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The mechanical responses of dense packings of soft athermal spheres under a finite-rate

shear are studied by means of molecular dynamics simulations. We investigate the

volume fraction and shear rate dependence of the fluctuations in the shear stress and the

interparticle contact number. In particular, we quantify them by defining the susceptibility

as the ratio of the global to local fluctuations. The obtained susceptibilities form ridges on

the volume fraction-shear rate plane, which are reminiscent of the Widom lines around

the critical point in an equilibrium phase transition.

Keywords: jamming transition, rheology, shearflow, molecular dynamics simualtion, non-equilibirum phase

transition

1. INTRODUCTION

Soft condensed matters comprising bubbles, emulsions, or powder particles are generally referred
to as “soft athermal particle systems." Soft athermal particles are characterized by their (quasi-)
elastic interactions, and thermal motion is negligible since they are large in size. When their density
increases quasistatically, a transition from the liquid state, where the stress is zero, to the amorphous
solid state, where the stress is finite, occurs. This transition is called the jamming transition [1, 2].
In the vicinity of the jamming transition point, various physical quantities, namely, the stress, the
interparticle contact number, and the viscosity, behave critically [3–8]. The jamming transition is
similar to the glass transition observed in thermal particle systems such as atomic, molecular, and
colloidal systems; recently, however, they have been revealed to be distinct [9, 10].

The rheology of athermal particles with shear flow also exhibits critical behaviors caused
by the jamming transition. In particular, a scaling function for the flow curve regarding the
volume fraction and shear rate has been proposed [11], and the validity of the scaling has been
widely discussed to date [5, 12–14]. First, the jamming transition can be strictly defined in the
athermal quasistatic limit; thus, under a finite-rate shear, the existence of a jamming transition is
not obvious. Most conventional jamming transition studies are concerned with the criticality of
macroscopic mean quantities, whereas with the finite-rate shear, physical quantities such as the
shear stress continuously increase with increasing volume fraction, and no remarkable singularity
is observed [12, 15–18]. In the statistical mechanics of thermal equilibrium systems, a naive phase
transition picture is often captured by the fluctuation of physical quantities. In previous studies on
the jamming transition, little discussion on the fluctuation has been made, although it is potentially
significant. Accordingly, this work focuses on the fluctuation of the physical quantities and clarifies
the jamming transition behavior under a finite shear rate.
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In this work, we investigate the stress response of soft athermal
particles using molecular dynamics simulations with a finite-
rate shear flow. We measure the volume fraction dependence
of the shear stress under a constant shear rate, and then, near
the jamming transition point, which is characterized by the
athermal quasistatic (AQS) limit, we find that the fluctuation
of the stress exhibits a peak. We also find that the peak
height diverges and the peak position converges to the jamming
transition point when we decrease the shear rate toward the
AQS limit, which is reminiscent of the Widom line near
the critical point in an equilibrium phase transition. Despite
this similarity, the mechanism of these fluctuations in dense
athermal particles is still not apparent due to their strong non-
equilibriumness. Hence, to clarify the mechanism, we investigate
the time evolution of the stress when the stress fluctuation
is enhanced, and we reveal that under a wide range of finite
rates, the system transiently acquires rigidity intermittently. We
furthermore obtain the Widom line from the contact number
fluctuations, which converge to the jamming transition point in
the AQS limit, yet its trace is not identical to that of the stress
fluctuation. These findings deepen our understanding of the
jamming transition under a finite-rate shear and provide us with
extensible knowledge for various phase transition phenomena
under an external field.

This paper is constructed as follows. First, we introduce the
numerical simulation method. Next, we discuss the average shear
stress and its fluctuation. Then, we examine the stress-strain
curve and contact number fluctuations. Afterward, we draw
the Widom lines obtained from the stress and contact number
fluctuations. Finally, we summarize the results and give our
perspectives.

2. NUMERICAL METHODS

We employ molecular dynamics (MD) simulations of soft
athermal particles in three dimensions. To avoid crystallization
of the system, we prepare a 50:50 binary mixture of N particles,
where different kinds of particles have the same mass m and
different diameters, d and 1.4d [2]. The force between the
particles, i and j, in contact is modeled by a “linear spring-
dashpot" [19], i.e., f ij = (kξij − ηξ̇ij)nij, with the stiffness k and
viscosity coefficient η. The force is parallel to the normal unit
vector nij = rij/|rij|, where rij ≡ ri − rj, with the particle
positions, ri and rj denoting the relative positions. In addition,
ξij = Ri + Rj − |rij| > 0 is the overlap between the particles,
and ξ̇ij is its time derivative, where Ri (Rj) is the radius of
particle i (j). The stiffness and viscosity coefficient determine the
time scale as t0 ≡ η/k and are adjusted such that the normal
restitution coefficient of the particles is exactly zero, i.e., e =

exp(−π/
√

2mk/η2 − 1) = 0 [19].
We randomly distribute the N particles in an L × L × L

cubic periodic box and relax the system to a mechanically stable
state [20]. Then, we apply simple shear deformations to the
system under the Lees-Edwards boundary conditions [21]. In
each time step, we apply affine deformation to the system by
replacing every particle position (xi, yi, zi) with ri = (xi +

1γ yi, yi, zi) (i = 1, . . . ,N) and then numerically integrate the
equations of motion, mr̈i =

∑

j f ij, with a small time increment
1t [22, 23]. Here, 1γ is the strain increment; hence, the shear
rate is defined as γ̇ ≡ 1γ/1t.

In our MD simulations, we control the volume fraction of the
particles ϕ and the shear rate γ̇ . To control the shear rate, we
change both 1γ and 1t within the constraints 1γ ≤ 10−6 and
1t ≤ 0.1t0. In addition, we measure the mechanical responses of
the system to simple shear deformations by the shear stress

σ = −
1

L3

∑

i,j

f elijxrijy . (1)

Here, f elijx = kξijnijx is the x-component of the elastic force,
and rijy is the y-component of the relative position rij between
the particles i and j, which are in contact. For each ϕ and γ̇ ,
we compute the mean value 〈σ 〉 and fluctuations of the shear
stress in a steady state, where the applied strain is in the range
1 < γ < 5. We also take ensemble averages of 〈σ 〉 and χσ

(the definitions of which are given in section 3.2) over at least
20 different initial configurations.

3. RESULTS

3.1. Average Shear Stress
We first present the dependence of the average shear stress 〈σ 〉
on the volume fraction ϕ and the shear rate γ̇ in Figure 1A.
Specifically, the values of 〈σ 〉 under different combinations of the
parameters as functions of ϕ are shown1.

In the low ϕ regime, 〈σ 〉 plateaus for all γ̇ . We can also
tell that σlow scales linearly with γ̇ . This Newtonian-like shear
rate dependence is considered the consequence of the effective
overdamped dynamics due to the zero restitution coefficient.

In the high ϕ regime, 〈σ 〉 increases with increasing ϕ. In
particular, when ϕ is high enough and the system exhibits
a clear yielding behavior, the γ̇ dependence of 〈σ 〉 follows
the famous Herschel-Bulkley law [31]: 〈σ 〉 ∼ σY + γ̇ n.
We show the flow curve for the system with ϕ = 0.65
in Supplementary Material SM2 [15, 32–35], where the fitting
result of the exponent is n ≈ 0.62. We also mention that the
yield stress σY varies with the volume fraction ϕ in a power-law
manner as σY ∼ 1ϕα with α ≈ 1.0 [36, 37]2, where1ϕ ≡ ϕ−ϕJ

is the distance to the critical point.
Between these two qualitatively different volume

fraction regimes, we observe a steep growth in 〈σ 〉. As
intuitively expected, this sharp increase in 〈σ 〉 is observed
in the vicinity of the jamming point [ϕJ ≈ 0.6461; see
Supplementary Material SM3 for the determination of ϕJ under
shear [5, 37]]. However, the stress growth is most prominent
at a volume fraction that is clearly smaller than ϕJ at finite γ̇ .

1In Supplementary Material SM1 [5, 24–30], we show the results for the so-called
effective macrocopic friction coeffcient µ ≡ σ/P, where P ≡ 1

L3

∑

i,j f
el
ij · rij is the

pressure.
2Although diverging values of α have been reported in the range of α ∈

[1.0, 1.5] [36–41], the athermal quasistatic simulations, which are expected to
provide relaiable values, lead to α ≈ 1.0 [36, 37].
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FIGURE 1 | Simulation results of (A) the average stress 〈σ 〉 and (B) the susceptibility χσ as functions of the volume fraction ϕ. Different markers are used to

distinguish the different shear rate γ̇ values, as shown in the legend in (B). The dotted lines depict the location of the jamming point ϕJ.

Furthermore, as γ̇ increases, the growth becomes less steep, and
the onset volume fraction of the stress growth shifts toward the
low ϕ side.

3.2. Susceptibility of the Shear Stress
We next focus on the fluctuation of the shear stress. In
particular, we quantify the enhancement of the collectivity in the
fluctuations that accompanies the rapid increase in 〈σ 〉 by the
susceptibility χσ , defined as:

χσ ≡ N(〈σ 2〉 − 〈σ 〉2)/(〈σ 2
local〉 − 〈σlocal〉

2), (2)

where 〈σlocal〉 is the time- and particle-averaged value of the
particle-based local stress σi ≡ − N

2V

∑

j∈contact f
el
ijx(t)rijy(t)

and
∑

j∈contact is the sum over the neighbors (〈σ 2
local〉 is the

corresponding second-order moment)3. With this definition, the

3 The only difference between the definitions of 〈σ 2〉 and 〈σ 2
local〉 is the order in

which the averages are taken over particles and time.

average of σi over the particles is identical to the macroscopic
value σ , σ = 1

N

∑N
i σi. This susceptibility χσ quantifies the

degree of collectivity in the stress fluctuations: χσ is expected
to diverge with increasing system size N when the whole system
behaves collectively, as in a system located near a critical point. In
Figure 1B, we plot the measurement results of χσ as a function
of the volume fraction ϕ.

In the low ϕ regime, χσ increases with increasing γ̇ . However,
interestingly, for low rates (γ̇ ≤ 10−5), χσ hardly depends on γ̇ .
This behavior is in contrast to that of 〈σ 〉, which depends linearly
on γ̇ for all shear rates γ̇ in the low ϕ regime. Regarding the
volume fraction dependence in this regime,χσ grows weakly with
increasing volume fraction.

In the high ϕ regime, the opposite trend is observed: χσ

becomes smaller when either γ̇ or ϕ increases. Still, the γ̇

dependence disappears for low values of γ̇ (in this case, γ̇ ≤

10−6), in accordance with the behavior in the low ϕ regime.
At an intermediate value of ϕ between these two regimes, χσ

exhibits a clear peak. As the shear rate γ̇ increases, the height

Frontiers in Physics | www.frontiersin.org 3 May 2021 | Volume 9 | Article 667103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Oyama et al. Dynamic Susceptibilities in Athermal Spheres

of the peak decreases, and the position shifts toward the low
ϕ direction. Note that if we further increase the shear rate to
γ̇ = 10−2, we no longer observe a peak, at least in the range
of the volume fraction that we have investigated, i.e., 0.62 ≤

ϕ ≤ 0.65. In accordance with the convergence of χσ both in
the high and low ϕ regimes, the height and position of the peak
become almost constant for γ̇ ≤ 10−6. This total convergence of
the susceptibility χσ in the low rate regime over all values of ϕ

suggests that the length scale that governs the stress fluctuation
spans the whole system in this regime. We discuss the possible
candidates for this length scale in section 4.2, although we leave
the precise identification for a future study.

Hereafter, we call the height and position of this peak χmax
σ (γ̇ )

and ϕχmax
σ

(γ̇ ), respectively (we omit the explicit notation for the
γ̇ dependence below).

3.3. Stress-Strain Curves
To further obtain an intuitive understanding of the parameter
dependence of the susceptibility χσ , we plot typical stress-strain
curves for the systems under various combinations of the volume
fraction ϕ and the shear rate γ̇ (γ̇ = 10−6, 10−5, and 10−4)
in Figure 2. For the whole parameter space investigated here,
the average stress 〈σ 〉 becomes larger with both increasing ϕ

and increasing γ̇ , as presented in Figure 1A. However, the
dependence on γ̇ changes significantly depending on ϕ: while
the order of 〈σ 〉 remains the same regardless of the value of γ̇

at a high volume fraction (ϕ = 0.65 > ϕχmax
σ

, Figure 2 light
gray curves)4, it scales linearly with γ̇ at a low volume fraction
(ϕ = 0.62 < ϕχmax

σ
, Figure 2 black curves). However, the shapes

of the stress-strain curves in these different regimes are similar in
that the fluctuations are suppressed.

By contrast, the shape of the stress-strain curves dramatically
changes in the vicinity of ϕχmax

σ
under a slow shear rate (γ̇ =

10−6; Figure 2A dark gray curve): we observe spiky peaks, with
the height of the baseline being on the order of the stress at low ϕ

(see Supplementary Material SM4 for normal plots of the stress-
strain curves where the spiky shapes are more appreciable). The
heights of the spikes are larger than the baseline by at most two
orders of magnitude and barely reach the curve for ϕ = 0.65.
Importantly, the probability distribution of σ , P(σ ), exhibits a
power-law-like shape for ϕ = ϕχmax

σ
and γ̇ = 10−6, 10−5,

indicating that this susceptibility peak reflects the criticality
expected for γ̇ → 0 [see Supplementary Material SM4]. As
the shear rate increases, the spikes become less sharp and less
frequent (γ̇ = 10−5; Figure 2B dark gray curve), and finally, the
whole stress-strain curve becomes almost detached from that for
a low ϕ at γ̇ = 10−4 (Figure 2C). Since the magnitudes of the
stress at the baseline and the peak top are comparable to those
for low and high volume fractions respectively, we consider that
these spikes are formed because the system goes back and forth
between fluid-like low-stress states and solid-like large-stress
states. That is, the whole system collectively changes its “state"
during the time evolution, as indicated by the susceptibility peak.
We mention that similar repetitive transitions between fluid-like

4Note that since 〈σ 〉 obeys the Herschel-Bulkley law at this high volume fraction
(ϕ = 0.65), the order of the stress becomes larger if we apply a much faster shear.

and solid-like states have also been observed under the AQS
shear (γ̇ = 0) [15]. Notably, under a high shear rate (γ̇ =

10−4), P(σ ) exhibits a clear unimodal shape without power-law
tails at either end (see Supplementary Material SM4 [42, 43]).
This observation suggests that the increase in σ becomes more
similar to a cross-over rather than a phase transition because
of the effect of the strong external field (see section 4.1 for the
qualitative similarity between our system and the conventional
critical phenomena).

4. DISCUSSION

In this section, we discuss the similarity between our system
and the conventional critical phenomenon: the ferromagnetic
transition in the Ising model under an external field. Based on
this analogy, we can tell that the shear stress σ can be viewed as
a natural “conjugate" variable to the strength of the external field
(namely, the shear rate γ̇ ). However, σ changes its value by orders
ofmagnitude depending on γ̇ even in the “disordered," low-stress
phase. In this sense, it is qualitatively different from conventional
standard order parameters that are normalized to be between
zero and one in most cases. Therefore, we further conduct the
same analysis for an alternative candidate for an order parameter,
i.e., the interparticle contact number z.

4.1. Correspondence to Conventional
Criticality in Equilibrium Systems
To further explore the parameter dependence of the shear stress
σ and its fluctuations, we rely on an analogy with a well-
understood phase transition. Here, in particular, we discuss an
analogy with one of the most famous examples: the Ising model
under a magnetic field (see Supplementary Material SM5 for
a brief recapitulation of the mean-field solution). As shown in
Figures 1A,B, the average and the susceptibility of the stress
exhibit qualitative similarities with the magnetization and the
susceptibility in the Ising model (SM5): the inverse temperature
β , which is the control parameter of the criticality in the Ising
model, corresponds to the volume fraction ϕ in our system.
Similarly, the external magnetic field h and the magnetization
m correspond to the shear rate γ̇ and the mean stress 〈σ 〉,
respectively. Moreover, in both systems, as the external field (h
or γ̇ ) increases, the change in the order parameter (m or 〈σ 〉)
becomes less steep, and the whole plot shifts toward the less-
ordered side. Regarding the susceptibility (χ or χσ ), we observe
peaks at a value of the control parameter (β or ϕ) that is shifted
from the critical point when an external field is present. The
height of these peaks decreases with increasing external field, and
the position shifts toward the small-order side. We emphasize
that the counterpart of the magnetic field in our system is not
the strain γ but the shear rate γ̇ , which is the conjugate of the
stress in effective energy dissipation. Hence, the free energy of
the Ising model corresponds to the dissipation function in our
system and is consistent with the empirical knowledge that the
dissipation system takes precedence over the dynamics of the
minimum energy dissipation [44, 45]. In this sense, the shear
stress σ can be viewed as a natural conjugate variable to the

Frontiers in Physics | www.frontiersin.org 4 May 2021 | Volume 9 | Article 667103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Oyama et al. Dynamic Susceptibilities in Athermal Spheres

FIGURE 2 | Stress-strain curves for various combinations of the shear rate γ̇ and the volume fraction ϕ. The vertical axis follows a log-scale. Results for (A) γ̇ = 10−6,

(B) γ̇ = 10−5, and (C) γ̇ = 10−4 are shown. In all panels, the results for three volume fractions are compared: ϕ = 0.62 (black), ϕ = 0.65 (light gray), and ϕ = ϕχmax
σ

(dark gray).
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external field and thus as an order parameter. However, since σ

is dependent not only on the existence of contacts but also on
the degree of overlapping of each contact, it changes its value by
orders of magnitude depending on γ̇ even in the “disordered,"
dilute state. In the next section, we instead measure the average
and susceptibility of the interparticle contact number, the values
of which are expected to exhibit less γ̇ dependence.

4.2. Contact Number
The interparticle contact number z characterizes the
jamming transition most directly in terms of the microscopic
structures [4]. For the jamming transition in quiescent systems
without external fields, z changes discontinuously from zero to
approximately zC at the critical point ϕJ, above which physical
quantities such as the pressure or the shear modulus change in
a power-law manner, as in the case of the conventional second-
order phase transitions [2]. According to Maxwell’s condition,
zC = 2d holds for frictionless soft athermal spheres, where d is
the spatial dimension of the system. Here, we plot the average
and the susceptibility of the interparticle contact number z (we
do not exclude rattlers to compute z) under a finite-rate shear as
functions of ϕ in Figure 3. For the definition of the susceptibility
χz , we employ a definition similar to Equation (2).

The dependence of the average contact number 〈z〉 on the
volume fraction ϕ is qualitatively very similar to that of the
average stress 〈σ 〉: it is almost constant in the low ϕ regime and
then shows sudden growth around ϕJ, after which the growth rate
decreases in the high ϕ regime. However, the dependence on γ̇ is
significantly different from that of 〈σ 〉: in the low ϕ regime, the
plateau disappears for high γ̇ , and the shear rate dependence is
not linear. Furthermore, the values of 〈z〉 at the highest ϕ hardly
depend on γ̇ .

The susceptibility of the contact number χz behaves
qualitatively very similarly to that of χσ : it exhibits a clear peak
near the jamming point ϕJ, and the peak height and position
change in the same way as χσ when γ̇ increases. One major
difference from χσ is that the peak position and height of χz

obviously change even in the low rate limit γ̇ ≤ 10−6, where χσ

becomes constant.
This qualitative difference intriguingly suggests that the

characteristic lengths that govern σ and z (ξσ and ξz , respectively)
are different. Let us enumerate several candidates from previous
studies. For example, it is known that the correlation length of
the deviation from the continuum description diverges at the
jamming point [46–49]. This length scale, often referred to as lc, is
a candidate for ξz . On the other hand, the isotropic as-quenched
state has recently been shown to be qualitatively different from
the sheared non-equilibrium steady state in terms of the stability
against perturbation, even in the AQS limit (γ̇ = 0) [50, 51]. This
knowledge implies that lc and ξz can be different in nature, since
lc is measured in the absence of an external field (γ = 0), while ξz
should be measured in the steady state γ > O(1). As an example
of a correlation length measured in a dynamic situation, [14,
22, 52] reported that the correlation length of the non-affine
velocities of particles diverges in the limit of ϕ → ϕJ and γ̇ → 0
in two-dimensional packings of soft frictionless disks. However,
this correlation length has been shown to remain finite even in

FIGURE 3 | (A) Average 〈z〉 and (B) susceptibility χz of the interparticle

contact number as functions of the volume fraction ϕ. Different markers

represent different shear rates, as shown in the legend in Figure 1B. The

dotted lines depict the location of the jamming point ϕJ.

the same limit in three dimensions [53]. Instead, in [53], the
authors introduced the correlation length of the vortex clusters,
which diverges in that limit. As another example of a dynamical
correlation length, the one associated to the yielding criticality is
also known to diverge in the limit of γ̇ → 0 [33, 35]. However,
this length scale can be well defined only in the high ϕ regime,
where the Herschel-Bulkley law is valid and cannot describe the
total convergence of χσ over the whole ϕ regime. As discussed
here, multiple candidates exist, with the possibility that none
of them is the desired one. Although identifying the governing
length scale by comparing all these candidates is an important
issue, we leave it as a future problem.

Finally, we present the ridges obtained by connecting the
peaks of the susceptibilities under different values of γ̇ in
Figure 4. In this plot, we compare the results for χσ and χz . These
ridges can be regarded as the dissipative-system counterpart
of the Widom lines by definition. Both Widom lines seem to
converge to ϕJ in the limit of γ̇ → 0, as expected. Moreover, these
two lines follow different paths, as is the case for the conventional
equilibrium systems, e.g., the Widom lines around the liquid-gas
critical point.
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FIGURE 4 | Widom lines, or a plot of the locations of the susceptibility peaks

ϕχmax
α

on a ϕ − γ̇ plane, where α ∈ {σ , z}. Different symbols represent different

definitions of the susceptibility, as shown in the legend. The dotted line shows

the location of the jamming point ϕJ ≈ 0.6461 estimated at γ̇ = 0 (see

Supplementary Material SM3). Error bars indicate the range of ϕ for which

the values of χα are greater than 90% of χmax
α .

5. SUMMARY AND OVERVIEW

In this work, we conducted MD simulations for dense packings
of soft athermal spheres under a finite-rate shear and investigated
the dependence of the statistics of the shear stress on the
shear rate and the volume fraction. The average stress changes
largely in the vicinity of the jamming point; moreover, the onset
volume fraction for the stress growth becomes smaller when the
shear rate increases. Interestingly, this sudden stress growth is
accompanied by the formation of a peak of the susceptibility.
To further understand this susceptibility peak, we investigated
the time evolution of the stress. We found that the stress-strain
curve exhibits spiky peaks at the volume fraction where the
susceptibility peak is observed. These peaks are formed since the
system can temporally gain solidity with the aid of the external
shear, while it is fluidic otherwise. We furthermore measured
the average and susceptibility of the interparticle contact number
as an example of a normalized order parameter in our system.
The results for χz are qualitatively consistent with those for χσ ,

although the length scales that govern these two fluctuations
seem different. We furthermore visualized the Widom lines in
our system, or the ridges of the susceptibility peaks for both the
stress and contact number. As the equilibrium phase diagram
shows, two Widom lines follow different paths, although both
seem converge to a critical point in the limit γ̇ → 0. It is
important to mention that to fully confirm whether the peak
formation observed here is the consequence of the jamming
criticality, we have to conduct the finite size scaling. Especially,
it is very important to identify the length scales that governs the
diverging behaviors of χσ and χz . We leave this to future works.

As another future direction, an investigation of whether
modification of the physical dimension [52–54], the damping
coefficient [55–57], or the local dissipation mechanisms [e.g.,
introduction of the tangential friction [58, 59]] leads to any
qualitative changes should be carried out.
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