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Optical diffraction tomography (ODT) is a computational imaging technique based on
refractive index (RI) contrast. Its application for microscopic imaging of weakly absorbing
and scattering samples has been demonstrated by using a specially designed holographic
microscope with angular scanning of the coherent sample illumination direction. Recently,
an alternative low cost technique based on partially coherent sample illumination (PC-
ODT), which is compatible with the conventional wide-field transmission microscope, has
been established. In this case, the 3D refractive index distribution of the sample is obtained
by deconvolution from a single stack of through-focus intensity images. The performance
of PC-ODT has been successfully tested on various fixed specimens (diatom frustule and
biological cells) and moving bacteria. Here, we demonstrate that the PC-ODT is an efficient
tool for the analysis of living eukaryotic cell dynamics at short- and long-term periods. The
COS-7 cells, which hail from the African green monkey kidney, have been chosen for this
study. A fast data acquisition setup comprising an optical scanning module can be easily
attached to the microscope, and it allows observing cell 3D organelle movements and RI
variations, with the required temporal resolution. In particular, a more rapid nucleoli rotation
than previously reported has been found. The long-term cell monitoring during necrosis
reveals significant changes in cell dry mass concentration obtained from recovered RI
contrast.

Keywords: optical diffraction tomography, wide-field transmission microscopy, quantitative imaging, cell imaging,
refractive index

INTRODUCTION

While the theoretical fundamentals of the ODT were developed more than a half of century ago [1],
its applications in high-resolution microscopy have been started relatively recently [2–4]. The widely
known ODT modality uses spatially and temporally coherent laser light for sample illumination,
indicated throughout the article as coherent ODT (C-ODT). It can be implemented in specially
designed holographic microscopes [2–4]. Data acquisition consists in angular scanning of sample
illumination directions (i.e., illumination beam rotation) and the corresponding hologram recording.
The complex field amplitude of the scattered beam is reconstructed from holograms for every
illumination direction. Posterior numerical refocusing and deconvolution allow recovering the 3D
sample refractive index (RI) distribution. Note that the C-ODT is based on synthetic aperture
microscopy extended to 3D case [5, 6]. This angular scanning is a relatively slow process. To improve
temporal resolution of 3D RI imaging up to 10 Hz, a non-interferometric C-ODT technique using
limited annular illumination has been recently established [7]; however, the demonstrated lateral
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(487 nm) and axial (3.4 μm) resolutions are rather low for cell
analysis. Another technique which is also based on angular
scanning for non-interferometric microscopy has been
reported [8], where Kramers–Kronig relations and oblique
illuminations are exploited for phase recovery, instead of
interferometric measurements. Coherent noise is another
limitation of the interferometric C-ODT. Recently, temporally
low-coherence light source and a diffraction-based illumination
scanning method (using a ferroelectric liquid crystal spatial light
modulator for generating the temporally multiplexed sinusoidal
patterned beam) have been used to achieve fast (up to 20 Hz) and
low-noise 3D RI reconstruction [9].

However, refractive index tomography is also possible to
implement in a conventional wide-field transmission
microscope obtaining similar results as by C-ODT. It is based
on the approach proposed by N. Streibl [10] that allows
reconstructing the RI of a studied sample from a stack of
through-focus intensity images obtained by simultaneous
illumination of the sample from all the directions allowed by
the microscope aperture. The experimental implementation of
this modality, further referred to as partially coherent ODT (PC-
ODT), has been demonstrated in different examples: fibers,
spherical particles, diatom frustule, fixed biological cells, and
moving bacteria [11–16]. However, probably the main
challenge of ODT is the study of cell behavior in its natural
environment that has not been reported yet for the case of PC-
ODT. Here, we demonstrate the applications of this technique for
short- and long-term cell dynamics analysis reaching fast (0.1 s
for 60 × 60 × 14 μm3 volume) 3D RI reconstruction with high
lateral (125 nm) and axial (270 nm) resolutions. Note that the 3D
RI distribution provides valuable information for biomedical cell
studies: its shape, volume, dry mass, and internal structure
organization that certainly evolve with time.

This work is organized as follows. First, we shortly review the
principle of the PC-ODT technique and describe the
experimental setup used for its implementation. We pay
special attention to the design of the optical refocusing
module (ORM) which has to be attached to the conventional
wide-fieldmicroscope for fast and easy data acquisition. Note that
the ORM is easy to incorporate into any commercial microscope,
as for the example the one used in this work (Nikon Eclipse Ti-U
inverted). The next section is devoted to the discussion of the
experimental results. The work ends with concluding remarks.

PARTIALLY COHERENT-OPTICAL
DIFFRACTION TOMOGRAPHY PRINCIPLE,
EXPERIMENTAL SETUP, AND SAMPLE
PREPARATION

Partially Coherent-Optical Diffraction
Tomography Principle
The goal of the ODT [1] is the recovering of the sample scattering
potential defined as

V(r) � k20(n
2(r) − n2m)

from a series of intensity measurements. Here, k0 is the
wavenumber in vacuum, r is a position vector, and n(r) and
nm are the RI of the sample and surrounding media,
correspondingly. The scattering potential is, in general, a
complex valued function

V(r) � P(r) + iA(r)
with real and imaginary parts, P(r) � k20(n2re(r) − n2im(r) − n2m)
and A(r) � 2k20nre(r)nim(r), respectively, that are related to the
real (nre) and imaginary (nim) parts of the sample RI (n � nre +
i nim) Here, nm is assumed to be real.

Let us consider that the sample satisfies the first-order Born
approximation, which is suitable for weakly absorbing and low
scattering samples. Under this approximation, the 3D intensity
distribution I(r) measured in a bright-field microscope (e.g., a
stack of through-focus intensity images) can be written as the
convolution of the point spread function (PSF), h (r), of the
microscope and the sample’s scattering potential, as
demonstrated in Ref [10–14]. By splitting the PSF into its real
and imaginary contributions, one obtains the functions hP (r) and
hA (r) representing the microscope response to a point scatter,
δ(r), and to a point absorber, iδ (r), correspondingly. Then, I(r)
can be understood as the linear superposition of the real and
imaginary contributions of the scattering potential, respectively,
convolved with hP (r) and hA (r), as it follows [11].

I(r) � B + P(r)⊗hp(r) + A(r)⊗hA(r)
with B being the background intensity (un-scattered light). p(r)
and therefore nre(r) can be easily recovered from this equation for
the case of a non-absorbing sample. For weakly absorbing sample,
it can be supposed that the real and imaginary parts of the RI are
proportional nim � εnre, where ε takes a small positive value (in
the range 10-5–10-3) [13, 14]. Then introducing the effective point
spread function hEFF(r) � hP(r) + 2εhA(r), the expression is
linearized with respect to P(r).

I(r) � B + P(r)⊗hEFF(r)
The deconvolution process is usually carried out in the Fourier

space [13, 14]. The analytical expressions for the phase and
absorption optical transfer functions (which are the 3D
Fourier transform of hP(r) and hA(r), respectively) can be
found in Ref [17]. However, better results are obtained using
numerically calculated transfer functions, which take into
account the experimental sample illumination [18]. The real
part of the RI recovered from P(r) is considered for the cell
dynamic analysis in Result and Discussions.

Experimental Setup
One of the advantages of PC-ODT is that it can be easily
implemented in conventional transmission wide-field
microscope (e.g., Nikon Eclipse Ti-U inverted) equipped with
a quasi-monochromatic LED illumination source filtered with a
band-pass filter (depending on the desired working wavelength).
In this work, the sample was illuminated with quasi-
monochromatic partially coherent light (λ � 560 nm,
band-pass filter with FWHM � 30 nm), and a dry condenser
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lens (Thorlabs-CSC200 NAc � 0.78) and imaged with an oil-
immersed objective (Nikon Plan-Apo, 60x, nimm � 1.518, NAo �
1.45) with a tube lens (fTL � 200 mm). The lateral and axial
resolutions of the setup defined as the Nyquist distance [19] are
125 nm and 270 nm, correspondingly.

The 3D through-focus intensity stack required for PC-ODT
can be obtained in two different ways: mechanically or optically.
The mechanical refocusing consists of changing the distance
between the stage of the sample and the objective lenses (for
instance, with a motorized piezo stage). However, it is undesirable
for high-resolution microscopy (immersed objectives).
Conversely, the optical refocusing considered here allows for
axial scanning of the sample without moving it physically. It is
achieved by incorporation of an optical refocusing module
(ORM) after the intermediate image space, as it is shown in
Figure 1. An electrically tunable lens (ETL) with a variable focal
length is a crucial element of this module that enables a fast
measuring of a through-focus intensity stack I (r).

The high-speed ETL (Optotune EL-10-30-C-VIS-LD-MV
device in our case) is located in the Fourier conjugated plane
with respect to the central slice, zdefocus � 0 μmof the intermediate
3D image. The camera sensor records a 2D image (intensity
distribution) corresponding to the transverse xy-object slice
located in the microscope’s focal plane (defocus distance
zdefocus � 0 μm). The position of the focused plane is optically
shifted according to electric current applied to the ETL, therefore
yielding the axial z-scanning of the sample almost in real time.
Finally, I (r) is acquired by an sCMOS camera (Hamamatsu, Orca
Flash 4.0, 16-bit gray-level, pixel size of p � 6.5 μm, in our case)
and stored in a computer for its processing.

The shift of the imaged plane (zdefocus) depends on the
magnification M of the considered microscope, as well as the
relay lenses projecting the image onto the camera detector.
Specifically, the shift distance is given by [20]
zdefocus � −nmf 2RL1PETL/M2, where fRL1 is a focal distance of the

relay lens RL1, and PETL is the power of the ETL lens from the
interval of [Pmin

ETL, P
max
ETL] � [−1.5,+3.5]dpt. The total

magnification of the system is Ms � M × fRL2/fRL1.

Sample Preparation
The culture and preparation of COS-7 cells (hail from the African
green monkey kidney) considered in the next section were
conducted as follows. First, the cells were cultured in
Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and incubated at 37°C and
5% CO2 for 4 days. 12 h before fixation, the cells were trypsinized
and transferred to the coverslip. Afterward, the cells are
immersed in phosphate-buffered saline (PBS) and sealed
between coverslips, to prevent evaporation. The RI of the PBS
is similar to water.

RESULT AND DISCUSSIONS

Living cell monitoring is an important source of information in
biophysics and medicine. Below, we consider the application of
PC-ODT for the analysis of fast and slow cell RI changes.

Study of Rapid Cell Dynamics with 3D
Refractive Index Imaging
The fast monitoring of the sample provided by PC-ODT enables
the study of cells with fleeting dynamics (wobbling, flickering,
etc.), which exhibit noticeable changes in the time scale below
0.5 s. For evaluating the capability of PC-ODT for the study of
intracellular motion, we analyze the behavior of living fibroblast-
like COS-7 cell for 9 s. The prepared sample has been considered
to observe the process of cell attachment to the substrate. The
intensity stack comprises 50 2D images acquired with 2-ms
camera exposure time (0.1 s for one stack). During 9 s 25 of

FIGURE 1 | Experimental setup for PC-ODT implementation. Optical refocusingmodule includes an ETLwith an integrated divergent offset lens and additional relay
lenses (RL1 and RL2) and the camera.
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such stacks have been measured. Then, the 3D RI distribution in
the volume of 500 × 500 × 50 pixels, corresponding to 60 × 60 ×
14 μm3, has been obtained by applying the PC-ODT
deconvolution procedure explained in Partially Coherent-
Optical Diffraction Tomography Principle. The temporal
evolution of two RI tomograms at z � 0 μm (the cell is
attached to the substrate) and z � 4 μm is presented in
Supplementary Video S1. Alternatively, the temporal
evolution of 3D RI distribution can be observed in
Supplementary Video S2, where the dynamic cell is shown as
a volumetric reconstruction with a color-coded depth and
brightness-coded RI applied for fast and easy cell 3D
visualization. We have developed this volumetric
reconstruction by using a customized ImageJ macro based on
“Z-stack Depth Color Code” and “Clear Volume” plugins [21].

In Figure 2, we show the time evolution of RI at three
characteristic planes, at z � 0 μm, z � 1 μm, and z � 4 μm.
The slices at z � 0 μm and z � 1 μm (Figure 2A) and (Figure 2B)
show intensive activity of lamellipodia, while the indicated
filopodium and rear protrusion are immobile. Lamellipodia are
a cytoskeletal protein actin projection on the leading edge of the
cell. Together with filopodia, they organize process of cell
migration. However, while lamellipodia enable an explorative,
rather fast random, walk (up to 1.2 μm/s according to Ref [22]),
the filopodia promote a more slow ballistic migration guided by
external inputs [23]. The sub-second-scale rearrangement of
barbed actin filaments of lamellipodia is observed in Figures
2A,B (see also Supplementary Videos S1 and S2). The recent

comparative fluorescence and RI microscopic study [24] allows
easy identification of the cell organelles in the RI images. Thus
(see insets of Figure 2A), the mitochondria network and lipid
droplets can be found. At the slice at z � 4 μm (Figure 2C) several
organelles including nucleoli immersed in the nucleus are
observed. We underline that fibroblast cells often have several
nucleoli in the nucleus as in the cases studied in this work. The RI
distributions in the plane z � 4 μm demonstrate that the cell
exhibits intensive intracellular trafficking, nucleus plication, and
counterclockwise rotation.

This cell activity is also reflected in Figure 2C, where 3D
rendering of the entire cell at different moments of time is shown.
The visualization principle is the same as in the Supplementary
Video S2.

Let us consider now more rapid changes of this cell. In
Figure 3, four consecutive frames (each pair separated by only
0.36 s) have been analyzed for the planes z � 0 μm and z � 4 μm.
Along with RI distributions, we also include speed map plots (see
enlarged images, green arrows) of the structures inside the
nucleus for studying the rotation motion of its internal
organelles. The speed maps have been obtained by using
PIVlab plug-in (a digital particle image velocimetry tool)
available for MATLAB [25] that performs a multipass window
deformation ensemble correlation widely applied in particle
velocimetry applications [26]. Thus, by considering the
correlation between consecutive image pairs, one can obtain
the velocity of each region of the cell. Note that every speed
arrow corresponds to a region of 7 × 7 pixels. Thanks to the

FIGURE2 | Temporal evolution of cell RI distribution observed at three different axially separated slices z � 0 μm (A), z � 1 μm (B), and z � 4 μm (C) of a living COS-7
cell immersed in PBS solution. (D) 3D rendering with a color-coded depth and brightness-coded RI applied.
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streamlines of this speed vector field, one is able to characterize
the motion of organelles inside the entire cell. A higher activity is
observed inside the nucleus, in the form of a relatively fast
rotation. It is observed that the speed field magnitude is
variable within the range 0.18–1.4 μm/s, with certain tendency
to vorticity particularly noticeable at z � 4 μm. The nucleus is
rotated around an axis perpendicular to the substrate with a speed
about 3 degrees/s.

Note that the fibroblast cells often display a high nuclear
rotational activity [27]. The nuclear rotation and oscillation are
associatedwith cellmovement,mitosis, and necrosis or are induced
by external factors, such as mechanical shear stress [28], and have
been reported in several publications, but on the larger temporal
sampling (minutes). The entire nucleus rotation of the order 10-
20 degrees/min (0.2-0.3 degrees/s) has been recently observed
using C-ODT [24]. Here, significantly more rapid nucleus
rotation (3 degrees/s) is observed (see also Supplementary
Videos S1 and S2). This example illustrates the capability of
PC-ODT for fast and high-spatial resolution studies of living

cells, in particular their behavior under environmental changes,
external force applications [22], differentiation, mitosis, etc.

Long-Term Cell Monitoring
Apart from short-term dynamics, long-term processes such as cell
mitosis (division) or necrosis (death) are also of great interest in
biomedicine. Thus, it is important to prove the applicability of PC-
ODT for this type of studies, where the observation can take minutes
or even hours. Here, we consider the process of induced necrosis of
two COS-7 cells under nutrient deprivation. We scan a field of view
(60× 60× 16 μm3). 3D intensity stack has beenmeasuredwithin 2 hrs
in 5-min regular intervals, and the RI has been recovered. The
temporal evolution of 3D RI distribution can be observed in
Supplementary Video S3, as a volumetric reconstruction with a
color-coded depth and brightness-coded RI applied for fast and
easy cell 3D visualization (as in Supplementary Video S2). In
Figure 4A, two different z-slices for z � 0 μm and z � 4.5 μm of
the sample RI are presented, at four different times (t � 0min, 15min,
60min, and 120min). At z � 0 μm, the cells are attached to the

FIGURE 3 | Short-term evolution of RI slices of a living COS-7 cell, along with a speed map plot representing the velocity field of the cell structures. The speed field
magnitude is variable within the range 0.18–1.4 μm/s. Certain tendency to vorticity is particularly noticeable at z � 4 μm.
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substrate. At z � 4.5 μm, the cell nucleus with several nucleoli is
observed. Also in Figures 2A,B, the mitochondrial network and lipid
droplets can be identified. Volumetric cell reconstruction with a color-
coded depth and brightness-coded RI for different moments of time is
shown in Figure 4B.

The different phases of the cell cycle have been observed during
this long-term study. First, the cell swells progressively (from t �
0 min up to t � 60min, see Figures 4A,B) until a maximum size is
reached. Later, the multiple disruption of the outer cell membrane
starts, resulting in the efflux of intracellular contents and a
dramatic loss of cell volume (compare RI slices in Figure 4A).
This behavior can be observed in Supplementary Video S3.

For quantitative characterization of the observed necrosis
process, we analyze the average dry mass concentration (DMC),
which can be easily obtained from RI contrast. Indeed, it is widely
accepted [29–32] that for biological samples immersed in an
aqueous medium, there exists a linear relationship linking the
DMC of the sample and the real part of its RI as DMC(r)�[n(r)-
nm]/a, where a represents the so-called specific refractive index
increment, n is the sample’s RI, and nm is the water RI. Although

the cell chemical composition is variable, an average value around
a � 0.0018 dL/g is usually used within the light visible range when
nucleated cells are considered [30, 32].

To obtain the average DMC, the reconstructed RI stack must be
split into cell and background (surrounding medium). The applied
segmentation algorithm takes into account the gradient and the
absolute value of the sample RI. The 3D image regions that
simultaneously satisfy both |∇n(r)|> 0.002 and n(r)> 1.333
conditions are considered as the cell sample. Only the RI values
belonging to those regions are used to obtain the DMC. The
temporal evolution of the averaged (mean) DMC is shown in
Figure 5. During the first hour of experiment, the mean DMC
significantly decreases (from 2.422 g/dL at t � 5min to 1.685 g/dL at
t � 60min). In this period of time, the volume of the cell grows
remarkably, but the overall dry mass does not change significantly.
After 1 hr of experiment, the DMC reaches a plateau around 1.65 g/
dL that can be interpreted in terms of two processes with opposing
effects: the outer membrane suffers multiple micro-ruptures and the
cell tends to shrink, which should again increase DMC, but at the
same time, all the cell contents leak into the extracellular space.

FIGURE 4 | Temporal evolution of the RI of a COS-7 cell undergoing necrosis. (A) 2D slices of the RI at two different planes z � 0 μm and z � 4.5 μm. (B) 3D
rendering of the cell RI in four moments of time.
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The cell death phenomenon is a topic of great interest in
biology and medicine [33–36], and PC-ODT seems to be a
suitable tool for this study. Note that data for long-term cell
temporal evolution observation can be acquired automatically by
programmable activation of both ETL and camera sensor.

CONCLUSION

It has been demonstrated in two examples of living eukaryotic cell
that by using the 3D RI distribution obtained with PC-ODT, it is
possible to study a variety of biological physiological changes in
living cells at different time intervals from sub-seconds to hours.
We have demonstrated that fast 3D RI monitoring allows
revealing sub-second range cell organelle activity (nucleoli
rotation and lamellipodia movements), which requires further
biological study. The simple relation between the RI and dry mass
provides biologically meaningful quantitative information for cell
analysis, in particular for the study of cell necrosis, apoptosis,
mitosis, and other processes in a natural environment. We
conclude that PC-ODT, feasible in the conventional wide-field
microscope with an automatized refocusing module, is a viable
alternative to C-ODT, realizable in the commercially available

holographic microscopes [32, 33], for fast high-resolution
quantitative study of living cells.
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Supplementary Video 1 | The temporal evolution of COS7 cell refractive index
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