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We consider a population of mobile agents able to make noisy observations of the
environment and communicate their observation by production and comprehension of
signals. Individuals try to align their movement direction with their neighbors. Besides, they
try to collectively find and travel towards an environmental direction. We show that, when
the fraction of informed individuals is small, by increasing the noise in communication,
similarly to the Vicsek model, the model shows a discontinuous order-disorder transition
with strong finite-size effects. In contrast, for a large fraction of informed individuals, it is
possible to go from the ordered phase to the disordered phase without passing any phase
transition. The ordered phase is composed of two phases separated by a discontinuous
transition. Informed collective motion, in which the population collectively infers the correct
environmental direction, occurs for a high fraction of informed individuals. When the
fraction of informed individuals is low, the misinformed collective motion, where the
population fails to find the environmental direction, becomes stable as well. Besides,
we show that an amount of noise in the production of signals is more detrimental for the
inference capability of the population and increases temporal fluctuations, the density
fluctuations, and the probability of group fragmentation, compared to the same amount of
noise in the comprehension.

Keywords: collective movement, collective information acquisition, flocking, communication, signaling,
comprehension-production asymmetry

1 INTRODUCTION

Many species, from bacteria [1–3] and cells [4, 5] to insects [6, 7], large animals [8–11] and humans
[12] show collective motion, an intriguing phenomena in which individuals in a population move in
ordered groups, presumably due to local interactions [13]. Such a collective motion is suggested to
endow many advantages, such as avoiding predators [14], or enhancing the information acquisition
capability of the population in noisy environments [15, 16]. Besides the biological examples, similar
phenomena and similar challenges to address these phenomena can arise in the collective motion of
artificial agents [17–20].

Although the collective motion has been subject to intense study [3, 13, 21–31], an important
point not considered in the relevant literature, is that in many cases, the information individuals
reach from others in the population is provided through communication by exchanging signals [5,
32–36]. Besides, in many cases, collectively moving populations try to find and travel to a preferred
goal, such as a nutrient source or a migration root [8, 12, 16, 24]. They may do so, while only a
fraction of individuals have information about the preferred root and try to lead the group [8, 12, 16,
24]. These considerations raise the important question that how collective motion in a population of
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individuals who exchange their social information by production
and comprehension of signals is formed, and how the noise
inherent in the communication system affects the collective
information acquisition capability of the moving population?

To answer this question, we consider a population of mobile
agents trying to collectively find and travel towards an
environmental direction. Individuals communicate information
about their movement by production and comprehension of
signals. Individuals can be uninformed or informed.
Uninformed individuals make decisions over their direction of
motion based on the information they receive from their
neighboring individuals. Informed individuals, on the other
hand, can make noisy observations of an environmental
direction and make decisions over their direction of motion by
combining this information with the information they receive
from the direction of motion of their neighboring individuals. We
show that an ordered phase, where individuals move towards the
same direction, emerges for a low level of noise in
communication, and a disordered phase, where individuals
travel to different directions, emerges for high levels of noise.
The ordered phase is composed of two phases. Informed collective
motion, in which the population collectively moves towards the
environmental direction, emerges if the noise in communication
is low enough and the fraction of informed individuals is high
enough. As the fraction of informed individuals decreases (for
small communication noise), the model shows a discontinuous
phase transition to a misinformed collective motion phase in
which the population moves collectively, but towards a
direction other than the environmental direction. The fraction
of informed individuals needed for the population for collectively
travel to the environmental direction is larger for higher noise
levels.

By increasing the noise in communication, for a low fraction of
informed individuals, the model shows a discontinuous phase
transition to the disordered phase in which individuals move
towards random directions. As is the case in Vicsek-like models
[21–23], the order-disorder transition suffers from strong finite-
size effects that make its discontinuous nature apparent only in
large system sizes. On the other hand, when the fraction of
informed individuals is high, such that the system is well into
the informed collective motion phase, by increasing the
communication noise, contrary to the Viscek-like models, the
population moves gradually from the ordered phase to the
disordered phase without any phase transition. This shows
how the amount of information about the environment
contained in the population can change the nature of the
order-disorder transition observed in Vicsek-like models.

Finally, we show an amount of noise in the production of
signals is more detrimental for the collective information
acquisition capability of the population compared to the same
amount of noise in the comprehension of signals. This result is in
keeping with a recently found comprehension-production
asymmetry in a model of collective decision making, where
individuals residing on a network try to form a consensus
about an environment that can be found in a finite number of
possible states [37]. While Ref. [42] provides theoretical evidence
for a comprehension-production asymmetry in a case where a

population of immobile individuals has access to a Potts
variable as their belief variable, our finding here provides
evidence for a similar asymmetry in the case of collective
motion, where agents can move on space and need to make
decisions over their direction of motion. Besides, we show that
the production noise increases the density fluctuations and the
probability of group fragmentation, and temporal fluctuations
compared to comprehension noise. Thus, in this regard, by
extending results found in Ref. [37], our findings suggest
asymmetry between signal comprehension and production
is a fundamental characteristic of biological communication
systems.

2 THE MODEL

A schematic representation of the model is provided in Figure 1.
We consider a population of N mobile agents, moving with
constant speed v0 on a L × L two-dimensional surface with
periodic boundaries. There is a favorable direction of motion
ε, called the environmental direction. As a direction in two
dimensions can be repressed with an angel, ε is an angle in a
two-dimensional surface. In this manuscript, we measure angles
with respect to the x-axis. Individuals try to find and travel
towards ε. Individuals decide about their direction of motion
based on their personal observation (if available) and social
information. To model observation, each individual is
equipped with a noisy information channel R, and to
communicate, individuals are equipped with a signal
production G, and signal comprehension channel C, which
they use for exchanging signals. Below we describe these
channels in turn.

Observation. Personal information is acquired by noisy
observation of the environmental direction. We assume
observation is made through a noisy channel R(r|ϵ), such that
the result of an observation in environment ε is in the interval
[r − dr/2, r + dr/2] with probability R(r|ϵ)dr. We take R(r|ϵ) to
be uniformly distributed in the interval [ϵ − ηR, ϵ + ηR]. ηR can be
thought of as the noise level in observation. To implement this, we
simply set the result of an observation made by an individual
according to r � ϵ + ξR, where ξR is a uniformly distributed noise
term drawn from the interval [−ηR, ηR]. We assume only a
fraction h of the individuals, called informed individuals, are
able to observe the environment.

Communication. Social information is acquired by production
and comprehension of signals. To communicate its direction of
motion b, each individual produces a signal σ, using its signal
production channel G(σ|r � b). That is a signal in the interval
[σ − dσ/2, σ + dσ/2] is produced when an individual intends to
signal direction b with probability G(σ|r � b)dσ. Here, dσ is a
differential element, and b and σ, referring to a direction in two
dimensions, satisfy b, σ ∈ [0, 2π). We note that both b and σ are
angles in two dimensions. We take G(σ|b) to be uniformly
distributed in the interval [b − ηG, b + ηG]. ηG is a measure of
noise in signal production. This can be implemented by setting
σ � b + ξG, where ξG is a uniformly distributed noise term drawn
from the interval [−ηG, ηG].
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Signals are transmitted up to a distance l. That is all the
individuals in a circle of radius l centered around the transmitter
receive the signal. The receivers, comprehend a signal to refer to a
direction of travel r′ ∈ [0, 2π), according to their comprehension
channel C(r′|σ). That is, signal σ is comprehended as referring to
a direction in the interval [r′ − dr′/2, r′ + dr′/2] with probability
C(r′|σ)dr′. We take C(r′|σ) to be uniformly distributed in the
interval [σ − ηC , σ + ηC]. ηC is a measure of noise in signal
comprehension. This can be implemented by setting
r′ � σ + ξC , where ξC is a uniformly distributed noise term
drawn from the interval [−ηC , ηC]. In this way, we have taken
the fact that signal production and comprehension are in general
subject to noise [37–42] into account. This will allow us to study
the effect of noise in communication on collective motion and
collective information acquisition of the population.

Decision making. As a result of signals an individual receives,
it reaches a set of representations r′. We note that bold letters
show a set, and thus, r′ is a set. This set is composed of all the
directions an individual receives by comprehending signals in its
l-neighborhood. Besides, informed individuals make a personal
observation, r. Each informed individual, α, makes a decision
about its direction of motion bα, based on its observation rα and
social information r′α, by a weighted averaging rule. That is:

bα � ωrα + (1 − ω)
∑

r′ ∈ r′α
r′∣∣∣∣r′α∣∣∣∣ . (1)

Here,
∣∣∣∣r′α∣∣∣∣ is the number of representations (directions)

individual α has received, and ω is the self-confidence of

individuals. Thus,
∑

r′αr
′
α
r′∣∣∣r′α∣∣∣ is the average direction of the motion

of neighboring individuals of the individual α. ω lies between 0
and one and determines how individuals weigh their personal
observation compared to their social information in decision
making. We note that, here and in the following, to calculate
summation over angles it is necessary to take periodicity into

account. For this purpose, to average a set of angles (θ1, .., θn), we
first decompose the angles into their x and y components,
(xθ1, .., xθn) and (yθ1, .., yθn), and define the average angle based
on its X and Y-components, X � ∑​ n

i�1xθi and Y � ∑​ n
i�1yθi, as

∑​ n
i�1θi/n � arcsin( Y

(X2+Y2)1/2). The same care is taken in

calculating weighted average between two angles as in Eq. 1.
An uninformed individual, β, makes a decision about its

direction of motion by simply averaging the social information
it receives:

bβ �
∑

r′ ∈ r′α
r′∣∣∣∣r′α∣∣∣∣ . (2)

As in the Vicsek model [21], the dynamic is synchronous. At
each time step, informed individuals make an observation using
R(r|ϵ), and all the individuals transmit a signal σ based on their
direction of motion b using G(σ|b). The signals are received by all
the individuals up to a distance l of the transmitter. Receivers,
comprehend the signals as referring to direction r′ using C(r′|σ).
Finally, individuals make a decision about their direction of travel
using their decision-making rule and update their direction
accordingly. The simulations start with a random distribution
of the position and direction of individuals. The base parameter
values used in the simulations (unless otherwise stated) are l � 1,
L � 10, N � 100, v0 � 0.1, ηR � 0.75, ω � 0.25. The density, ρ, is
defined as ρ � N/L2.

In the following we use two variables to distinguish different
phases of the system. The absolute value of the normalized

average velocity of the population is defined as m �
∣∣∣∣∣∣∣∣∣∑​ N

α�1
v→α

Nv0

∣∣∣∣∣∣∣∣∣.
This variable is commonly used in the Viscek-like models to
distinguish ordered from the disordered motion. As a second
variable we define the angular deviation of the average population

direction from the environmental direction as δθ � ∑​ N
α�1

θα−ϵ
N . We

will use this variable to distinguish informed collective motion

FIGURE 1 | Schematic representation of the model. (A): Each agent is equipped with two information channels to communicate. Production channel G(σ|b) is
used for signal production, such that signal σ is produced for a direction b with probability G(σ|b). In the same way, the Comprehension channel C(r′|σ), is used for
comprehension of the signals. In addition to these, a fraction q of the individuals are informed individuals, who are equipped with an observation channel R(r|ϵ). (B) and
(C): The dynamics of the model. Agents move on a two-dimensional space with constant speed v0 and towards different directions bi . In each time step, each
agent i produces a signal σ i based on its direction bi to communicate its direction of motion (B). The signal travels up to a distance l, such that all the agents up to a
distance l from a transmitter receive its signal. Receivers comprehend signals using their comprehension channel (C). Here, agents one and three receive a signal only
from agent 2, but agent 2, having two individuals in its l-neighborhood, receive signals from both one and3. Besides, agent 3, who is an informed individual, makes an
observation using its observation channel. Each agent i, makes a decision based on the information they receive from communication r′i , and the result of observation ri

(in the case of informed individuals), using the weighted averaging rule Eq. 1. Here, r′1 � (r′12), r′2 � (r′21 , r′23), r′3 � (r′32).
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from misinformed collective motion. Informed collective motion
and misinformed collective motion can also be distinguished
using average angular deviation of the direction of motion of
individuals from the environmental direction, defined as
δθ′ � ∑​ N

α�1
|θα−ϵ|
N . As we will see in the following δθ and δθ′

lead to similar pictures. For a population with observation
noise, production noise, and comprehension noise, equal
respectively to, ηR, ηG and ηC , and with a fraction h of
informed individuals, we show these variables by,
m(ηR, ηG, ηC , h), δθ(ηR, ηG, ηC , h), and δθ′(ηR, ηG, ηC , h).

3 RESULTS

3.1 Collective Motion Phases
We begin by studying the behavior of the system as a function of
the noise level and the fraction of informed individuals. To do
this, in Figure 2A, we plot the absolute value of the normalized
average velocity of the population in the case that an amount of
noise η is in the comprehension and production is noiseless,
m(0.75, 0, η, h). The case that the noise is in production is
qualitatively similar. For low noise level, m is close to 1. This
shows that collective motion emerges, and individuals travel in
the same direction. By increasing the noise level, the model shows
a transition to a disordered phase in which individuals fail to align
their motion and travel in random directions. Thus, m takes a
small value.

Interestingly, the ordered phase is composed of two distinct
phases. To see this, in Figure 2B, we plot the angular deviation of
the average direction of motion from the environmental
direction, δθ(0.75, 0, η, h). In the ordered phase, for large h,
the population possesses enough informed individuals to be
able to collectively find the environmental direction.
Consequently, δθ(0.75, 0, η, h) takes a value close to zero. We
call this phase informed collective motion phase. On the other
hand, for small h, misinformed collective motion, in which the
population moves collectively in a wrong direction, becomes
possible as well, and the system becomes bistable (see below).
Consequently, δθ(0.75, 0, ηC , h) takes a large value. We call this
phase misinformed collective motion phase.

In 2 (c), we plot average angular deviation of the direction of
motion of individuals from the environmental direction
δθ′(0.75, 0, η, h). This measure shows similar behavior to that
of δΘ for small h. However, the two measures differ for large h
and large noise levels. The reason is that, for large noise levels,
ordered motion does not emerge. However, as long as h is large,
individuals travel on average towards the environmental
direction. Although, due to noise in observation, a large
fluctuation around the environmental direction exists. For δΘ,
which gives the average direction of motion of the population,
these fluctuations, being distributed symmetrically around ε
cancel. On the other hand, in δΘ′, which gives the average
deviation of the individuals’ direction of motion from the
environmental direction, these fluctuations show up.
Consequently, the two measures show different behavior for
large h and large η.

3.2 Phase Transitions
The nature of the order-disorder transition in the Vicsek and
related models has been the subject of intense research [13,
21–23]. It is well known that the order-disorder transition is
discontinuous in many cases (depending on the parameter values
and the way noise is implemented in the model) [13]. However,
due to strong finite-size effects, the discontinuous nature of the
transition shows up only in very large sizes [22]. Our model
shows a similar phenomenology only for small h. However, the
situation is different for large h. This can be seen in Figure 3A and
Figure 3B for respectively, the production and comprehension
noise, where the probability distribution of the order parameter
for different noise levels and constant (large) h is plotted. Here,
the distribution is derived from a single time series of the system
of length T � 50000, after discarding the first 1,000 time steps. As
can be seen, by increasing the noise level, the order parameter
gradually decreases. This excludes a discontinuous transition.
Besides, the distribution remains peaked at a single value and no
broadening of the distribution resulting from large fluctuations
characteristic of a continuous transition occurs [43]. This
suggests it is possible to go from the informed collective
motion phase to the disordered phase without passing any
phase transition.

FIGURE 2 | Different phases of the system. From (A) to (C), respectively,m(0.75, 0, η, h), δΘ(0.75,0, η, h), and δΘ’(0.75, 0, η, h) in the η − h plane are plotted. For
low communication noise η, collective motion emerges. As noise increases, the system settles in the disordered phase. The collective motion phase is composed of an
informed collective motion phase, when the fraction of informed individuals h is large, and amisinformed collective motion phase, when h is small. Here, L � 10, v0 � 0.1,
ω � 0.25, ηR � 0.75 and ρ � 1. The simulation is run for T � 4000 time steps, and an average over the last 2000 time steps and 24 runs is taken. ε taken equal to π/3.
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In Figure 3C and Figure 3D, by plotting the distribution of the
order parameter for fixed h and different noise levels, we study the
discontinuous nature of the order-disorder transition for small h.
In Figure 3C the case of production noise is considered. Here,
L � 100, v0 � 0.6, ω � 0.25, ηR � 0.75 and the density ρ � 0.1.
The distributions are derived from a single time series of the
system of size T � 1.2 × 106, after discarding the first 105 time
steps. As can be seen, the distribution shows distinct peaks
corresponding to the ordered and disordered phases. As the
noise level increases, the peaks corresponding to the ordered
phase decrease, while that corresponding to the disordered phase
increases. This phenomenology is characteristic of a
discontinuous transition [22, 44]. In Figure 3D, the case of
comprehension noise is considered, where the same bi-
modality which suggests a discontinuous transition is
observed. Here, L � 200, v0 � 0.1, ω � 0.25, ηR � 0.75 and
ρ � 0.1. We note that the finite-size effects are much stronger
for comprehension noise compared to production noise, such
that the discontinuous nature of the transition becomes apparent
for larger population size in the former. Besides, for production
noise, the finite-size effects are stronger for smaller velocities,
while for comprehension noise, they are stronger for larger
velocities. We have not been able to conclusively infer the
discontinuous nature of the transition for large velocities when
noise is in the comprehension.

Returning to Figure 3C, we see that for the case of production
noise the distribution of the order parameter has two major peaks
in the ordered phase. This happens only for small enough h,
i.e., when the ordered phase is bistable, and the system can be
found in both informed and misinformed collective motion
phases. The two major peaks of m correspond to these two
phases. This can be seen in Figure 3E, where m together with
δΘ, as a function of time, are plotted. As can be seen, m shows
intermittency between two values corresponding to the two peaks
of the ordered phase in Figure 3C. When m is very large,
corresponding to the rightmost peak in Figure 3C, δΘ is very
small, indicating that the average direction of motion coincides
with the environmental direction. On the other hand, when m
takes the smaller value, δΘ becomes large, indicating the average
population direction differs from the environmental direction.
The reason why the value of m in the misinformed collective
motion phase is smaller than that in the informed collective
motion phase is that when noise is in production (as is the case
here), the probability of group fragmentation is high, such that in
many times, the population is composed of different groups each
collectively moving towards a different direction independently
of others. Occasionally a group is decomposed into smaller
groups, or different groups can merge to form a larger group
(see the Supplementary Video for a visual manifestation). In the
informed collective motion phase, all the groups head towards the

FIGURE 3 | Phase transitions. (A) and (B): The probability distribution of the order parameter as a function of the order parameter for large fraction of informed
individuals, h, is plotted. For large h, the order parameter decrease gradually as noise in communication increases, for both production (A) and comprehension (B) noise.
Here L � 300, v0 � 0.6, and ρ � 0.1. (C) and (D): The probability distribution of the order parameter as a function of the order parameter for small fraction of informed
individuals, h, is plotted. For small h, where misinformed collective motion is possible, the order-disorder transition is discontinuous for both production (C) and
comprehension (D) noise. In (C) L � 100, v0 � 0.6, and ρ � 0.1 and in (d) L � 200, v0 � 0.1, and ρ � 0.1. (e):m(0.75,0.4, 0,0.1) (blue solid lines) and δΘ(0.75,0.4, 0,0.1)
(red dashed line) as a function of time. With production noise the population is decomposed into several dense independently moving groups. The evolution shows
intermittency between the informed collective motion, where different groups move towards the environmental direction (high m low δΘ) and misinformed collective
motion where different groups head towards different directions (low m high δΘ). Here, L � 100, v0 � 0.6, and ρ � 0.1. (F): Hysteresis loop shows the informed-
misinformed collective motion transition is of first order. Here, L � 20, v0 � 0.1, and ρ � 1. In all the simulations ω � 0.25 and ηR � 0.75. ε taken equal to π/2.
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environmental direction. Thusm takes the largest value. While in
the misinformed phase, different groups can head in different
directions. This decreases m as Figure 3C suggests.

For comprehension noise, m does not show a similar bi-
modality that indicates intermittency between informed and
misinformed collective motion. The reason is that, contrary to
the production noise, with comprehension noise, the population
rarely is decomposed into different dense groups with different
directions of travel, and the strong fission-fusion dynamics
observed for production noise is absent in the case of
comprehension noise (see the Supplementary Video). We will
shortly return to this difference between comprehension and
production noise.

The bi-stability associated with a discontinuous transition
results in hysteresis, which provides an alternative way to test
the nature of the informed-misinformed phase transition [44].
This is shown in Figure 3F, where the hysteresis loop for the case
of comprehension noise is shown. Production noise shows similar
hysteresis effects. Here, we run a simulation beginning with
h � 6

400, which lies in the informed consensus phase. We
gradually decrease h down to h � − 6

400 (a negative h results
from reversing the environmental direction) and then increase
it back to the initial value. The resulting hysteresis loop results
from the memory effects and indicates a discontinuous transition.

3.3 Noise in Signal Production Increases the
Density Fluctuations, Temporal
Fluctuations, and Degrades Collective
Information Acquisition Capability
We have already seen that production noise increases the
probability of group fragmentation and leads to a strong
fission-fusion dynamic absent for the comprehension noise.
This can be shown more quantitatively. For this purpose, we
define the (relative) asymmetry in density fluctuations as
δρ(ηR ,η,0,h)−δρ(ηR ,0,η,h)
δρ(ηR ,η,0,h)+δρ(ηR ,0,η,h , where, the density fluctuation δρ, is defined
as the standard deviation of spatial density of the population. In a

situation where the individuals are distributed uniformly in space,
which is often the case for comprehension noise, this takes a small
value. On the other hand, when the group is decomposed into
independently traveling dense groups, as is often the case for the
production noise, this takes a large value. Consequently, the
asymmetry in density fluctuations is always positive, as can be
seen in Figure 4A. This shows, compared to comprehension
noise, the production noise increases the density fluctuations and
the probability of group fragmentation.

There is another asymmetry between the comprehension and
production of signals. This asymmetry arises in the collective
information acquisition capability of the population. To see this,
we define the asymmetry in the inference capability of the
population as the difference between the angular deviation of
the average population direction from the environmental
direction when an amount of noise is in signal production
compared to the case when the noise is in signal
comprehension, δΘ(ηR, η, 0, h) − δΘ(ηR, 0, η, h). To justify this
choice, we note that in the case that production noise is more
detrimental for the collective information acquisition of the
population, it leads to a higher angular deviation compared to
the case that the same amount of noise is in the comprehension.
Consequently, this quantity becomes positive. The asymmetry in
the inference capability of the population,
δΘ(ηR, η, 0, h) − δΘ(ηR, 0, η, h), for ηR � 0.75, in the η − h
plane is plotted in Figure 4B.b. As can be seen, this quantity
is always positive. This indicates that, compared to the same
amount of error in the comprehension, an amount of error in
production leads to a poor collective inference, and thus, a larger
angular deviation from the environmental direction.

As a second measure of asymmetry in the inference capability
of the population, we consider the difference between the average
deviation of the individuals’ direction of motion from the
environmental direction, when an amount of noise is of
production type compared to the case where the noise is of
comprehension type δΘ(ηR, η, 0, h) − δΘ(ηR, 0, η, h). This is
plotted in Figure 4C in the η − h plane. As can be, this

FIGURE 4 | Asymmetry between signal comprehension and production. Asymmetry in density fluctuations δρ(0.75,η,0,h)−δρ(0.75,0,η,h)
δρ(0.75,η,0,h)+δρ(0.75,0,η,h) (A), asymmetry in population

average direction of motion from the environmental direction δΘ(0.75, η, 0, h) − δΘ(0.75, 0, η, h), (B), and asymmetry in average angular deviation of individuals from
environmental direction δΘ′(0.75, η, 0, h) − δΘ′(0.75, 0, η, h), (C), in the η − h plane are plotted. Production noise increases density fluctuations and deters the inference
capability of the population. Here, L � 10, v0 � 0.1, ω � 0.25, ηR � 0.75 and ρ � 1. The simulation is run for T � 4000 time steps, and an average over the last
2000 time steps and 24 runs is taken. ε taken equal to π/3.
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measure remains non-negative in the entire phase diagram. This
suggests our results are robust with respect to the choice of the
measure of asymmetry in collective information acquisition.

We note that the positivity of the measures of asymmetry in
collective information acquisition results from two shifts in the
phase transitions. First, production noise shifts the order-disorder
transition to smaller noise levels. This shows production noise is
more detrimental to the ordering of the population. Second,
production noise shifts the monostable informed collective
motion phase to larger values of h. This means with production
noise, a larger fraction of informed individuals is necessary for the
population to successfully infer the correct environmental direction.
As shown in the Supplementary Material, both asymmetries in the
density fluctuation and collective information acquisition are robust
features of the model, valid for all the parameter values.

Finally, we note that noise in signal production also increases
temporal fluctuations. To see this, in Figures 5A,B, we plot the
normalized average velocity, m, and average angular deviation of
the individuals from the environmental direction, δΘ′, for,
respectively, the cases where an amount of noise, η, is in signals
production and signal comprehension. As can be seen, the same
amount of noise is in signal production leads to higher temporal
fluctuation in bothm and δΘ′. We note that the same picture holds
for δΘ. To see production noise leads to higher temporal
fluctuation in the entire phase diagram, we calculate the
standard deviation of the time series of m and δΘ′, denoted
respectively as Σm and ΣδΘ′ . Subtracting the fluctuations in m
when an amount of noise is in signal production from that when
the same amount of noise is in signal comprehension,
Σm(0.75, η, 0, h) − Σm(0.75, 0, η, h), we arrive at a measure of
asymmetry in temporal fluctuations when an amount of noise is
of production type compared to a case where the same amount of
noise is of comprehension type. Similarly, we define asymmetry in
the temporal fluctuations of the average angular deviation of the
direction of motion of individuals from the environmental
direction, by first calculating the standard deviation of the time
series of δΘ′(0.75, η, 0, h) and δΘ′(0.75, 0, η, h), denoted
respectively as ΣδΘ(0.75, η, 0, h) and ΣδΘ(0.75, 0, η, h).

Subtracting the first term from the second one, we arrive at a
measure of asymmetry in the temporal fluctuation of the collective
information acquisition capability when an amount of noise is of
production type from that when the same amount of noise is of
comprehension type. These two measures are plotted in Figures
5C,D in η − h plane. As can be seen, both measures are non-
negative in the entire η − h plane. This shows that an amount of
noise in signal production increases temporal fluctuations
compared to the same amount of noise in signal comprehension.

4 DISCUSSION

We have introduced a model of collective movement in which
individuals in a population try to collectively find and travel in a
preferred direction. To do so, a fraction of individuals, informed
individuals, can use private information provided by the noisy
observation of the environment, and social information, provided
by communication between individuals by exchanging signals.
Others, uninformed individuals, can only use social information
provided by communication. By analysis of the model, we showed
that signal production noise not only decreases the inference
capability of the population but also increases density
fluctuations and the probability of group fragmentation. Besides,
by identifying two different phases of collective motion (informed
and misinformed) separated by a discontinuous transition, we have
identified the mechanism by which a fraction of informed
individuals able to only make noisy observations of the
environment can lead the group. Finally, we have cast the much-
studied order-disorder transition in Vicsek-like models into a
broader context by showing that the nature of this transition
depends on the amount of information about the environment
available in the population, in other words, the fraction of informed
individuals and the accuracy of their observation.

A similar comprehension-production asymmetry in the
inference capability and similar phase transitions had been
recently observed in a model of collective decision making in
a population of immobile agents [37]. In this model, a population

FIGURE 5 | Production noise increases temporal fluctuations. (A) and (B): m (top) and δΘ′ (bottom) for production noise (A) and comprehension noise (b) as a
function of time. (C) and (d): Asymmetries in temporal fluctuations inm (c) and in δΘ′ (D) in η − h plane are plotted. Production noise increases temporal fluctuations. In (A)
and (B) η � 0.46 and h � 0.28. In (C) and (D), the simulations are run for T � 4000 time steps, and standard deviations are calculated based on the last 2000 time steps.
An average over 24 runs is taken. Here, L � 10, v0 � 0.1, ω � 0.25, ηR � 0.75 and ρ � 1. ε is taken equal to π/3.
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of agents who reside on a fixed communication network and live in
an environment that can take one out of a finite number of possible
states, try to collectively infer the environmental state [37, 45].
Similarly to the environmental state, in this model, individuals can
take one out of a finite number of beliefs and are equipped with a
production and a comprehension probability transitionmatrices to
produce and comprehend a set of a finite number of signals. It is
shown that such a model of collective decision making with
signaling shows a similar comprehension-production
asymmetry, according to which an amount of noise in signal
production is more detrimental for the collective capability of
the population to infer the environmental state, compared to the
same amount of noise in signal production [37]. Our work here
extends this study in different ways. In previous models of
biological communication by production and comprehension of
signals [37, 42, 45], or more generally, models of a proto-language
[46–49], individuals try to communicate a finite number of states,
which lack a distance measure. In other words, in that case, the
state or belief variable is a categorical variable. In contrast, here, we
have explored a case when individuals can form beliefs over a
continuous space and produce and comprehend a continuous set
of signals, which possesses a distance measure i.e., an ordinal
variable. In this regard, in the limit of zero movement speed, our
model reduces to a model of biological communication in a
population of immobile agents, who can form beliefs and
produce and comprehend signals over a continuous space of
possible beliefs which possesses a distance measure. Second, by
introducing movement into the model, we have been able to study
collective movement in a communicating population. Our finding
here shows that a similar asymmetry in the collective inference
capability of biological populations is at work in this case as well.
Furthermore, by showing that the production noise also increases
temporal fluctuations, the density fluctuations, and the probability
of group fragmentation, our analysis reveals new ways in which
noise in signal production can be more detrimental than noise in
the comprehension. This theoretical study thus strengthens the
case for the existence of a comprehension production asymmetry
and calls for empirical investigations to shed light on the question
that whether such an asymmetry exists in biological populations.

Our study also provides insight on the question that how a
fraction of informed individuals can lead the group on the move.
Previous work has shown that enough fraction of informed
individuals can indeed lead the collective movement of the
group [24, 50]. Our study extends this line of research in two
ways. First, our model introduces the more realistic possibility
that informed individuals have only noisy and imperfect
information of a preferred goal, such as a nutrient source.
Second, our model studies how different types of noise in
communication can affect the ability of the informed
individuals to lead the group and the group’s ability to find
the preferred direction of motion. In this regard, our finding
reveals that depending on the fraction of informed individuals
and noise in observation and communication, a collectively
moving population can be found in different ordered or
disordered phases, separated by phase transitions. Besides, our
analysis reveals that the fraction of informed individuals needed
to successfully lead the group increases by increasing noise in

communication. This can be interpreted to result from the fact
that a higher noise level in communication disrupts the flow of
information in the population, and thus, a higher fraction of
informed individuals and a higher information flow from the
environment to the population through informed individuals is
necessary for finding the environmental direction.

Finally, we note that the similarity between the
phenomenology of the two apparently different systems, that
is, the model of collective movement introduced here and the
model of collective decision making mentioned before [37, 45,
49], can be understood by noting that movement decision
involves choosing a direction between a continuous set of
possible directions. This observation highlights the similarity
of collective movement with collective decision making, which
can provide insights into the physics of collective movements
such as the nature of the phase transitions observed in such
models or the mechanisms by which such populations can
optimize their information acquisition capabilities [45], which
can be subject to future researches.

5 METHODS

5.1 The Simulations
All the simulations are started with a random distribution of
positions and directions of motions. The parameter values used in
the simulations differ for each figure and are given in the figure
captions. To derive the hysteresis loop in Figure 3.f, we consider a
population of size N � 400, with a fraction of informed
individuals equal to h � 6

400 (other parameter values are
presented in the figure caption). Starting from random
distribution of positions and directions of motion, the
simulation is run for T � 10000 time steps, after which h is
decreased by a value 1

400, and the procedure is repeated until h �
− 1
400 is reached. As mentioned before, a negative h results from

reversing the environmental direction (here ϵ � π/2 is changed to
ϵ � −π/2). Then h is increased again in steps of δh � 1

400, each time
after performing the simulation for T � 10000 time steps, until h
reaches its initial value of h � 6

400. The angular deviation and its
error bars for each value of h are calculated based on the last
T � 2000 steps (after the system equilibrates) of the simulation
for each h value.

5.2 Density Fluctuations
To calculate the density fluctuation, we first define the density
field, ρ(x, y) as the number of individuals per unit area. To define
this quantity, we divide the space into square bins of linear size
l0 � 1. The density fluctuation is then defined as the standard
deviation of this quantity δρ � [〈[ρ(x, y) − 〈ρ(x, y)〉]2〉]1/2.
Where averages, 〈.〉, indicate an average over space.
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