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Diamond has a broad spectral transmission range (>0.2 μm) and the largest Raman
frequency shift (1,332 cm−1) among known Raman crystals. Hence, the diamond Raman
laser has the potential to achieve lasing in the long-wave infrared (LWIR) range, which is
difficult to reach via other crystalline lasers. Here, we report a new approach to achieve
LWIR output using diamond Raman conversion and provide the corresponding analysis
model and simulation results. The conversion efficiency is analyzed as function of the pump
waist size, output-coupler transmission, and crystal length, at constant pump power. The
maximum output power at which a diamond of relatively large size can be operated without
damage is predicted. This study paves a way for high-power LWIR lasing in diamond.
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INTRODUCTION

The long-wave infrared (LWIR) range (>8 μm) falls in the atmospheric window, where has lower
atmospheric absorption and scattering loss compared with that of the near-infrared region, as shown
in Figure 1. Hence, LWIR lasers are able to strongly penetrate fog and smoke. Therefore, these lasers
have important applications in defense, laser remote sensing, and biochemical detection [1, 2].
Limitations on crystal growth (viz. limited size, limited transmission spectrum range, low damage
threshold, or low gain coefficient, etc.) pose a limitation on the performance of the inversion lasers in
the LWIR band. At present, the common approaches toward 10 μm band lasing include CO2 laser,
quantum cascade laser (QCL), free-electron laser, as well as frequency conversion via nonlinear
optical techniques. Among these methods, the optical parametric oscillator (OPO) based on
nonlinear frequency conversion is one of the most well-known techniques to realize all-solid-
state LWIR lasing [3, 4]. However, it is very difficult to obtain high-power LWIR output by using
OPO because of its large quantum defect and low optical conversion efficiency. Owing to the limited
depth of quantum wells, the output power of QCLs in LWIR is usually less than hundreds of
milliwatts, and it is difficult to achieve high peak power output [5]. The CO2 laser is a mature method
to generate tunable laser output in the range from 9.2 to 10.8 μm. However, continuous CO2 gas
injection is required for the operation of CO2 lasers, and this results in large footprint and high
operational cost. As a third-order nonlinear frequency conversion technology, stimulated Raman
scattering (SRS) is automatic phase-matched and not affected by the “spatial hole burning” effect
existing in traditional inversion lasers. Wideband laser output can be achieved by controlling the
pump wavelength and cascade process in a Raman oscillator [6]. In addition, the “beam cleanup”
effect makes SRS an effective technical method to obtain a high beam quality laser source [7–9].

Edited by:
Zhi-Han Zhu,

Harbin University of Science and
Technology, China

Reviewed by:
Quan Sheng,

Tianjin University, China
Zhiyuan Zhou,

University of Science and Technology
of China, China

*Correspondence:
Zhenxu Bai

baizhenxu@hotmail.com

Specialty section:
This article was submitted to

Optics and Photonics,
a section of the journal

Frontiers in Physics

Received: 24 February 2021
Accepted: 21 June 2021
Published: 05 July 2021

Citation:
Chen H, Bai Z, Zhao C, Yang X, Ding J,

Qi Y, Wang Y and Lu Z (2021)
Numerical Simulation of Long-Wave

Infrared Generation Using an External
Cavity Diamond Raman Laser.

Front. Phys. 9:671559.
doi: 10.3389/fphy.2021.671559

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 6715591

BRIEF RESEARCH REPORT
published: 05 July 2021

doi: 10.3389/fphy.2021.671559

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.671559&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/articles/10.3389/fphy.2021.671559/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.671559/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.671559/full
http://creativecommons.org/licenses/by/4.0/
mailto:baizhenxu@hotmail.com
https://doi.org/10.3389/fphy.2021.671559
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.671559


Diamond is an excellent Raman crystal with an extremely high
Raman gain coefficient, wide spectral transmission range (from
0.2 to >50 μm), large Raman frequency shift (1,332.3 cm−1), and
extremely high thermal conductivity (>2000Wm−1 K−1)
[10–13]. The thermal conductivity of diamond is dozens or
even hundreds of times that of common laser host materials
(thermal conductivity of Y3Al5O12 is 14Wm−1 K−1 and that of
quartz fiber is 1.17 Wm−1 K−1) and widely used mid-infrared
OPO crystals (thermal conductivity of ZnGeP2 is 35Wm−1 K−1

and that of KTiOAsO4 is 2 Wm−1 K−1). The near infrared 1.5 μm
(eye-safe) [14] and mid-infrared 3–5 μm [15] band laser outputs
have been achieved through diamond Raman conversion.
Combined with the excellent photothermal properties of the
diamond crystal and the many significant advantages of the
SRS process, the diamond Raman laser (DRL) has become a
potentially effective means to obtain LWIR lasing output.
Utilizing the large Raman frequency shift of diamond and a
4.3 μm laser as the pump source, a 10 μm LWIR lasing output can
be obtained through the first-order diamond Raman conversion,
as shown in the inset of Figure 1.

In this paper, we propose a model of a first-order Raman laser
with 10 μm output by utilizing diamond Raman conversion.
Based on the steady-state model of the DRL, the relationships
between the cavity parameters, crystal length, and output
characteristics, such as the conversion rate are simulated and
analyzed. The optimal pump waist size, output coupler
transmission, and crystal length are determined. In addition,
the intensity changes of pump and Stokes in the time domain
during the Raman conversion are analyzed.

NUMERICAL SIMULATION AND ANALYSIS

Model for Simulation
The experimental setup for the simulation analysis in this study is
shown in Figure 2. Pump wavelength 4.3 μm (no challenge to
realize in an OPO at present) was applied in the simulation for

>10 μm Raman lasing. The long-band pumped far-infrared
Raman laser has a larger intrinsic mode size under the
condition of certain cavity parameters compared to the
traditional short-band pumped Raman lasers; meanwhile, the
Raman gain coefficient is inversely proportional to the
wavelength [6]. Therefore, these increase the pump threshold
of LWIR generation, the maximum pump power that the crystal
can bear, and the maximum output power that can be obtained.
The Raman oscillator adopts a near-concentric cavity structure.
The curvature radius of the input and output couplers is 50 mm.
The surface of the input coupler is antireflection-coated at the
pump (4.3 μm) and high-reflection-coated at the Stokes (10 μm);
the surface of the output coupler is high-reflection-coated at
4.3 μm. The total length of the cavity is 102 mm, and the
corresponding intrinsic beam waist size is 251 μm (380 μm at
the t-plane and 122 μm at the s-plane). As the refractive index of
diamond is constant (n � 2.38) at wavelengths greater than 2 μm
[11], a Brewster-cut (∼67.2°) single-crystal diamond is applied for
the transmittance of both pump and Stokes beams, while avoiding
the problems caused by crystal coating and film damage. The

FIGURE 1 | Atmospheric windows (inset: LWIR laser generation via
diamond Raman conversion).

FIGURE 2 | Schematic of 10 μm external-cavity DRL (inset: pump and intrinsic mode of diamond Raman resonator).
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diamond is 5 mm in length and placed at the beam waist of the
Stokes. To achieve better mode matching to improve the
conversion efficiency, a focusing lens F3 with a focal length of
100 mm is used to focus the pump beam to the center of the
diamond, and the corresponding pump waist size is 252 μm, as
shown in the inset of Figure 2.

Simulation Analysis
For crystalline Raman gain materials, the time of Raman phase
transition is usually in the order of picosecond. This means that
the pump pulse duration in tens of nanoseconds is consistent with
the steady-state operating conditions [16, 17]. However, affected
by the build-up and amplification time of Stokes, usually the pulse
duration of Stokes is often shorter than that of the pump until the
pump pulse width is longer than hundreds of nanoseconds.
Therefore, based on the resonator structure proposed above,
we first used the steady-state model of an external cavity
Raman laser to simulate and analyze the output characteristics
(conversion efficiency, output power, etc.) under different
resonators and pump parameters. Subsequently, time-domain
characteristics of a short pulse pumped DRL is discussed to better
understand the effect of oscillator parameters on the output pulse.

When the Raman laser operates in a steady-state, the following
relationship is satisfied [18, 19].

Pp � T + 2αL
ηT

Ps[1 − exp(− 2G
T
Ps)]−1 (1)

Pres � Pp − (T + 2αL)Ps

ηT
(2)

where T is the output coupler transmittance, α (�0.03 cm−1) and
L (�5 mm) are the absorption coefficient and the length of the
diamond crystal, respectively; η is the quantum defect in the
Raman conversion process (η � λp/λs); G is the Raman power
gain in the focused geometry; Pp, Ps and Pres are the powers of
pump, Stokes, and the residual pump, respectively.
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where gs is the Raman gain coefficient of the diamond crystal, np,s
(np � ns � 2.38), wp,s (wp � 252 μm and ws � 251 μm) and M2

p,s
(M2

p � 2 andM2
s � 1.1) are the indices of refraction, waist size and

beam quality factors of the pump and Stokes, respectively. As the
gain coefficient is inversely proportional to the wavelength, the
gain coefficient is set to be 1 cm/GW in the simulation, based on
the previous reports gs � ∼10 cm/GW at 1 μm [6]. According to
Eq. 2, when the pump power increases to infinity, the slope
efficiency of Stokes light (σ) is equal to the maximum conversion
efficiency of Raman generation, i.e.,

σ � ηT
T + 2αL

(5)

When Stokes output power approaches zero infinitely, the
threshold Pthr of Raman generation is calculated by Eq. 1:

Pthr �
π(T + 2αL)
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According to Eqs. 5, 6, we can obtain the maximum conversion
efficiency and Raman generation threshold at different output
coupler transmittances. As shown in Figures 3A,B, the Raman
generation threshold of DRL is much higher than that in the near-
infrared band owing to its relatively low Raman gain and high
absorption loss in the LWIR band [11]. The Raman generation
threshold increases linearly with the output coupler
transmittance. When the output coupler transmittance
increases to about 60%, the maximum conversion efficiency
can approach the quantum conversion limit (∼43%). Using
Eqs. 1, 2, the output power and the residual pump curves
when T � 0.5% are obtained for the double-pass pump mode.
As shown in Figure 3C, when T � 0.5%, the corresponding Stokes
generation threshold is 34.8 kW. When the pump power is
greater than this value, owing to the consumption of Raman
conversion, the residual pump power rapidly reduces, and the
Stokes power generated increases accordingly.

The output transmittance, pump waist size, and crystal length
are three key factors that affect the output power of the DRL.
Utilizing Eq. 1, we obtained the relationship between the output
power of Stokes and the output transmittance, the size of the
pump waist, and the crystal length under different pump powers,
as shown in Figure 3. When the pump waist size and the crystal
length are fixed, different pump powers correspond to different
values of the optimal output transmittance. As shown in
Figure 3D, the optimal output transmittance increases with
the increase in pump power. The threshold of Stokes
generation corresponds to a fixed pump power density, and
the size of the pump focus is directly related to the power
density. When the pump power is constant, the smaller the
pump focus size (corresponding to the higher power density),
and the easier it is to obtain Stokes output, as shown in Figure 3E.
However, the pump spot size cannot be infinitely small, which is
particularly difficult for LWIR lasers. Thus, there is an
experimental optimum beam waist size that is small enough to
get close to the maximum output power and yet not be
experimentally problematic, for example, by shortening the
length of the Raman oscillator combining with a shorter pump
focus lens (F3, as illustrated in Figure 1). Even if the pump waist
size is smaller than this value, the improvement of the output
Stokes power is very limited. Meanwhile, the small size of the
pump waist may increase the risk of diamond damage and
aggravate the thermal effect. The crystal length is another key
factor affecting the output power of the Raman laser, which
affects the absorption loss of the crystal, as well as the interaction
length of the pump and Stokes beams during the Raman
conversion. As shown in Figure 3F, the Stokes power
increases with the increase of diamond length in the initial
stage, however, decreases when the diamond length increases
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continuously due to the relatively large absorption loss in the
pump band. Therefore, it is critical to choose an optimal length of
the crystal, especially for LWIR Raman lasing.

Theoretically, as the dephasing time of the vibrational
excitation is of order of 10 ps for crystals [20], the Stokes
pulse width is close to that of the pump when the overall gain
of the oscillator is large enough for a crystalline Raman laser
pumped by tens of nanoseconds pulse (or longer). However,
restricted by Raman gain coefficient, crystal length, intracavity
diffraction loss, as well as resonator structure, Stokes beam cannot
oscillate and output in a very short time, which leads to an
obvious pulse compression effect during Raman conversion

[21, 22]. In view of this situation, we simply analyze the
changes of pump and Stokes intensity in time domain in a
Raman oscillator. It is assumed that the time-domain
distribution of the pump pulse is Gaussian and only the first
order Stokes generation is existed, as shown in Figure 4. At the
beginning, the pump pulse remains in the input state before
reaching the Raman threshold. When reaches the Stokes
generation threshold, Stokes pulse is amplified rapidly with
pump pulse depleted until the end of the pump cycle. It can
be seen from the comparison of Figures 4A,B, when the overall
gain of the Raman oscillator is small, a relatively long time is
required to Stokes generation, showing low output power

FIGURE 3 | Numerical simulation results. (A)Maximum conversion efficiency, and (B) Raman generation threshold as a function of output coupler transmittance at
Stokes; (C) output and residual pump curves at T � 0.5%. Stokes output power as a function of (D) output coupling transmittance, (E) pump waist radius, and (F) the
crystal length, for different pump powers. The red line indicates optimal values of output coupler transmission, pump waist radius, and length of the crystal, respectively.

FIGURE 4 | Tracings diagram of pump, depleted pump and Stokes with (A) small gain, and (B) large gain.
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intensity and strong pulse width compression effect. By contrast,
Stokes with high power intensity and negligible pulse
compression effect is presented, while the gain is high. As gain
coefficient in the specific operating wavelength and waist radii of
the pump and Stokes beams, are the main parameters that the
overall gain of a Raman oscillator depended on, it can be
predicted that relatively strong pulse width compression will
occur in a LWIR-DRL if the pump pulse width is in the order
of nanoseconds. Therefore, compared with short pulse pumping
(∼ns), increasing the pump pulse width in a certain range is an
alternative way to improve the pump efficiency of LWIR-DRLs.

CONCLUSION AND OUTLOOK

In this paper, we proposed a new scheme to realize LWIR lasing
output through diamond Raman conversion by utilizing the
excellent photothermal properties of diamond crystals and the
advantages of SRS. Based on the large Raman frequency shift of
the diamond crystal, a 10 μm far-infrared laser was obtained by
using a 4.3 μm laser as the pump source through the first-order
Raman conversion. Using the diamond Raman steady-state
model, we simulated the relationship between the output
transmittance and the maximum conversion efficiency, Raman
generation threshold, and residual pump power. The relationship
between the relevant parameters (the size of the pump waist,
output transmittance, and crystal length) and the output power
was analyzed. And the pulse compression effect as the function of
the oscillator gain in the process of Raman conversion is
discussed. It can be predicted that when the diamond size is
1 × 1 × 1 cm3, the maximum Stokes peak power output close to
123 MW can be generated with the transmittance of 40%.
However, since the steady-state Raman gain coefficient is
inversely proportional to the linewidth [23, 24], considering
the intrinsic gain linewidth of the diamond (∼40 GHz), it is
necessary to control the linewidth of the mid-wave infrared
(MWIR) pump beam in the experiment to ensure the Raman
conversion efficiency.

The simulation results in this study provide important
theoretical guidance and prediction for the subsequent

development of LWIR lasers based on the DRL. In addition,
due to the excellent thermophysical properties of diamond,
stable LWIR Raman operation without heat accumulation
can be realized when the pump pulse width is in the order of
100 microseconds, meanwhile, the repetition rate can be up to
kHz-level [10, 25], even if its quantum defect is significantly
higher than that of the short wave. As there is no spatial
hole burning effect in the process of Raman conversion
[26–29], the theoretical study also provides a preliminary
reference for realizing the operation of narrow linewidth
LWIR lasing. Besides, the excellent Brillouin characteristics of
diamond also make it possible to realize low-noize LWIR
Brillouin lasing and Brillouin frequency combs in the future
[30, 31].
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