the validatSion samples classified as negative and positive for hyperlipidemiawith (A)MW-PLS and (B)
AVO-PLS.
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WithMW-PLS, the sensitivity and specificity were 96.1 and 100%
(a � 49, b � 2, c � 0, d � 51), respectively. With AVO-PLS, the
sensitivity and specificity were 98.0 and 100% (a � 50, b � 1, c � 0,
d � 51), respectively. Therefore, based on the evaluation criteria
with sensitivity and specificity, AVO-PLS and MW-PLS are
similar, both very good, and SPA is the worst. Furthermore,
for AVO-PLS and MW-PLS, the classification between negative
and positive for hyperlipidemia can be observed in the 2D
diagram (TC and TG) with the cut-off lines (TC � 5.20; TG �
1.70). Figure 6 shows the 2D diagram of NIR predicted values of
the 102 validation samples classified as negative and positive for
hyperlipidemia using the two methods. The results confirmed the
feasibility of hyperlipidemia screening with NIR spectroscopy.

Through NIR analysis of TC and TG, AVO-PLS achieved
high-precision prediction, even slightly better than the well-
perfomed MW-PLS method. Unlike other single-band
screening methods, such as MW-PLS, AVO-PLS can be used
to select a multi-band combination, a function that is significant
in physics and optics. Therefore, AVO-PLS can improve the
applicability of spectral analysis.

The high water content of the serum samples can lead to
saturated absorption and noise interference. The proposed AVO-
PLS can reasonably eliminate the high absorbance wavebands
(the upper bound of absorbance). TC and TG are lipid
compounds. The results show that the predicted effects of TC
and TG are not affected and evidently improved after eliminating
the saturated absorption bands of water. If the water content of
samples was measured, then a shorter optical path length could be
used to avoid saturated absorption. In this case, the AVO-PLS can
still reasonably eliminate the weak absorbance wavebands (the
lower bound of absorbance). It is meaningful that the
cooperativity model can detect two indicators at the same
time. This provides a more concise scheme for the designing
splitting systems for spectroscopic instruments.

CONCLUSION

Wavelength selection is one of the difficulties of spectral analysis,
especially for complex samples. Effective multi-band selection
methods are still few because of the difficulty of the algorithm.

In the high absorption waveband, transmitted light is
extremely weak and noise is relatively loud. On the contrary,
in the low absorption waveband, the sample information cannot
be easily detected. An appropriate absorbance level can improve
the spectral information content and reduce the noise level,

especially in the transmission spectra of liquid samples. A
multi-band selection method (i.e., AVO-PLS) based on the
selection of the upper and lower bounds of absorbance was
proposed in this study.

NIR analysis of total cholesterol and triglycerides in human
serum samples verified the effectiveness of AVO-PLS. The
RMSEPV and RP,V were 0.164 mmol l−1 and 0.990 for TC and
0.096 mmol l−1 and 0.997 for TG, respectively. The AVO-PLS
method achieved a high-precision prediction, which is better than
the well-performed MW-PLS method. And it is meaningful that
the optimal waveband combination (1,376–1,390 and
1,552–1,846 nm) of TG can be used for the high-precision
cooperativity analysis of the two indicators. This provides a
more concise designing for the splitting systems of
spectroscopic instruments.

It is worthwhile to believe that AVO-PLS method based on the
optimization of the upper and lower bounds of absorbance is an
advancement in optics and spectroscopy. It implemented multi-
band optimization to improve its prediction performance and
applicability, and is expected to be applied to a wider field of
analysis.
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