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Secondary batteries have been important across several aspects of daily life and industrial manufacture. The electron and ion transport of electrodes significantly affects the energy-storage performance of batteries. Among many fascinating materials, transition metal oxides have been considered promising as candidate electrode materials of high-performance batteries owing to their high theoretical capacity and good stability. Herein, tin dioxide is chosen as a representative transition metal oxide to show the specific electron and ion transport in some types of secondary batteries including lithium-ion, lithium-sulfur, potassium-ion batteries, etc. The way to optimize the structure and the strategies to enhance electron and ion transport have been summarized. Recently, tin dioxide doping and the preparation of tin dioxide-based composites have been reported. In addition, the main challenges and possible prospects are also proposed, which provide important suggestions for researchers to develop high-performance energy-storage materials and to explore new physical science.
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INTRODUCTION

Depending on the rapid development of modern society, the production of clean, renewable energy has become an important direction [1–3] that is necessary to the development of energy storage systems. Secondary batteries have been considered the best choice. In the past few decades, apart from lithium-ion (Li-ion) batteries, some new types of batteries, such as lithium-sulfur (Li-S), sodium (Na)-ion, and potassium (K)-ion batteries, have been developed [4–7]. The energy-storage performance relies on the property of the electrode materials, and this is especially relevant when it comes to large theoretical capacity and good stability.

As a transition metal oxide, tin oxide (SnO2) has a high theoretical capacity, good safety, and a low cost of production, which has attracted much attention [8–11]. However, SnO2, as a semiconductor, has poor conductivity and ion diffusivity, which highly restricts its electrochemical performance [12, 13]. After many cycles, the electrode structure changes greatly, which results in capacity decay [14, 15]. It is important to improve the electron and ion transport of the SnO2 electrodes, which is mainly achieved by constructing composites and doping [16–18]. In this review, we focus on the main strategies to improve the electron transfer and ion diffusion of SnO2 in batteries, which will be important for the broad researchers who are working on energy storage and related physical sciences.



CHALLENGES FOR ELECTRON AND ION TRANSPORT

Even though SnO2 has been widely studied for secondary batteries, it has several disadvantages that restrict its electrochemical performance and practical applications, such as low electronic conductivity and the poor ability of ion transport. For example, the conductivity of SnO2 at room temperature reported by Park et al. was only 1.242 × 10−8 S cm−1 [12]. In addition, Xie et al. reported that the Li-ion diffusion coefficient of amorphous SnO2 thin film was 10−15-10−13 cm2 s−1 [13]. It greatly limits the overall capacity and rate-performance of SnO2-based secondary batteries. Moreover, the SnO2 exhibits a large volume change during the lithiation–delithiation, which makes the electrode gradually pulverize, resulting in a rapid capacity decay.

Recently, it was reported the physical properties of SnO2 can be adjusted by controlling the morphology [2]. Many researchers have selectively focused on the adjustment of the morphology of nanostructured SnO2 in secondary battery systems. It was reported the conductivity of a single SnO2 nanowire was 0.1–0.9 S cm−1[19]. Park et al. employed SnO2 nanowires as anode materials for Li-ion batteries and compared the electrochemical performance with SnO2 powders. SnO2 nanowires showed a high lithium-storage performance [20]. The improvement of the electrochemical performance of SnO2 nanowires was ascribed to the large surface area. Yin et al. indicated the electrochemical performance of SnO2 nanosheets for Li-ion batteries was improved because the nanostructure increased the surface area, enhanced the structural stability, and shortened the diffusion distance of ions and electrons [21].

Compared to some morphologies such as 1D nanowires [22, 23], nanorods [24, 25], nanotubes [26], and two-dimensional (2D) nanosheets [27, 28], three-dimensional (3D) porous structures provide sufficient voids to buffer volume expansion. Since then, it has attracted great attention [29]. In 2017, Li et al. prepared a dumbbell hollow porous SnO2 anode for a Li-ion battery, and it exhibited a high capacity [10]. There were nano-pores in the porous shell, which promoted electrolyte transport and Li-ion diffusion; and the hollow porous structure provided space for buffer volume expansion. Zhang et al. prepared uniform multi-shell SnO2 hollow microspheres through a continuous hard template method, which was used as the anode of the Li-ion battery [30]. Each shell of the multi-shell hollow structure could form parallel resistance to improve the conductivity.

Nanostructured SnO2 can not only improve the electronic conductivity but also shorten the Li-ion diffusion pathway by improving the electrode–electrolyte interface properties [3, 31]. However, the electrochemical performance of the nanostructured SnO2 hinders the application in large-scale secondary batteries. In some studies, it was found that surface coating and elemental doping improved the performance [3, 9, 32]. Researchers have developed several strategies to improve the electron and ion transport of SnO2 to enhance the energy-storage performance, and these have potential for large-scale application.



ELECTRON AND ION TRANSPORT OF SnO2 COMPOSITES


SnO2@C Composites in Li-Ion Batteries

Carbonaceous materials have good electrical conductivity, exhibiting a synergistic effect with SnO2 to improve the overall electronic conductivity [33]. Guo et al. prepared porous carbon-coated SnO2 nanoparticles (SnO2@PC) by using glucose as the carbon source [34]. Porous carbon provided a fast electron/ion transport pathway, which prevents the crushing and aggregation of SnO2 nanoparticles and promotes the formation of stable solid electrolyte interface (SEI) films. Moreover, the highly specific surface area provided more active centers for Li storage and promoted ion/electron transport. When the carbon content was 14.1%, the discharge capacity was 1130.1 mAh g−1 after 100 cycles at 0.2 A g−1.

Since graphene was discovered by Andre and Konstantin Novoselov in 2004, it has attracted wide attention in many fields. Owing to its excellent mechanical properties and electrical conductivity, graphene has been used for energy storage [35]. Many studies have focused on combining graphene with a transition metal oxide like SnO2. Chen et al. reported a SnO2/graphene composite, which was beneficial to improve the electrochemical performance [36]. The green approach to prepare the SnO2/graphene composites directly anchored SnO2 nanoparticles on graphene nanosheets via Sn-O-C bonds. The prepared SnO2/graphene composite exhibited a capacity of 1420 mAh g−1 at 0.1 A g−1 after 90 cycles and good cycling retention of 97% at 1 A g−1 after 230 cycles.

Some investigations have indicated that the composites of SnO2 with carbon materials often suffered from material loss during long-term cycles, which leads to the increase of resistance and the rapid decay of electrochemical performance. Therefore, researchers have prepared some multi-dimensional materials with a topological structure. A double-carbon confinement strategy was presented by Wu et al. to prepare double-carbon to confine SnO2 hollow nanospheres (denoted as G@C@SnO2), as shown in Figure 1 [33]. The G@C@SnO2 showed a highly reversible performance in Li-ion batteries. The enhancement was ascribed to the following advantages: (i) a 3D structure based on graphene increased the conductivity, avoided the aggregation of nanoparticles, and provided an open framework for the transmission of electrons and ions; (ii) hollow SnO2 nanospheres shortened ion diffusion distance and buffered volume change; and (iii) a nitrogen-doped carbon shell can further accommodate volume change, ensuring structural integrity and improved conductivity.


[image: Figure 1]
FIGURE 1. Illustration of the reversible Li-ion storage in G@C@SnO2. Reproduced from Wu et al. [33].




SnO2@C Composites in Li-S Batteries

Li-S battery is considered an excellent candidate for energy-storage systems because of its high energy density. However, the sulfur cathode has the problem of low conductivity (5 × 10−30 S cm−1) and the huge volume-change during cycling, resulting in a rapid capacity decay [7, 37]. In addition, polysulfide is easily soluble in electrolytes, leading to a shuttle effect [38]. Surface modification of sulfur cathodes and coating with conductive materials are common strategies to solve the problems [39]. Liu's group prepared a ternary composite of S/C@SnO2, which could improve the conductivity of sulfur, adapt to the volume-change, and adsorb polysulfide [40]. Porous carbon could improve the conductivity, and the porous structure reserved space for the volume change of sulfur. In addition, the SnO2 shell improved the mechanical strength of the whole structure, displayed strong adsorption toward polysulfide, and further reduced the shuttle effect.

Moreover, SnO2/carbon composites, as functional interlayer materials used in Li-S batteries, weaken the shuttle effect by chemical adsorption. In the meantime, carbon materials in SnO2/carbon composite can improve the overall conductivity of the composite. Hu et al. prepared a SnO2/reduced graphene oxide (rGO) composite as dual-function interlayer cathode material for Li-S batteries [41]. The close interaction between rGO and SnO2 nanoparticles not only reduced the resistance of the sulfur cathode but also averted the deformation of the electrode.



SnO2@TMO Composites in Secondary Batteries

Typical transition metal oxides (TMOs), including SnO2, TiO2, MoO2, Co3O4, V2O5, NiO, CuO, ZnO, and Fe2O3, etc., commonly possess a high capacity compared to the graphite anode in Li-ion batteries [42, 43]. Researchers found that TMO composites are beneficial to the improvement of cycle stability, and they are attributed to the synergistic effect [44–46]. Recently, many studies have been conducted in developing composites of SnO2 and TMOs. SnO2@TMO composites are often used as anodes of Li-ion batteries, and they show good electrochemical performances. For example, SnO2 is n-typed semiconductor with a wide band gap (3.6 eV), while α-Fe2O3 is a p-type semiconductor with a narrow band gap (2.2 eV). Electron transfer from the conduction band of SnO2 to the conduction band of α-Fe2O3, crosses the heterojunction interface, and finally their Fermi levels reach an equilibrium. Figure 2 schematically shows the energy band of lithium storage of a SnO2/α-Fe2O3 heterostructure. The synergistic effect of SnO2 and α-Fe2O3 effectively improved the conductivity, and the diffusion rate of lithium ion thus improved the rate performance of the battery [47].


[image: Figure 2]
FIGURE 2. (A) Schematic diagram of the energy band structures for SnO2 and α-Fe2O3. (B) The energy band of SnO2@α-Fe2O3 heterostructures. EC, EF, and EV stand for conduction band energy, Fermi energy, and valence band energy, respectively. Reproduced from Cui et al. [47].


SnO2@TMO has been used in many secondary batteries, such as Li-ion and Li-S batteries, exhibiting good performance. Liu et al. indicated that the low conductivity of pure sulfur and shuttle effect seriously hindered the commercial development of Li-S batteries [48]. The results showed the resistance of the S@SnO2@MnO2 composite was 6.4 × 107 Ω, which was one order of magnitude lower than pure sulfur (5.8 × 108 Ω). According to the first-principal calculation, SnO2 and MnO2 had a compact band gap structure and a good density of states (DOS), which are helpful to the reduction of the electron transfer barrier. It was indicated that SnO2 and MnO2 improve the electrical conductivity and accelerate the electron transfer of S@SnO2@MnO2 composite. The capacity of the Li-S battery with a S@SnO2@MnO2 composite as the cathode was 1,323 mAh g−1 at 0.1 C, and the low capacity decay rate was 0.03% after 500 cycles, indicating great confinement of the shuttle effect. In addition, the battery also showed good rate-performance.




ELECTRON TRANSFER AND ION DIFFUSION OF DOPED-SnO2 FOR ENERGY-STORAGE

Doping technology is an economical, simple, and effective modification strategy that has been used broadly to improve the electronic properties of SnO2 in secondary batteries. Several materials have been chosen as dopants, including the group IIIA element (Al, Ga, and In), the group VA elements Sb, and so on [49, 50]. It has been reported that doping transition metals can not only increase the conductivity of SnO2 but also reduce the volume change in the process of circulation [51, 52]. Lübke et al. reported two categories of transition metal dopants in SnO2 [53]. The first one are the elements without redox activity, including Zr [53], Ti [54], Nb [55], W [56], and Pb [57]. The doping of these elements will not change the capacity of SnO2, but it can significantly increase the cycling life and rate performance [53]. Dominic et al. indicated that the improvement of the performance of doped SnO2 depending on the increase of the electrical conductivity caused by the additional charge percolation path. Belonging to the second group elements of Cu [53], Mn [58], Fe [59], Co [60], Ni [61], Zn [62], Mo [63], and Sb [64], which showed redox activity, can ensure participation in the conversion reaction, leading to the increase of theoretical capacity. Among them, Mo is an interesting dopant, as it increased the concentration of free electrons in SnO2. Chen et al. prepared ultrafine Mo-doped SnO2 in which Mo uniformly distributed and banded to a SnO2 lattice in the form of Mo6+ [63]. The initial capacity was as high as 2751.4 mAh g−1. Even at 0.5 A g−1, the initial capacity was 1121.8 mAh g−1, and the high capacity of 670.5 mAh g−1 can be maintained after 700 cycles. Moreover, Sb-doped SnO2 has also been studied widely. Wang et al. reported a Sb-doped SnO2 hollow nanosphere that showed the capacity of 709 mAh g−1 at 0.1 A g−1 after 100 cycles [65].

In addition, doping and co-doping strategies by non-metallic elements are also reported, such as F [66–68], N [69], P [70], S/F [71], and Co/F [52]. It was reported that doping fluorine atoms in SnO2 could increase the electrical conductivity to about 5 × 103 S cm−1 [72]. In order to improve the Li-storage performance, Luo et al. chose active fluorine and sulfur atoms as dopants to prepare S and F co-doped SnO2@graphene oxide binary composites [71]. On the one hand, fluorine atoms replaced O2− in SnO2 to improve the electrical conductivity; on the other hand, S-doping enhanced Li-ion diffusion efficiency in the binary structure. The improvement of electronic conductivity can also be verified through the impedance spectra. Furthermore, the material can effectively reduce the volume expansion of electrode materials, thus reducing the capacity loss in the cycling process. It can be ascribed to the formation of the SnSx protective layer and C–F bond on the surface of SnO2 and graphite oxide [71]. In addition, Ma et al. demonstrated the effect of doping ratio by comparing pure SnO2 and cobalt-doped SnO2 with the content of 5, 10, and 15%, respectively [73]. They found the size of the synthesized particles decreased with the increase in dopant concentration. Electrochemical tests showed a doping ratio of 10% (Sn0.9Co0.10O2) possessed the best stability among the four samples.



ELECTRON AND ION TRANSPORT IN Na- AND K-ION BATTERIES


SnO2 in Na-Ion Batteries

Because of the larger diameters of Na- and Li-ions than Li-ions (K+ > Na+ > Li+, 1.38 Å>1.02 Å>0.76 Å), the problems caused by volume change during the cycling are extremely critical, resulting in rapid capacity decay. In order to solve this problem, researchers have developed many strategies, such as nanostructures, making composites with carbon, etc. For example, Chen et al. used the synergistic-induced ultra-fine SnO2/graphene nanocomposite as the cathode for a K/Na-ion battery, which showed a highly reversible capacity [36]. Xu et al. prepared a sandwich structure (MWNTs@SnO2@C) in which MWNTs were coated with thick SnO2, SnO2, thin SnO2, and the carbon layer [74]. After removing the thick and thin SnO2, the larger internal space could alleviate the problems caused by SnO2 volume transformation, and the 1D MWNTs and carbon layer also improved the conductivity, which made the composite material have a better performance.

Ma et al. demonstrated the failure mechanism of the SnO2 electrode in Na- and K-ion batteries and indicated that OVs could manipulate the energy band structure and carrier migration, thus adjusting the intrinsic properties of oxide semiconductors [75]. In addition, Wang et al. used layer-by-layer-assembled porphyrin derivatives as an interface linker to uniformly attach SnO2 crystals to N and S co-doped graphene, achieving a high capacity and optimizing the electrochemical performance effectively [76].



SnO2 in K-Ion Batteries

Owing to the significant advantages, such as fast interface diffusion rate, low price, and wide distribution, K-ion batteries have become a possible candidate to replace Li-ion batteries. Since 2015, research on K-ion batteries has become a hot spot. Some studies indicated that the use of SnO2 in K-ion batteries can significantly alleviate the large volume change and the capacity decay.

Recently, Huang et al. reported the K-storage performance of SnO2/carbon nanofibers [18]. Graphene was introduced through the electrospinning process, and the synergistic effect between SnO2, rGO, and carbon was generated to improve the conductivity of the composites. Huang et al. doped SnO2/rGO/C with phosphoric acid. The prepared composite showed an improved diffusion of K+ ions after the modification by H3PO4 and an increased conductivity by rGO, which further improves the electrochemical performance [77]. Suo et al. prepared SnS2/SnO2 heterostructures to enhance the K-storage performance through a facile two-step hydrothermal method to fix SnS2/SnO2 heterostructures onto stainless steel mesh (SnS2/SnO2/SSM). The SnS2/SnO2/SSM anode displayed an enhanced electrochemical performance [78]. Li et al. used amorphous carbon to coat SnO2 nanosheets, which exhibited good K-ion storage performance. The HCHS, as a stable carrier skeleton for SnO2 nanosheets, is good at providing high electrical conductivity. Amorphous carbon wrapping solved the problems of volume expansion and provided surface-induced capacitance [79].




CONCLUSION

In summary, the challenges for enhancing the electronic and ionic properties of SnO2 electrodes reported recently have been introduced. The conductivity and ion diffusion of SnO2 strongly depends on the structure and composition. Moreover, we indicated that the SnO2 exhibited great potential as the electrode material with good volumetric and gravimetric capacities in many secondary batteries, including Li-ion, Li-S, Na-ion, and K-ion batteries, as displayed in Supplementary Tables 1–6. However, electrons and ions transport both require significant improvement. In order to address the issues and enable the application of SnO2-based secondary batteries, some approaches have been demonstrated. It is expected that possible investigations in the future will be focused on the optimization of the SnO2 structure, modifying this with some other functional dopants to seek ideal SnO2-based composites through both theoretical modeling and experimental preparation.
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