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Ligand-free BaF2:Nd nanoparticles (NPs) with a size of 10 nm were fabricated by a

novel synthetic route in the liquid phase. A transparent dispersion of the BaF2:Nd

NPs mixed with propanetriol and DMSO-d6 was done. Highly stable and outstanding

near-infrared (NIR) fluorescence centered at 1,058 nm was detected using an excitation

wavelength of 808 nm laser. Moreover, the dispersion can be found to be stable

for over 1 month, and the cytotoxicity of the BaF2:Nd NP dispersion has also

been studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)

assay. The superior performance of these NPs exhibits their great potential application

in high-contrast and high-penetration in vivo imaging.
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INTRODUCTION

Fluorescence imaging exhibits high sensitivity. Non-invasive and real-time monitoring has been
regarded as one of the most promising optical imaging technologies in clinical applications [1].
However, at present, in general, the use of fluorescence imaging is limited due to the strong effect of
scattering and absorption of the light by tissues. The image resolution is poor when the visible light-
emitting fluorescence probes are employed, since the high scattering loss and autofluorescence
observed from the biosamples will reduce the background ratio (SBR) of fluorescence images
[2]. The light observed in the near-infrared (NIR) range of 700–950 and 1,000–1,700 nm is
considered as the transparency window for bioimaging because the low scattering loss and reduced
absorption coefficient are observed from the endogenous molecules [3, 4]. This light can exhibit
infrared fluorescence of high brightness, deep tissue penetration, and clear images with high spatial
resolution [5–7]. In the NIR imaging system, the fluorescence probe has become the most critical
factor to achieve high-quality images. Therefore, the development of the novel NIR probe is
becoming important particularly for future clinical applications.

Up to now, various NIR imaging probes (including quantum dots [8, 9], upconversion
nanoparticles (NPs) [10–13], and rare earth-doped down-emission NPs [14, 15]) have been
reported. However, the high biotoxicity and low quantum efficiency will limit further applications
of NPs. Furthermore, for most upconversion NPs based on the NaYF4 matrix, the light with an
excitation wavelength of 980 nm causes overheating of tissues due to its matching wavelength with
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the absorption of water [16, 17]. The NPs doped with rare earth
ions, such as Nd3+, Er3+, and Ho3+, have attracted greater
attention because of their emission wavelength in the NIR-II
region of 1,000–1,700 nm under the excitation wavelength of
800 nm. Imaing with these probes not only can avoid the heat
accumulation in the tissues but also can reduce the biotoxic
components and enhance the image quality due to the high
penetration depth and spatiotemporal resolution [4, 18, 19].

The ideal fluorescence probe must satisfy the following
criteria: First, it should achieve an enhanced emission intensity
in the range of 1,000–1,700 nm, long life time, and high
luminescence stability. Second, proper size should be fabricated
to not only prevent the rapid renal excretion but also reduce
the surface quenching effect. Third, it should exhibit high
biocompatibility and low biotoxicity. In order to improve
the biocompatibility of NPs, the NPs are usually modified
by organic surfactants, which may reduce the luminescence
intensity because of the quenching effect of the –CH and –OH
groups [20]. In this article, BaF2:Nd NPs were prepared without
the use of organic ligand by the solvothermal method to
improve the luminescence intensity at 1,058 nm. The BaF2:Nd
NP dispersions in dimethyl sulfoxide (DMSO)/propanetriol were
produced with characteristics such as high stability and low
biotoxicity. High biocompatibility and the penetration depth of
imaging in the pork tissues have been evaluated. Furthermore, the
NIR excitation (λex = 800 nm), NIR emission (λem = 1,058 nm),
and high photostability characteristics of the NPs are essential for
performing deep tissue imaging in the near future.

EXPERIMENTAL

Material
Ba (NO3)2·6H2O (99.9%, Alfa Aesar reagent), Nd (NO3)3·6H2O
(95%, Alfa Aesar reagent), NaF (99.99%, Alfa Aesar reagent),
absolute ethanol (AR, Xian chemical regent Lo.), DMSO, and
propanetriol (AR, Alfa Aesar reagent) were used without further
purification. Ultrapure distilled and deionized water was used for
the preparation of all solutions used in the following experiments.

Synthesis of BaF2:Nd Nanoparticles
Ligand-free BaF2:Nd NPs with a doping concentration of 3 mol%
were prepared by a modified hydrothermal route [21]: 0.97 mmol
of Ba (NO3)2 and 0.03 mmol of Nd (NO3)3 were first mixed with
40mL of water. The solution was stirred thoroughly for 30min
at room temperature, and then 0.08 g of NaF was added to the
aforementioned solution under stirring. Finally, 40mL of ethanol
was added and mixed; the mixed solution was again stirred for
10min and then transferred to a Teflon-lined autoclave. Then,
the autoclave was sealed and heated at 170◦C for 10 h. The reactor
was cooled to room temperature. The products were centrifuged
and washed several times by ethanol and acetone. The residual
precipitate was dried at 65◦C under vacuum for 2 days.

Different concentrations of NP dispersions were prepared by
adding 2–15mg of BaF2:Nd NPs powder to 0.2mL of DMSO-
d6 solvent. Then, the mixture was subjected to ultrasonication
for 15min, and finally 0.3mL of propanetriol was added into the

abovementioned mixture. The resulting transparent and stable
dispersions were fabricated.

Characterization
X-ray diffraction (XRD) patterns of the samples were measured
on a Bruker Advance powder X-ray diffractometer via a Cu
Kα radiation. TEM analysis was performed using JEOL JEM-
2100 field emission transmission electron microscope (TEM) at
an acceleration voltage of 200 kV. Fourier Transform infrared
(FTIR) spectra were determined on a Bruker FTIR spectrometer
using transparent KBr wafers. All NPs were dried under vacuum
prior to the formation of the KBr wafers and subsequent analysis.
The absorption spectra were recorded in the range of 300–
1,300 nm by the UV–Vis–NIR spectrophotometer (Shimadzu
UV-3600) at room temperature. The fluorescence spectra were
measured by a Zolix Omni-k 300 spectrophotometer using 800-
nm laser diode pumps. Luminescence decay time of the sample
was detected by a 300-MHz Tektronix oscilloscope (Model
3032B). Fluorescence images of NP powders and NP dispersions
were captured by an NIR-II imaging system (GuangYingMei
Co., Wuhan, China) equipped with InGaAs detector and 808-
nm laser diode (the average power density is 80 mW/cm2). The
morphologies of the erythrocytes and platelets were characterized
by optical microscope.

Hemolysis Assay
The BaF2:Nd NP dispersions in phosphate buffer saline (PBS)
were prepared with a concentration of 400 µgmL−1. The
red blood cells (RBCs) were collected by centrifuging the
anticoagulated human whole blood samples at 1,000 rpm for
5min. Then, RBC suspensions in PBS with a concentration of
2%were prepared. About 2.5mL of NP dispersions was incubated
with 2.5mL of RBC suspensions (2%) for 2 h at 37◦C. The control
groups with positive and negative samples were prepared by
mixing 2.5mL of RBC suspensions with 2.5mL of distilled water
and saline water, respectively. After incubation, the samples were
centrifuged, and the absorbance of the supernatant was measured
at 570 nm. The percentage rate of hemolysis was calculated as
follows: Hemolysis rate % = (ODtest−ODneg)/(ODpos−ODneg),
where ODtest, ODneg, and ODpos are the absorbance of the
test sample, absorbance of the negative control (saline), and
absorbance of the positive control (water), respectively. All data
were obtained based on the average of five replications.

Erythrocyte Morphology
The RBCs were collected by centrifuging fresh anticoagulant
human blood and washing it three times with PBS. Then,
20 µL of RBC suspensions was incubated with 1mL of
BaF2:NP dispersions (100 µg·mL−1) at room temperature for
30min. Finally, the RBCs were again washed three times with
PBS. The morphologies of RBCs were observed under the
optical microscope.

MTT Assay
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay was performed to measure cell viability
after MTT interaction with NPs under different conditions [22].
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FIGURE 1 | TEM images (a) and XRD patterns (b) of BaF2:Nd (3 mol%) NPs.

The HeLa cells were placed in 96-well plates and incubated under
the atmosphere of 5% CO2 at 37◦C until the monolayer of cell
was formed at the bottom of the well (96-well flat plate). After
2 h, different concentrations (50, 100, 150, and 200 µgmL−1) of
NP dispersions in PBS were added when the cell adhered to the
well. The mixture was incubated in 5% CO2 at 37

◦C for 48 h, and
20 µL of the MTT solution (5 mg/mL) was added to each well
and cultured for 4 h. After completion of the culture, the medium
was carefully discarded and the precipitates were retained. Then,
0.5mL of DMSO was added to each well and centrifuged at
low speed for 10min to make the crystal dissolve completely.
Finally, the solution was transferred into separate wells in a
96-well-plate, and the absorbance values were measured at
540 nm in a spectrophotometer. At the same time, back sample
(containing culture medium, MTT, DMSO) and control sample
(containing cells, PBS, culture medium, MTT, DMSO) were
prepared. The percentage viability of HeLa cells incubated with
NPs was calculated as [A]test/[A]control × 100, where [A]test is
the absorbance of the tested sample incubated with NPs and
[A]control is the absorbance of the control sample.

Imaging in the Phantom and Pork Tissue
The fluorescence imaging was performed by a NIR in vivo
imaging system equipped with an InGaAs detector. The
excitation wavelength of LD laser was 808 nm and the excitation
intensity was 80 mW·cm−2. In order to avoid the interference
of excitation lights, 850 nm long-pass filter and 1,060 nm
band-pass filter were employed, thus enhancing the image
intensity at 1,060 nm. The temperature of detector chip was
adjusted as −35◦C. Before the imaging technique, the BaF2:Nd
NP dispersion was filled to a capillary based on the capillary
phenomenon immersed in the dispersions. Then, the capillary
was sealed with black glass cement and was inserted into the
hole of the phantom and the pork tissues. The fluorescence
signals of BaF2:Nd NPs present in the phantom and the
pork tissues were captured under the excitation wavelength of
808 nm.

Ethics
The studies involving human participants were reviewed and
approved by the Ethics Committee of First Affiliated Hospital of
Xi’an Jiaotong University. The A written informed consent was
obtained from the patients/participants involved in this study.

RESULTS AND DISCUSSION

Nanoparticle Characterization
Figure 1a shows the TEM images of the obtained NPs. The
NPs exhibit an average size of about 16 ± 1 nm and high
dispersity. The crystal structural characteristics of the samples
were evaluated by the XRD patterns. The diffraction patterns
perfectly matched with that of the standard JCPDS Card (No. 04-
0452) of the BaF2 crystal, as shown in Figure 1b. There were no
other impurity peaks found in the diffraction patterns, and the
powders were crystallized in a pure face-centered cubic phase.

Figure 2 shows the FTIR spectrum of BaF2:Nd nanopowders.
It can be seen that BaF2:Nd NPs show obvious absorption peaks
at 3,460, 2,025, 1,675, and 1,207 cm−1. The broad absorption
peaks at 3,460 and 1,675 cm−1 correspond to the vibration
absorption of –OH ions in the water molecules. The absorption
bands centered at 1,138 and 1,207 cm−1 are attributable to the
stretching vibration of the C–O bond. The absorption band
centered at 2,025 cm−1 is due to the stretching vibration of
the C–C bond. Based on the abovementioned results, it can
be concluded that the surface of the BaF2:Nd NPs prepared by
the hydrothermal method is covered with –OH groups and C–
O groups, which greatly improve the hydrophilicity in DMSO-
d6/propanetriol solvent.

Figure 3a shows the absorption spectrum of the BaF2:Nd
nanocrystal dispersion. All five absorption bands correspond to
the Nd3+ transitions from 4I9/2 ground state to various excited
states of the 4F3 electronic configuration. The emission spectrum
of the BaF2:Nd NPs was measured at the excitation wavelength
of 808 nm (Figure 3b). All the observed emission peaks are the
principal transitions from the 4F 3/2 level to the

4I9/2,
4I11/2, and

4I 13/2 levels [23]. The bands centered at 894 nm are assigned
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to the transitions of 4F 3/2 →
4I9/2, while the bands centered at

1,056 nm are due to the transitions of 4F 3/2 →
4I11/2 levels.

FIGURE 2 | FTIR spectrum of BaF2:Nd (3 mol%) nanopowders.

Figure 3c shows the decay curve of Nd3+ ion for the 4F

3/2 →4I 11/2 transition in the BaF2:Nd NP dispersions. A long
lifetime was calculated as 135 µs by fitting the decay curve
with second exponential function. The long lifetime helps to
reduce the imaging noise induced by autofluorescence. Figure 3d
shows the NIR fluorescence image of the BaF2:Nd nanocrystal
dispersion. The uniform distribution of NP dispersions in
terms of optical intensity exhibits their excellent optical and
physical stabilities.

To detect the physical stability of the BaF2:Nd NP probes for
NIR-II imaging in vivo, the transmittance of the NP dispersion
with high mass concentration (30 mg/mL) was monitored for
30 days (Figure 4). Obviously, the NPs can form a transparent
dispersion in DMSO and propanetriol, which remain uniform
and steady for 30 days without any special treatment. These
results are consistent with the results of NIR images, as shown
in Figure 3d.

Biocompatibility Study
Hemolysis Assay
The biotoxicity of the NPs can be characterized by determining
the extent of hemolysis. Based on the experimental results of
the absorption spectra shown in Figures 5A–C, the Hemolysis

FIGURE 3 | Absorption spectrum (a), emission spectrum (b), decay curve (c), and NIR image (d) of the BaF2:Nd NP dispersion in DMSO-d6/propanetriol solvents

(10 mg/mL).
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rate (HR) values of the tested specimens were calculated as
3.27%, which is less than the safe value of 5% (ISO10993-
4 standard). Such results prove that the BaF2:Nd NPs are

FIGURE 4 | The transmittance of BaF2:Nd NP dispersions (30 mg/mL)

depends on different times.

non-hemolytic and that they can be used in future clinical
imaging diagnosis.

MTT Assay
The cytotoxicity of the BaF2:Nd NP dispersions has been
evaluated by MTT assay using HeLa cells. Obviously, no
cytotoxicity of NP dispersions at a high concentration of
200µg/mL is observed. As shown in Figure 5D, the survival
rate of HeLa cells is 91% after incubation with BaF2:Nd NP
dispersions (200µg/mL) for 48 h. In the case of 50µg/mL, the
survival rate was improved to 97%. These data show satisfactory
results on the biocompatibility of the BaF2:Nd NPs for in
vitro imaging.

The morphological changes in RBCs are usually used as a
marker to analyze the pathological condition of diseases. The
normal RBCs are elliptical and sunken on both sides in saline
water. When the cells interact with toxic exogenous substances,
the morphological changes, such as swelling, spike growth, and
even death, in RBCs occur. Figure 6 shows the morphologies of
RBCs before and after incubation with BaF2:Nd NPs. It can be
seen that the RBCs in the experiment do not show additional
morphological change (Figure 6b) compared with those in the
control group (Figure 6a). It implies that the BaF2:Nd NPs
possess low toxicity.

FIGURE 5 | The absorption curves of positive groups (a), experimental groups (b), and negative groups (c). The cell viability of BaF2:Nd NPs on HeLa cells at the

concentration of 50–200 µg mL−1 with an incubation time of 48 h (d).
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The Images of BaF2:Nd NP Dispersions in
Phantom and Pork Tissues
Tomeasure the luminescence signal of BaF2:Nd NPs in biological
tissues, a standard polyethylene phantom with similar optical
parameter to mice muscle was used as a model; the capillary
tube with a diameter of 0.2mm was filled with NP dispersions
and inserted into the hole of the phantom, under the excitation
wavelength of 808-nm laser (80 mW cm−2), and images with a
penetration depth of 10mm were acquired.

To test the spatial resolution of BaF2:Nd NPs, two capillary
tubes filled with NP dispersions (4 mg/mL) were inserted into
two holes of the phantom (Figure 7a). Under the irradiation of
808-nm laser (80 mW cm−2), images with a penetration depth
of 7mm were acquired. It can be seen that the two capillaries
can be clearly distinguished with an interval of 2 cm inside the

phantom (Figure 7b). By the same method, two capillary tubes
with a diameter of 0.3mm were inserted into the pork tissue,
and images in the pork were recorded with a penetration depth
of 5mm (Figure 7c), which is higher than the imaging depth of

GdF3:Nd and LaF3:Nd NPs (4mm) [24, 25]. The luminescence

intensity dropped to 65% of the original value in phantom due

to the light attenuation resulting from the high absorption and

scattering of biological tissue and water. When the excitation
light penetrates the tissues, they become heavily decayed due
to the absorption of water and fat. Therefore, the effective
energy for excitation is reduced correspondingly. On the other
hand, the attenuation of emission light is also inevitable when it
penetrates all the biological tissues and the skin to be detected.
A high spatial resolution of 300µm was visualized, and the
fluorescence images with a high signal-to-background ratio of

FIGURE 6 | The morphologies of RBCs captured by optical microscope: (a) the control group and (b) the BaF2:Nd NP dispersion group.

FIGURE 7 | The photographs of the phantom (a) and pork tissues (c), and the NIR images of BaF2:Nd NP dispersion (4 mg/mL) in the phantom (b) and pork

tissues (d).
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18:1 were recorded in the pork tissue (Figure 7d). These high-
quality images demonstrated the potential for advancement of
this type of NP for deep tissue imaging in a living body.

CONCLUSION

A high fluorescence BaF2:Nd NP without ligand was fabricated
with a simple hydrothermal method. The NP dispersions exhibit
high superior photostability and physical stability. Furthermore,
an imaging depth of 5mm and a high spatial resolution of
300µm were found in the pork tissues. The fluorescence image
shows a significant SBR of 18:1. Moreover, the BaF2:Nd NPs
show low HR value (3.27%) and high cell viability (91%). These
superior performances of these nanoprobes exhibit their great
potential application in high-contrast imaging and practical
tumor diagnosis.
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